
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 6, 2021

1Abstract—The purpose of the research is to create a hybrid

cloud platform that performs distributed computing tasks

using high-performance servers and volunteer computing

resources. The proposed platform uses a new task scheduling

method, which is also presented in this paper. It uses a task

stalling buffer to manage workload among the two grids

without any additional information about the tasks. Since

efficient task scheduling in these distributed systems is the

actual problem, the system reliability issue is solved using a

hybrid cloud architecture when both high-performance servers

and volunteer computing resources are combined. The results

of the experiment showed that the proposed solution solves the

problem of balancing workload between two grids better than

the standard scheduling algorithm. Computer study and

experiments also showed that the proposed hybrid cloud tasks

scheduling method with a task stalling buffer reduces up to

47.3 % of total task execution time. The outcome of this paper

provides a background for future research on a task stalling

buffer in hybrid cloud computing.

 Index Terms—Computer buffers; Distributed computing;

Load flow control; Scheduling algorithms.

I. INTRODUCTION

Data has become one of the most critical and valued

assets in today’s fast-paced business world. Organisations

collect and use data to evaluate key performance indicators,

make informed decisions, and establish goals. Useful data

can help to find problems, increase business efficiency, find

new opportunities, and stay ahead of competitors. Due to

the ongoing transformation of industrial manufacturing

through digitalisation (Industry 4.0 strategic initiative), data

amounts tend to increase [1].

Large companies usually solve hardware capacity

problems by upgrading existing or buying new servers and

hiring additional staff to maintain the systems. Small and

medium businesses typically do not have the financial

ability to make such investments. In most cases, smaller

companies purchase external grid computing services

through various subscription or on-demand pricing schemes.

Such services provide secure, scalable storage and compute

capacity. Research shows that this makes a more affordable

distributed volunteer computing model seem unreliable and

Manuscript received 18 March, 2021; accepted 8 November, 2021.

too difficult to adopt [2].

The distributed volunteer computing model enables

volunteers to donate their own computing resources to

projects. Although this model can reduce service costs, it

also lacks reliability. The required number of volunteers

may not always be available or volunteers may not always

complete the assigned tasks. Furthermore, protection of

personal data can cause additional problems. Personal data

privacy issues are especially relevant now since as of 25

May 2018 companies and organizations have had to comply

with GDPR (General Data Protection Regulation) rules

within the European Union.

As a result, we now encounter the concept of distributed

cloud, which is one of Gartner’s top 10 strategic technology

trends for 2020 [3] and 2021 [4]. The distributed cloud is

the distribution of public cloud services to different physical

locations. Although such services are outside physical data

centres, they are still controlled and supervised by the

provider. This technology offers the benefits of a public

cloud service alongside the benefits of a local private cloud.

Despite the benefits, a distributed hybrid cloud computing

model presents various challenges. One such problem is task

scheduling and execution. It is essential to maintain optimal

workload between the grids. However, existing well-known

hierarchical and non-hierarchical task scheduling

algorithms, reviewed in Section IV, cannot balance the

workload without any additional information about the tasks

(such as task size, quantity, and incoming task rate). As

reviewed in [5], existing hybrid distributed computing

platforms ([6]–[18]) require preliminary data on the number

of tasks to be performed, the execution time for each task, or

the number of computing resources available. A task

execution schedule is then created using these data.

However, in heterogeneous distributed computing networks,

these parameters are either constantly changing or no such

information is available.

This paper presents a hybrid cloud platform that performs

batch processing tasks using internal servers (or cloud

computing services) and personal computers. Our proposed

platform is different from the currently existing solutions

([6]–[18]), as it is designed to operate in a heterogeneous

environment without simulation results or task replication.

Our proposed platform combines public and private

Application of a Task Stalling Buffer in

Distributed Hybrid Cloud Computing

Albertas Jurgelevicius1, *, Leonidas Sakalauskas2, Virginijus Marcinkevicius1
1Institute of Data Science and Digital Technologies, Vilnius University,

Akademijos St. 4, LT-08412 Vilnius, Lithuania
2Vilnius Gediminas Technical University,

Sauletekio Aly. 11, LT-10223 Vilnius, Lithuania

j.albertas@gmail.com

http://dx.doi.org/10.5755/j02.eie.28679

57

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 6, 2021

computing grids into a distributed hybrid cloud. It uses our

proposed task scheduling method to manage the workload

between the two grids without any additional information

about the tasks. We show that service reliability issues

(caused by low-performance compute nodes) can be solved

using an opportunistic task scheduling algorithm combined

with a task stalling buffer. This method prioritises the

private cloud for processing tasks and distributes tasks into

the heterogeneous public cloud, only if the private cloud

resources are exhausted. In a hybrid cloud environment, this

approach is called “cloud bursting”. In this way, our

proposed platform allows companies to reduce service costs

and still maintain service reliability.

The rest of the paper is structured as follows. In Section

II, we overview and explain the technologies used for our

proposed hybrid cloud platform. Section III presents the

architecture for our proposed platform. Section IV explores

task scheduling algorithms. Sections V and VI present the

results of the simulation and platform experiment. In

Section VII and Section VIII, we conclude this paper by

summarizing the findings and presenting directions for the

future.

II. TECHNOLOGIES

This section will introduce the technologies that we

selected and used for our proposed platform architecture.

We use these particular solutions because they are open

source, widely used, and compatible (all support the same

software virtualisation solution). However, it is essential to

note that other compatible alternatives may also be used.

A. Public Distributed Cloud Computing

The public distributed computing model connects public

computers to solve distributed tasks in parallel. This model

aims to solve heterogeneous environment issues, allowing

new external compute nodes to join the computations. It

uses a client-server model, which enables the nodes to

provide resources to the project server. This model allows

the compute nodes to request the master server for new

tasks and send back the results. Public distributed

computing approaches can compete with existing cloud

computing solutions [19].

