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1Abstract—The purpose of the research is to create a hybrid 

cloud platform that performs distributed computing tasks 

using high-performance servers and volunteer computing 

resources. The proposed platform uses a new task scheduling 

method, which is also presented in this paper. It uses a task 

stalling buffer to manage workload among the two grids 

without any additional information about the tasks. Since 

efficient task scheduling in these distributed systems is the 

actual problem, the system reliability issue is solved using a 

hybrid cloud architecture when both high-performance servers 

and volunteer computing resources are combined. The results 

of the experiment showed that the proposed solution solves the 

problem of balancing workload between two grids better than 

the standard scheduling algorithm. Computer study and 

experiments also showed that the proposed hybrid cloud tasks 

scheduling method with a task stalling buffer reduces up to 

47.3 % of total task execution time. The outcome of this paper 

provides a background for future research on a task stalling 

buffer in hybrid cloud computing. 

 

 Index Terms—Computer buffers; Distributed computing; 

Load flow control; Scheduling algorithms.  

I. INTRODUCTION 

Data has become one of the most critical and valued 

assets in today’s fast-paced business world. Organisations 

collect and use data to evaluate key performance indicators, 

make informed decisions, and establish goals. Useful data 

can help to find problems, increase business efficiency, find 

new opportunities, and stay ahead of competitors. Due to 

the ongoing transformation of industrial manufacturing 

through digitalisation (Industry 4.0 strategic initiative), data 

amounts tend to increase [1].  

Large companies usually solve hardware capacity 

problems by upgrading existing or buying new servers and 

hiring additional staff to maintain the systems. Small and 

medium businesses typically do not have the financial 

ability to make such investments. In most cases, smaller 

companies purchase external grid computing services 

through various subscription or on-demand pricing schemes. 

Such services provide secure, scalable storage and compute 

capacity. Research shows that this makes a more affordable 

distributed volunteer computing model seem unreliable and 
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too difficult to adopt [2].  

The distributed volunteer computing model enables 

volunteers to donate their own computing resources to 

projects. Although this model can reduce service costs, it 

also lacks reliability. The required number of volunteers 

may not always be available or volunteers may not always 

complete the assigned tasks. Furthermore, protection of 

personal data can cause additional problems. Personal data 

privacy issues are especially relevant now since as of 25 

May 2018 companies and organizations have had to comply 

with GDPR (General Data Protection Regulation) rules 

within the European Union. 

As a result, we now encounter the concept of distributed 

cloud, which is one of Gartner’s top 10 strategic technology 

trends for 2020 [3] and 2021 [4]. The distributed cloud is 

the distribution of public cloud services to different physical 

locations. Although such services are outside physical data 

centres, they are still controlled and supervised by the 

provider. This technology offers the benefits of a public 

cloud service alongside the benefits of a local private cloud. 

Despite the benefits, a distributed hybrid cloud computing 

model presents various challenges. One such problem is task 

scheduling and execution. It is essential to maintain optimal 

workload between the grids. However, existing well-known 

hierarchical and non-hierarchical task scheduling 

algorithms, reviewed in Section IV, cannot balance the 

workload without any additional information about the tasks 

(such as task size, quantity, and incoming task rate). As 

reviewed in [5], existing hybrid distributed computing 

platforms ([6]–[18]) require preliminary data on the number 

of tasks to be performed, the execution time for each task, or 

the number of computing resources available. A task 

execution schedule is then created using these data. 

However, in heterogeneous distributed computing networks, 

these parameters are either constantly changing or no such 

information is available. 

This paper presents a hybrid cloud platform that performs 

batch processing tasks using internal servers (or cloud 

computing services) and personal computers. Our proposed 

platform is different from the currently existing solutions 

([6]–[18]), as it is designed to operate in a heterogeneous 

environment without simulation results or task replication. 

Our proposed platform combines public and private 
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computing grids into a distributed hybrid cloud. It uses our 

proposed task scheduling method to manage the workload 

between the two grids without any additional information 

about the tasks. We show that service reliability issues 

(caused by low-performance compute nodes) can be solved 

using an opportunistic task scheduling algorithm combined 

with a task stalling buffer. This method prioritises the 

private cloud for processing tasks and distributes tasks into 

the heterogeneous public cloud, only if the private cloud 

resources are exhausted. In a hybrid cloud environment, this 

approach is called “cloud bursting”. In this way, our 

proposed platform allows companies to reduce service costs 

and still maintain service reliability. 