There are various public distributed computing solutions:

CharityEngine [20], GridMP [21], Xgrid [22], XtremWeb

[23]. However, the most widely and actively used solution is

called “Berkeley Open Infrastructure for Network

Computing” (BOINC) [24]. BOINC is a platform for high-

throughput computing on a large scale (thousands or

millions of computers). It can run virtualised, in parallel, or

for GPU-based applications. Furthermore, it can perform

big data mining tasks using consumer devices or company

servers [25]. BOINC performs computations only when the

CPU is idle. This solution can allow organisations to use the

computer resources available from employees of the

company without disrupting any ongoing work. Since

company employee computer CPUs are idle 99 % of the

time [25], this solution may solve the computational

resource demand problem.

B. Private Distributed Cloud Computing

The private cloud computing model uses the client-server

model and is focused on achieving high internal resource

utilisation and performance. Private distributed computing is

the preferred model in companies and organisations, as it

provides high-quality service, high performance, and

ensures data security.

One of such cluster resource management platforms is

called “Apache Mesos” [26]. It supports popular

frameworks, such as Hadoop [27] and MPI [28]. It can scale

up to 50,000 (emulated) nodes and have less than 4 %

overhead. Small tasks should be preferred over large ones to

minimise time costs caused by unexpected failures. Apache

Mesos supports various job schedulers, such as Apache

Chronos [29]. Apache Chronos is responsible for running

schedule and dependency-based jobs. However, an

increasing number of unprocessed tasks may cause the

scheduler to crash. We solved this issue by limiting the

number of unprocessed tasks to the number of available

resources in our Apache Mesos cluster. Finally, it is

essential to note that Apache Chronos and Apache Mesos

require a trusted network environment, allowing direct

interaction between systems without encryption.

C. Software Virtualisation

Software virtualisation is a technology that hides physical

system resources from the operating system and helps solve

various problems [30]. In heterogeneous environments,

software virtualisation allows running the same tasks on

multiple computer architectures and different operating

systems.

There are many various software virtualisation

technologies: Docker [31], Kubernetes [32], Oracle VM

VirtualBox [33], QEMU [34], VMware [35], and many

others. We will be using Docker and Oracle VM Virtual

Box to maintain software compatibility with Apache Mesos,

Apache Chronos, and BOINC.

Docker is a set of platform-as-a-service products. It uses

OS-level virtualisation and provides means to bundle

software into packages called “containers” (more

lightweight than virtual machines). Docker allows software

applications to run on various computer architectures and

operating systems without requiring any changes to the

application.

Oracle VM VirtualBox is an application to create,

manage, and run virtual machines. It provides hardware-

level virtualisation and has more security controls than

Docker. However, virtual machines use more computer

resources and take more time to start than containers.

Although software virtualisation can solve some security

issues in cloud computing, it does not protect against all

security threats.

D. Hybrid Distributed Computing

Hybrid distributed computing platforms combine private

and public distributed computing clusters. Distributed

computing tasks are distributed between private and public

computing resources using various task scheduling

algorithms. We selected to use BOINC for public distributed

computing since it is the most popular and widely supported

public computing platform. Even though the BOINC

platform supports both Docker and Oracle VM VirtualBox,

we used Docker since it requires less resources to operate

58

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 6, 2021

and is supported by Apache Mesos. Our proposed task

scheduling algorithm will be presented in Section IV.

The next section presents the architecture of our proposed

platform.

III. PROPOSED DISTRIBUTED HYBRID CLOUD PLATFORM

ARCHITECTURE

As shown in Fig. 1, our proposed distributed hybrid cloud

has a two-level hierarchy and contains physically distributed

(hierarchical) cooperative schedulers. At the top level, there

is a master scheduler that distributes tasks between the

lower-level grids. This architecture provides a scalable and

resilient core for task execution and gives more control over

service quality. We propose using two grids: private

(controlled by Apache Mesos) and public (controlled by

BOINC) to distribute tasks between the company servers

and employee computers. Each grid is managed by a

scheduler specifically designed for each environment.

Fig. 1. Proposed distributed hybrid cloud platform architecture with

proposed scheduling algorithm (highlighted in yellow).

Our design philosophy has been to push task scheduling

to the lower-level grids by controlling which grid should

receive the task. Our proposed architecture consists of the

following main components: master scheduler, private

computing grid, and public computing grid. We also added

additional components that are not mandatory but help to

illustrate the complete solution:

 Streaming platform: stores all new incoming tasks in

the waiting buffer until the system accepts the tasks;

 Result aggregator: collects and aggregates results from

the executed tasks;

 Database: used to store the aggregated results.

The master scheduler is the main focus of our research.

Figure 1 contains our proposed scheduling method for this

architecture and will be explained in Section IV-C. It is the

top-level scheduler that distributes tasks to the lower-level

schedulers. It consists of the following sub-components:

 Stalling buffer: the component that stalls tasks for later

processing in the private computing grid (for more

details, see Section IV-C);

 Distributor: the process that stores new incoming tasks

in the stalling buffer and then distributes to the Apache

Mesos scheduler whenever the private computing grid

has available Apache Mesos agents. If the stalling buffer

is full and the public computing grid has available

BOINC clients that are idle, then the distributor forwards

new incoming tasks to the BOINC scheduler.

Private and public computing grids consist of grid

schedulers and clients (or agents) responsible for

distributing and executing tasks in each grid. In Section IV,

we will review scheduling algorithms to find a suitable

algorithm for our top-level (master) scheduler.

It is important to note that our proposed platform may be

required to deal with specific data privacy and availability

issues in some cases, such as downloading or uploading

large amounts of data and processing sensitive information.

Data size and privacy issues are well-known and there are

various solutions to these problems [36]–[39]. Such

solutions could be considered for integration into our

proposed distributed hybrid cloud architecture, improving

its data security and availability. However, the analysis of

these problems is not within the scope of this paper.

Our proposed platform requires incoming distributed

computing tasks (Fig. 1) to be defined using the JSON

(JavaScript Object Notation) format. Any preferred data

format is suitable for defining tasks. However, we used the

JSON format since it is well supported and easily readable.

Here, the task definition is structured as follows

 {"container": "<task>", "method": "<method >"},

where <task> is the name and parameters of the Docker

container that contain task execution files (solution based on

[40]). <method> can define the task scheduling method or

specify a specific cluster to execute the task in. This can be

used to execute urgent or sensitive personal data tasks using

the private cluster. Examples:

 {"container": "ashael/pi 100000", "method": "FIFO"};

 {"container": "ashael/pi 200000", "method": "TSB-

static(k=10)"};

 {"container": "-e \"INPUT_FILENAMES=1.json;

2.json\" -v /var/data/:/data -v /var/ out/:/out mrquad/map-

reduce", "method ": "mesos"}.

Docker containers are stored in publicly or privately

available repositories. This solution allows our platform to

operate in a heterogeneous environment. Furthermore, it

reduces network traffic load since Docker containers are

downloaded only once by the compute nodes instead of

distributed each time by the schedulers.

IV. SCHEDULING ALGORITHMS

In this section, we will review existing well-known

hierarchical and non-hierarchical task scheduling algorithms

that could be suitable for the top-level scheduler. The

algorithm must be compatible with our proposed distributed

hybrid cloud architecture; thus we will review existing

hierarchical task scheduling algorithms that fall under the

following classification [41]:

 Global. Tasks are executed on multiple compute nodes

throughout multiple grids;

 Dynamic. Tasks come online dynamically, and task

execution costs are unknown;

 Physically distributed. Scheduling is done using

various distributed schedulers;

59

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 6, 2021

 Cooperative. Distributed schedulers cooperate to make

better scheduling decisions.

Finally, in Section IV-C, we will explore the

opportunistic load balancing approach using the proposed

hybrid cloud task scheduling method with the task stalling

buffer. Although this method is used to distribute tasks in

queueing systems with two heterogeneous servers, we

propose adopting and applying this method to grid

computing. We will show that this method can be used to

schedule tasks between two grids without requiring any

additional information about the tasks, and thus improve

workload balance between the two grids.

A. Hierarchical Scheduling Algorithms

The existing hierarchical scheduling algorithms [41] for

task distribution among multiple grids can be summarized

using the following four existing solutions, where:

 Tasks are moved from highly loaded clusters to less

loaded neighbouring clusters, assuming that task arrival

rates will not exceed service rates [42];

 Tasks are divided into subtasks and time estimations

are made using simulation results, including possible

resource allocation conflicts. Subtasks are assigned to

available local grids that can complete executions the

fastest [43];

 Tasks are sorted in descending order of their average

execution times and assigned to workers. Execution times

are estimated using simulation results together with

historical data [44];

 Slow running tasks are replicated expecting quicker

results from another resource [45].

Existing solutions assume that task arrival rates and

service rates for the whole system always remain stable,

operate on estimated task execution times, or use task

replication. Such assumptions and requirements are also

found in other methods such as QoGS [46], which selects

the most suitable cloud in the intercloud for task execution.

Such methods use a set of weighted coefficients, which are

calculated either by user or by executing a set of test tasks to

get simulation results. The simulation results are then used

to calculate the weighted coefficients automatically.

Although such methods are very efficient in their particular

use cases, they all require specific information about the

tasks or depend on simulation results. Our proposed solution

is different from the currently existing solutions, as it is

designed to operate in a heterogeneous environment without

any simulation results or task replication.

B. Job Schedulers for Distributed Computing

In this section, we review widely adopted independent

job schedulers. Some of them are also used for big data

processing tasks by Facebook, Yahoo, and Hadoop. There

are at least five well-known scheduling methods [47]–[50]:

 Fair-share [47], [49]: each job gets an equal amount of

resources;

 First In First Out (FIFO) [47], [49] - the oldest tasks

are executed on the first nodes to become available;

 Capacity [47], [49]: resources are allocated to job

processing queues used to accept and process new tasks;

 Longest Approximate Time to End (LATE) [47]–[49]:

replicates tasks that are stuck in slow compute nodes,

using such replicated tasks as a backup (reliability is not

guaranteed [47]);

 Round-robin [50]: runs all the applications from the

first job on the first node, all the applications from the

second job on the second node, etc.

The only algorithm here capable of distributing the

incoming stream of dynamic tasks in a highly heterogeneous

environment between two grids is FIFO. It does not require

any information about the tasks and the available node

capacity. Other well-known task scheduling algorithms,

such as Min-min [41], [51], Min-max [41], [51], Minimum

Completion Time (MCT) [41], [50], Suffrage algorithm

[51], are not applicable since these algorithms require a list

of all tasks and nodes in advance. Algorithms such as User

Defined Assignment [51] are also not suitable since tasks

are assigned in arbitrary order to machines with the best

expected execution, regardless of the resource availability.

C. Opportunistic Load Balancing Using a Task Stalling

Buffer

According to [52], a task stalling buffer (Fig. 2) improves

task execution makespan in queueing systems with two

heterogeneous servers. The task stalling buffer reduces slow

server load by redirecting more tasks to the fast server. New

tasks are added to the stalling buffer if the fast server is

busy. If the buffer is full, the slow server receives the task.

We applied this method (Fig. 2) to improve the task

distribution between two grids. The purpose of such an

approach is similar to [46], as it aims to select the cloud

most suitable for task execution. Since we can assume that

the private grid will always perform better than the public

grid, we can use a task stalling buffer to decrease the

number of tasks distributed to the public grid. In this way,

we can expect to reduce the execution makespan of tasks

and improve the reliability of the service by reducing the

number of tasks executed using heterogeneous servers.

Fig. 2. Scheme of a queueing system with a stalling buffer [52].

Here, M is the buffer size to store new tasks, K is the

buffer size for stalling tasks, 𝜇1 is the efficiency of the fast

channel, 𝜇2 is the efficiency of the slow channel, 1 is the fast

channel, and 2 is the slow channel. Then, according to [52],

the length of the buffer for stalling the task K may be

expressed as follows

 (1),K q (1)

where ρ is the task execution efficiency ratio between fast

and slow channels, and q is the task execution efficiency

coefficient:

 1

2

,

 (2)

60

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 6, 2021

1

,
c

q
tm

 (3)

where c is the number of completed tasks, t is the total task

execution makespan, m is the number of compute nodes in

the fast channel and 𝜇1 is the fast channel efficiency:

 1

1

1

,
a

b
 (4)

 2

2

2

,
a

b
 (5)

where a1 is the number of tasks completed using the fast

channel, and b1 is the time required to complete those tasks;

a2 is the number of tasks performed using the slow channel,

and b2 is the time required to complete those tasks.

It is important to note that according to [52], the task

stalling buffer length should be calculated only once.

However, due to the heterogeneous nature of our grid

environment, we believe that the task stalling buffer could

produce better results if re-calculated with each new task

received. Thus, for our experiments (presented in Sections

V and VI), we will include two variants of the Task Stalling

Buffer (TSB) algorithm:

1. TSB-static: task stalling buffer length is calculated

once;

2. TSB-dynamic: task stalling buffer length is re-

calculated with each received new task.

V. COMPUTER STUDY

This computer study will test our hypothesis that the

proposed hybrid cloud task scheduling method with task

stalling buffer improves the task execution makespan

compared to FIFO. We will use a virtual environment for

our tests, programmed using PHP programming language.

Task execution makespan will be estimated using iteration

counts (instead of seconds) required to complete all tasks. A

virtual environment (unlike the real platform experiments

presented in Section VI) will allow us to simulate the

infrastructure with more compute nodes and conduct large

amounts of experiments in a reasonable time. However, our

virtual environment will not simulate the behaviour of

private and public cluster schedulers. Furthermore, it will

not account for data transfer times and network load

variations. This computer study aims to examine the task

execution makespan between the following algorithms that

would distribute tasks among the two grids using:

 Standard FIFO algorithm;

 TSB-static(k): our proposed hybrid cloud tasks

scheduling algorithm with a static length task stalling

buffer, where k is the buffer length (buffer length is

estimated only once after each grid has executed at least

one task);

 TSB-dynamic: our proposed hybrid cloud tasks

scheduling algorithm with a dynamic length task stalling

buffer (buffer length is re-estimated with each new

incoming task).

A. Simulation Scenarios

To evaluate the task execution makespan, we ran

simulated tasks with established iteration counts for each

task to complete. Scenarios were generated before

experiments so that each algorithm would be tested using

the same conditions. We will use the following annotations:

 TS: static size tasks. All tasks are of the same size and

are equal to 200 iterations;

 TD: dynamic size tasks. The generated task sizes are

distributed using the Poisson distribution (λ = 200);

 STS: static task stream. Delays between all tasks are

equal to 8 iterations;

 DTS: dynamic task stream. The generated delays

between tasks are distributed using the Poisson

distribution (λ = 8).

The following scenarios were used to test each algorithm:

 TS_STS: static size tasks (TS), static incoming task

stream (STS). The same tasks are supplied to the platform

at a regular interval (or delays);

 TS_DTS: static size tasks (TS), dynamic incoming task

stream (DTS). The same tasks are supplied to the

platform at a changing interval (or delays);

 TD_STS: dynamic size tasks (TD), static incoming task

stream (STS). Changing tasks are supplied to the platform

at a regular interval (or delays);

 TD_DTS: dynamic size tasks (TD), dynamic incoming

task stream (DTS). Changing tasks are supplied to the

platform at a changing interval (or delays).

The number of iterations and the delays between tasks

were adapted for the number of simulated compute nodes.

For best results, the task stalling buffer should not always be

empty or full. Otherwise, all tasks would be redirected into

the private grid (the system would be underutilised), or our

task distribution algorithm would behave exactly like the

standard FIFO algorithm.

Each scenario will be executed using every possible task

count, ranging from 40 to 400 tasks. Results will be

aggregated. The slow channel will be serviced by 16 agents,

while 8 agents will serve the fast channel. Slow channel

agents will have a 1,000 iteration start penalty and will be

set to perform 10 times slower than the agents servicing the

fast channel.

B. Simulation Results

Aggregated simulation results are presented in Fig. 3 and

Table I.

Fig. 3. Task execution makespan decrease compared to FIFO.

61

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 6, 2021

The results were obtained using 21,660 simulations

employing different scenarios with various task counts.

They show that TSB algorithm performs best in TS_STS

scenario and achieves up to 13 % improvement compared to

the standard FIFO algorithm.

TABLE I. SIMULATION RESULTS. MAKESPAN DECREASE

COMPARED TO FIFO.

Algorithm Scenario
Makespan

(iterations)

Makespan

decrease

FIFO

TS_STS 6,138 not applicable

TS_DTS 236,231 not applicable

TD_STS 5,661 not applicable

TD_DTS 235,794 not applicable

TSB-static(10)

TS_STS 5,330 13.16 %

TS_DTS 235,450 0.33 %

TD_STS 5,252 7.22 %

TD_DTS 235,371 0.18 %

TSB-dynamic

TS_STS 5,879 4.22 %

TS_DTS 235,997 0.10 %

TD_STS 5,478 3.23 %

TD_DTS 235,583 0.09 %

This allows us to conclude that the task stalling buffer can

be applied in hybrid clouds and can outperform the standard

FIFO algorithm in all scenarios.

VI. REAL PLATFORM EXPERIMENT

This section will describe the experiment we conducted to

test the proposed platform and compare our proposed hybrid

cloud tasks scheduling method with static and dynamic

length task stalling buffers to FIFO. This experiment aims to

examine the task execution makespan between the following

algorithms that would distribute tasks among the two grids

using:

 Standard FIFO algorithm;

 TSB-static(k): our proposed hybrid cloud tasks

scheduling algorithm with a static length task stalling

buffer, where k is buffer length (buffer length is estimated

only once after each grid has executed at least one task);

 TSB-dynamic: our proposed hybrid cloud tasks

scheduling algorithm with a dynamic length task stalling

buffer (buffer length is re-estimated with each new

incoming task).

This real platform experiment will further test our

hypothesis that the proposed hybrid cloud tasks scheduling

method with a task stalling buffer improves task execution

makespan compared to FIFO.

A. Experimental Setup

We used two different setups (server setup A and B) to

test different environments. Setup A had two separate

servers running Docker containers (Fig. 4). The master

server was used to control the grids and distribute tasks. The

slave server was used to simulate the two grids by running

multiple virtual machines representing separate compute

nodes. Since both grids were on one single server, we added

the upper limits for memory (RAM) and CPU usage using

Docker container, VirtualBox image (required and run by

BOINC clients), Mesos agent, and BOINC client settings.

These limits allowed us to control resource usage and ensure

equal resource distribution per task.

Fig. 4. Server setup A scheme. The master server and one slave server are

running on different servers.

The server Setup B is very similar to the server Setup A,

except that it uses two slave servers instead of one (Fig. 5).

In this way, we separated the two grids and gained

additional resources to simulate more compute nodes. In

both setups, the number of simulated nodes was limited to

the number of cores per server. Using the server Setup A,

we simulated two Apache Mesos agents and two BOINC

clients. Using the server Setup B, we simulated two Apache

Mesos agents and four BOINC clients. These two server

setups allowed us to test if adding more compute nodes to

the public grid changes the results. In both configurations,

we used a task generator to simulate the incoming task

stream.

The server hardware specification was as follows:

 Master: Intel(R) Xeon(R) 5160 CPU, 2 cores,

3.00 GHz, 8 GB, 500 GB HDD, Ubuntu Linux 16.04.6

with 4.15.0-88-generic kernel (x86_64);

 Slave 1: Intel(R) Core(TM) i5-4460 CPU, 4 cores,

3.20 GHz, 24 GB, 450 GB SSD, Ubuntu Linux 18.04.4

with 4.15.0-91-generic kernel (x86_64);

 Slave 2: Intel(R) Core(TM) i7-6700HQ CPU, 4 cores,

2.60 GHz, 16 GB, 128 GB SSD, Linux Fedora 31 with

5.3.16-300.fc31.x86_64 kernel (x86_64).

Fig. 5. Server setup B scheme. The master server and two slave servers are

running on different servers.

B. Experiment Scenarios

To evaluate task execution makespan, we ran distributed

tasks estimating the value of using the Monte Carlo

Method [53]. We selected this simple task to estimate task

execution times depending only on CPU and eliminating

other factors, such as networking and data storage. The

same annotations are used as in Section V-A. However, due

to the specifics of the experiment, there are some

adjustments:

 TS(i): static size tasks, where i is the number of

iterations per task to calculate ;

 TD(I): dynamic size tasks, where I is a set of task sizes.

62

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 6, 2021

The generated task sizes are distributed using a discrete

uniform distribution (a = 0, b = 1);

 STS(d): static task stream, where d is the delay in

seconds between incoming new tasks;

 DTS(D): dynamic task stream, where D is a set of

possible delays between tasks. The generated delays are

distributed using the Poisson distribution (λ = 30).

The following scenarios were used to test each algorithm:

 TS_STS: static size tasks TS(100000), static incoming

task stream STS(60);

 TS_DTS: static size tasks TS(100000), dynamic

incoming task stream DTS ({60, 120});

 TD_STS: dynamic size tasks TD({100000, 200000}),

static incoming task stream STS(60);

 TD_DTS: dynamic size tasks TD({100000, 200000}),

dynamic incoming task stream DTS({60, 120}).

The number of iterations and the delays between tasks

were adapted for the hardware that we used for our

experiments. For best results, the task stalling buffer should

not always be empty or full. Otherwise, all tasks would get

redirected into the private grid (system would be

underutilised), or our task distribution algorithm would

behave exactly like the standard FIFO algorithm.

1. Experimental results using Setup A

The first experiment was aimed at providing an overview

of how the platform and the algorithms perform. Therefore,

100 tasks were executed using Setup A. The results show

that the proposed hybrid cloud tasks scheduling method

with task stalling buffer improves task execution makespan

(see Fig. 6 and Table II).

Fig. 6. Total makespan of 100 value estimation tasks using the Monte

Carlo method.

The static length task stalling buffer provides up to

15.45 % improvement over the standard FIFO algorithm,

while the dynamic length task stalling buffer provides up to

36.48 % improvement.

TABLE II. TASK EXECUTION MAKESPAN DECREASE COMPARED

TO FIFO (USING SETUP A).

Algorithm Scenario
Makespan

(seconds)

Makespan

decrease

FIFO

TS_STS 22,863 not applicable

TD_STS 20,627 not applicable

TS_DTS 14,318 not applicable

TD_DTS 19,251 not applicable

TSB-static(10)

TS_STS 19,331 15.45 %

TD_STS 17,832 13.55 %

TS_DTS 13,495 5.75 %

TD_DTS 19,562 -1.62 %

TSB-dynamic

TS_STS 14,522 36.48 %

TD_STS 17,394 15.67 %

TS_DTS 13,727 4.13 %

TD_DTS 17,830 7.38 %

Table II shows that the best results are achieved in the

TS_STS and TD_STS scenarios. These results correspond

to the simulation results presented in Fig. 3.

2. Experimental results using Setup B

We continued to run experiments using Setup B to test if

adding more compute nodes to the public grid will produce

similar results. We conducted multiple experiments using

different numbers of tasks: 20, 40, and 60. Furthermore, we

repeated each experiment five times to test the average time

deviations. The aggregate results of 180 tests are presented

in Tables III–V. We used the null hypothesis (two-tailed,

= 0.05) to prove that the alternate hypothesis is correct with

at least 95 % probability. Here, the null hypothesis states

that the task stalling buffer does not impact the task

execution makespan. In this way, we tested whether the

average task execution makespan using the FIFO scheduler

is different compared to the average task execution

makespan using our proposed scheduling algorithm:

1. TSB-static(10) scheduler.

2. TSB-dynamic scheduler.

TABLE III. TASK EXECUTION AVERAGE MAKESPAN USING THE

FIFO ALGORITHM.

Scenario
Number of

tasks

Average

makespan

(seconds)

Standard

deviation

(seconds)

TS_STS

20 3,598.4 189.20

40 7,063.6 212.86

60 9,995.4 223.01

TD_STS

20 5,841.8 654.40

40 9,622.2 1,229.63

60 14,905.4 1,382.52

TS_DTS

20 3,474.0 104.82

40 6,576.0 145.25

60 9,754.0 340.32

TD_DTS

20 5,933.4 455.89

40 10,038.4 1,439.31

60 14,620.4 1,255.28

TABLE IV. TASK EXECUTION AVERAGE MAKESPAN USING THE

TSB-STATIC(10) ALGORITHM (COMPARED TO FIFO).

Scenario Tasks

Average

makespan

(seconds)

Standard

deviation

(seconds)

Makespan

decrease

p-

value

TS_STS

20 3,503.8 394.22 2.63 % 0.6460

40 6,377.8 32.80 9.71 % 0.0020

60 8,978.6 297.52 10.17 % 0.0005

TD_STS

20 3,967.4 959.76 32.09 % 0.0090

40 9,068.4 172.92 5.76 % 0.3750

60 13,381.8 393.63 10.22 % 0.0640

TS_DTS

20 3,241.6 203.00 6.69 % 0.0630

40 6,168.8 256.39 6.19 % 0.0210

60 9,254.0 240.38 5.13 % 0.0310

TD_DTS

20 3,127.0 824.78 47.30 % 0.0010

40 8,690.0 301.94 13.43 % 0.1100

60 12,293.0 1,566.73 15.92 % 0.0320

The scenarios in which our proposed algorithms

performed better than FIFO (with a significance level α =

0.05) are highlighted in Table IV and Table V. The results

show up to 47.3 % improvement using static length task

stalling buffer and up to 20.84 % improvement using

dynamic length task stalling buffer compared to the standard

FIFO algorithm. The static length task stalling buffer

performed better because task stalling buffer capacity was

never reached when executing only 20 tasks. It is inefficient

to use the public grid to execute a small number of tasks,

63

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 6, 2021

since the private grid outperforms the public grid. The

public grid did not receive any tasks. Thus, the platform

underutilisation scenario occurred (as discussed in Section

VI-B). Since the system was underutilised, we will not

include the results from this particular test in our

conclusions.

TABLE V. TASK EXECUTION AVERAGE MAKESPAN USING THE

TSB-DYNAMIC ALGORITHM (COMPARED TO FIFO).

Scenario Tasks

Average

makespan

(seconds)

Standard

deviation

(seconds)

Makespan

decrease

p-

value

TS_STS

20 3,493.0 133.24 2.93 % 0.3420

40 6,191.8 218.76 12.34 % 0.0002

60 9,147.8 264.42 8.48 % 0.0010

TD_STS

20 5,016.4 117.66 14.13 % 0.0500

40 8,759.8 257.83 8.96 % 0.2000

60 13,256.2 480.22 11.06 % 0.0530

TS_DTS

20 3,497.4 133.06 -0.67 % 0.7650

40 6,342.2 88.81 3.56 % 0.0180

60 9,204.0 118.35 5.64 % 0.0190

TD_DTS

20 4,697.0 607.02 20.84 % 0.0080

40 9,018.8 193.90 10.16 % 0.1920

60 13,262.2 461.70 9.29 % 0.0720

TABLE VI. TASK EXECUTION MAKESPAN DECREASE COMPARED

TO FIFO (USING SETUP B).

Algorithm Scenario
Makespan

(seconds)

Makespan

decrease

FIFO

TS_STS 31,361 not applicable

TD_STS 47,502 not applicable

TS_DTS 32,154 not applicable

TD_DTS 45,159 not applicable

TSB-static(10)

TS_STS 30,504 2.73 %

TD_STS 44,718 5.86 %

TS_DTS 30,431 5.36 %

TD_DTS 44,226 2.07 %

TSB-dynamic

TS_STS 30,700 2.11 %

TD_STS 44,504 6.31 %

TS_DTS 30,547 5.00 %

TD_DTS 44,963 0.43 %

Finally, an extensive test was conducted by running 200

tasks. The results showed an improvement of up to 5.86 %

using TSB-static(10) and an improvement of up to 6.31 %

using TSB-dynamic (see Table VI).

VII. DISCUSSION

The proposed hybrid distributed computing platform can

perform distributed computing tasks using cloud computing

services and personal employee computers. Our proposed

task scheduling method improves the efficiency of the

platform, maintaining the same quality and reliability of the

service. This innovation allows us to schedule tasks between

two grids without requiring any additional information

about the tasks.

The focus of ongoing research will be to test the

capabilities of the proposed platform to solve big data

mining tasks. Energy consumption and hardware usage cost

minimisation could also be considered for future research.

VIII. CONCLUSIONS

Computer study and experiments show that the proposed

hybrid cloud tasks scheduling method with static task

stalling buffer reduces up to 47.3 % of the total task

execution time. This allows us to conclude that a task

stalling buffer can be applied for distributed hybrid cloud

computing solutions and improve workload balance

between two grids. The experiments showed that the most

significant improvement is obtained when small batches of

tasks are executed on a moderately loaded system. When the

system is heavily loaded with large amounts of short tasks,

the observed improvement is smaller.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] A. Rojko, “Industry 4.0 concept: Background and overview”, Int. J. of

Interactive Mobile Technologies (iJIM), vol. 11, no. 5, pp. 77–90,

2017. DOI: 10.3991/ijim.v11i5.7072.

[2] A. Jurgelevičius and L. Sakalauskas, “BOINC from the view point of

cloud computing”, in CEUR Workshop Proceedings, 2017, pp. 61–66,

vol. 1973. [Online]. Available: http://ceur-ws.org/Vol-

1973/paper08.pdf

[3] Gartner Top 10 Strategic Technology Trends For 2020. [Online].

Available: https://www.gartner.com/smarterwithgartner/gartner-top-

10-strategic-technology-trends-for-2020/

[4] Gartner Top 10 Strategic Technology Trends For 2021. [Online].

Available: https://www.gartner.com/smarterwithgartner/gartner-top-

strategic-technology-trends-for-2021/

[5] A. Jurgelevičius, L. Sakalauskas, and V. Marcinkevičius, “Task

stalling for a batch of task makespan minimisation in heterogeneous

multigrid computing”, Computational Science and Techniques, vol. 8,

pp. 631–638, 2021. DOI: 10.15181/csat.v8.2103.

[6] G. L. Stavrinides and H. D. Karatza, “Dynamic scheduling of bags-of-

tasks with sensitive input data and end-to-end deadlines in a hybrid

cloud”, Multimedia Tools and Applications, vol. 80, pp. 16781–

16803, 2021. DOI: 10.1007/s11042-020-08974-8.

[7] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and

low-complexity task scheduling for heterogeneous computing”, IEEE

Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp.

260–274, 2002. DOI: 10.1109/71.993206.

[8] L. F. Bittencourt and E. R. M. Madeira, “HCOC: A cost optimization

algorithm for workflow scheduling in hybrid clouds”, Journal of

Internet Services and Applications, vol. 2, pp. 207–227, 2011. DOI:

10.1007/s13174-011-0032-0.

[9] L. F. Bittencourt, E. R. M. Madeira, and N. L. S. Da Fonseca,

“Scheduling in hybrid Clouds”, IEEE Communications Magazine,

vol. 50, no. 9, pp. 42–47, 2012. DOI: 10.1109/MCOM.2012.6295710.

[10] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya,

“The Aneka platform and QoS-driven resource provisioning for

elastic applications on hybrid Clouds”, Future Generation Computer

Systems, vol. 28, no. 6, pp. 861–870, 2012. DOI:

10.1016/j.future.2011.07.005.

[11] C. Vecchiola, R. N. Calheiros, D. Karunamoorthy, and R. Buyya,

“Deadline-driven provisioning of resources for scientific applications

in hybrid clouds with Aneka”, Future Generation Computer Systems,

vol. 28, no. 1, pp. 58–65, 2012. DOI: 10.1016/j.future.2011.05.008.

[12] R. Van Den Bossche, K. Vanmechelen, and J. Broeckhove, “Online

cost-efficient scheduling of deadline-constrained workloads on hybrid

clouds”, Future Generation Computer Systems, vol. 29, no. 4, pp.

973–985, 2013. DOI: 10.1016/j.future.2012.12.012.

[13] R. Duan, R. Prodan, and X. Li, “Multi-objective game theoretic

scheduling of bag-of-tasks workflows on hybrid clouds”, IEEE

Transactions on Cloud Computing, vol. 2, no. 1, pp. 29–42, 2014.

DOI: 10.1109/TCC.2014.2303077.

[14] B. Wang, Y. Song, Y. Sun, and J. Liu, “Managing deadline-

constrained bag-of-tasks jobs on hybrid clouds”, in Proc. of the 24th

High Performance Computing Symposium, 2016, article no. 22. DOI:

10.22360/SpringSim.2016.HPC.039.

[15] Y. Zhang and J. Sun, “Novel efficient particle swarm optimization

algorithms for solving QoS‐demanded bag‐of‐tasks scheduling

problems with profit maximization on hybrid clouds”, Concurrency

and Computation: Practice and Experience, vol. 29, 2017. DOI:

10.1002/cpe.4249.

[16] S. Abdi, L. PourKarimi, M. Ahmadi, and F. Zargari, “Cost

minimization for deadline-constrained bag-of-tasks applications in

federated hybrid clouds”, Future Generation Computer Systems, vol.

71, no. C, pp. 113–128, 2017. DOI: 10.1016/j.future.2017.01.036.

64

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 6, 2021

[17] Y. Zhang, J. Zhou, L. Sun, J. Mao, and J. Sun, “A novel firefly

algorithm for scheduling bag-of-tasks applications under budget

constraints on hybrid clouds”, IEEE Access, vol. 7, pp. 151888–

151901, 2019. DOI: 10.1109/ACCESS.2019.2948468.

[18] Y. Zhang, J. Zhou, and J. Sun, “Scheduling bag-of-tasks applications

on hybrid clouds under due date constraints”, Journal of Systems

Architecture, vol. 101, article ID 101654, 2019. DOI:

10.1016/j.sysarc.2019.101654.

[19] G. A. McGilvary, A. Barker, and M. Atkinson, “Ad hoc cloud

computing”, in Proc. of IEEE 8th Int. Conf. (CLOUD 2015), 2015, pp.

1063–1068. DOI: 10.1109/CLOUD.2015.153.

[20] CharityEngine. [Online]. Available: http://charityengine.com

[21] GridMP. [Online]. Available: https://en.wikipedia.org/wiki/Grid_MP

[22] Xgrid. [Online]. Available:

https://www.apple.com/server/docs/Xgrid_TB_v10.4.pdf

[23] XtremWeb. [Online]. Available: http://xtremweb.gforge.inria.fr

[24] Berkeley Open Infrastructure for Network Computing. [Online].

Available: https://boinc.berkeley.edu

[25] A. Jurgelevičius and L. Sakalauskas, “Big data mining using public

distributed computing”, Information Technology and Control, vol. 47,

no. 2, pp. 236–248, 2018. DOI: 10.5755/j01.itc.47.2.19738.

[26] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R.

H. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-

grained resource sharing in the data center”, in Proc. of the 8th

USENIX conference on Networked systems design and

implementation, 2011, pp. 295–308.

[27] Hadoop. [Online]. Available: https://github.com/mesos/hadoop

[28] MPI. [Online]. Available: https://github.com/mesosphere/mesos-hydra

[29] Apache Chronos. [Online]. Available:

https://mesos.github.io/chronos/

[30] G. McGilvary, A. Barker, A. Lloyd, and M. Atkinson, “V-BOINC:

The virtualization of BOINC”, in Proc. of 13th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing,

(CCGrid), 2013, pp. 285–293. DOI: 10.1109/CCGrid.2013.14.

[31] Docker. [Online]. Available: https://www.docker.com

[32] Kubernetes. [Online]. Available: https://kubernetes.io

[33] Oracle VM VirtualBox. [Online]. Available:

https://www.virtualbox.org

[34] QEMU. [Online]. Available: https://www.qemu.org

[35] VMware. [Online]. Available: https://www.vmware.com

[36] P. Sun, “Security and privacy protection in cloud computing:

Discussions and challenges”, Journal of Network and Computer

Applications, vol. 160, article ID 102642, 2020. DOI:

10.1016/j.jnca.2020.102642.

[37] A. Celesti, M. Fazio, M. Villari, and A. Puliafito, “Adding long-term

availability, obfuscation, and encryption to multi-cloud storage

systems”, Journal of Network and Computer Applications, vol. 59, pp.

208–218, 2016. DOI: 10.1016/j.jnca.2014.09.021.

[38] I. Sousa, M. P. Queluz, and A. Rodrigues, “A survey on QoE-oriented

wireless resources scheduling”, Journal of Network and Computer

Applications, vol. 158, article ID 102594, 2020. DOI:

10.1016/j.jnca.2020.102594.

[39] D. Cidem Dogan and H. Altindis, “Storage and communication

security in cloud computing using a homomorphic encryption scheme

based Weil pairing”, Elektronika ir Elektrotechnika, vol. 26, no. 1, pp.

78–83, 2020. DOI: 10.5755/j01.eie.26.1.25312.

[40] N. Schlitter and J. Lässig, “Distributed data analytics using

RapidMiner and BOINC”, in Proc. of the 4th RapidMinder

Community Meeting and Conference (RCOMM 2013), 2013, pp. 81–

96.

[41] F. Dong and S. G. Akl, “Scheduling algorithms for grid computing:

State of the art and open problems”, School of Computing, Queen’s

University, Kingston, Ontario, Tech. Rep. 2006-504, Jan. 2006.

[42] M. Nandagopal and V. Uthariaraj, “Hierarchical load balancing

approach in computational grid environment”, International J. of

Recent Trends in Engineering and Technology, vol. 3, no. 1, May

2010.

[43] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd, “GridFlow: Workflow

management for grid computing”, in Proc. of 3rd IEEE/ACM

International Symposium on Cluster Computing and the Grid, 2003,

pp. 198–205, DOI: 10.1109/CCGRID.2003.1199369.

[44] E. Heymann, M. A. Senar, E. Luque, and M. Livny, “Adaptive

scheduling for master-worker applications on the computational grid”,

in Grid Computing — GRID 2000. GRID 2000. Lecture Notes in

Computer Science, vol. 1971. Springer, Berlin, Heidelberg, 2000.

DOI: 10.1007/3-540-44444-0_20.

[45] D. Paranhos, W. Cirne, and F. Brasileiro, “Trading cycles for

information: Using replication to schedule bag-of-tasks applications

on computational grids”, in Euro-Par 2003 Parallel Processing.

Euro-Par 2003. Lecture Notes in Computer Science, vol. 2790.

Springer, Berlin, Heidelberg, 2003. DOI: 10.1007/978-3-540-45209-

6_26.

[46] G. Vilutis, R. Butkiene, I. Lagzdinyte-Budnike, D. Sandonavicius,

and K. Paulikas, “The QoGS method application for selection of

computing resources in intercloud”, Elektronika ir Elektrotechnika,

vol. 19, no. 7, pp. 98–103, 2013. DOI: 10.5755/j01.eee.19.7.2080.

[47] M. Usama, M. Liu, and M. Chen, “Job schedulers for Big data

processing in Hadoop environment: Testing real-life schedulers using

benchmark programs”, Digital Communications and Networks, vol. 3,

no. 4, pp. 260–273, Nov. 2017. DOI: 10.1016/j.dcan.2017.07.008.

[48] D. Yoo and K. M. Sim, “A comparative review of job scheduling for

MapReduce”, in Proc. of IEEE Int. Conf. Cloud Computing and Intel.

Syst. (CCIS), 2011, pp. 353–358. DOI: 10.1109/CCIS.2011.6045089.

[49] J. V. Gautam, H. B. Prajapati, V. K. Dabhi, and S. Chaudhary, “A

survey on job scheduling algorithms in Big data processing”, in Proc.

of 2015 IEEE International Conference on Electrical, Computer and

Communication Technologies (ICECCT), 2015, pp. 1–11. DOI:

10.1109/ICECCT.2015.7226035.

[50] R. Wisnesky, “Evaluating scheduling algorithms on distributed

computational grids”, 2010.

[51] M. Bhatia, “Task scheduling in grid computing: A review”, Advances

in Computational Sciences and Technology, vol. 10, no. 6, pp. 1707–

1714, 2017.

[52] L. Kaklauskas, L. Sakalauskas, and V. Denisovas, “Stalling for

solving slow server problem”, RAIRO - Operations Research, vol. 53,

no. 4, pp. 1097–1107, 2019. DOI: 10.1051/ro/2018056.

[53] Calculate Pi with Monte Carlo. [Online]. Available:

https://hub.docker.com/r/ashael/pi

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

65