The rest of the paper is structured as follows. In Section 

II, we overview and explain the technologies used for our 

proposed hybrid cloud platform. Section III presents the 

architecture for our proposed platform. Section IV explores 

task scheduling algorithms. Sections V and VI present the 

results of the simulation and platform experiment. In 

Section VII and Section VIII, we conclude this paper by 

summarizing the findings and presenting directions for the 

future. 

II. TECHNOLOGIES 

This section will introduce the technologies that we 

selected and used for our proposed platform architecture. 

We use these particular solutions because they are open 

source, widely used, and compatible (all support the same 

software virtualisation solution). However, it is essential to 

note that other compatible alternatives may also be used. 

A. Public Distributed Cloud Computing 

The public distributed computing model connects public 

computers to solve distributed tasks in parallel. This model 

aims to solve heterogeneous environment issues, allowing 

new external compute nodes to join the computations. It 

uses a client-server model, which enables the nodes to 

provide resources to the project server. This model allows 

the compute nodes to request the master server for new 

tasks and send back the results. Public distributed 

computing approaches can compete with existing cloud 

computing solutions [19]. 

There are various public distributed computing solutions: 

CharityEngine [20], GridMP [21], Xgrid [22], XtremWeb 

[23]. However, the most widely and actively used solution is 

called “Berkeley Open Infrastructure for Network 

Computing” (BOINC) [24]. BOINC is a platform for high-

throughput computing on a large scale (thousands or 

millions of computers). It can run virtualised, in parallel, or 

for GPU-based applications. Furthermore, it can perform 

big data mining tasks using consumer devices or company 

servers [25]. BOINC performs computations only when the 

CPU is idle. This solution can allow organisations to use the 

computer resources available from employees of the 

company without disrupting any ongoing work. Since 

company employee computer CPUs are idle 99 % of the 

time [25], this solution may solve the computational 

resource demand problem. 

B. Private Distributed Cloud Computing 

The private cloud computing model uses the client-server 

model and is focused on achieving high internal resource 

utilisation and performance. Private distributed computing is 

the preferred model in companies and organisations, as it 

provides high-quality service, high performance, and 

ensures data security. 

One of such cluster resource management platforms is 

called “Apache Mesos” [26]. It supports popular 

frameworks, such as Hadoop [27] and MPI [28]. It can scale 

up to 50,000 (emulated) nodes and have less than 4 % 

overhead. Small tasks should be preferred over large ones to 

minimise time costs caused by unexpected failures. Apache 

Mesos supports various job schedulers, such as Apache 

Chronos [29]. Apache Chronos is responsible for running 

schedule and dependency-based jobs. However, an 

increasing number of unprocessed tasks may cause the 

scheduler to crash. We solved this issue by limiting the 

number of unprocessed tasks to the number of available 

resources in our Apache Mesos cluster. Finally, it is 

essential to note that Apache Chronos and Apache Mesos 

require a trusted network environment, allowing direct 

interaction between systems without encryption. 

C. Software Virtualisation 

Software virtualisation is a technology that hides physical 

system resources from the operating system and helps solve 

various problems [30]. In heterogeneous environments, 

software virtualisation allows running the same tasks on 

multiple computer architectures and different operating 

systems. 

There are many various software virtualisation 

technologies: Docker [31], Kubernetes [32], Oracle VM 

VirtualBox [33], QEMU [34], VMware [35], and many 

others. We will be using Docker and Oracle VM Virtual 

Box to maintain software compatibility with Apache Mesos, 

Apache Chronos, and BOINC. 

Docker is a set of platform-as-a-service products. It uses 

OS-level virtualisation and provides means to bundle 

software into packages called “containers” (more 

lightweight than virtual machines). Docker allows software 

applications to run on various computer architectures and 

operating systems without requiring any changes to the 

application. 

Oracle VM VirtualBox is an application to create, 

manage, and run virtual machines. It provides hardware-

level virtualisation and has more security controls than 

Docker. However, virtual machines use more computer 

resources and take more time to start than containers. 

Although software virtualisation can solve some security 

issues in cloud computing, it does not protect against all 

security threats. 

D. Hybrid Distributed Computing 

Hybrid distributed computing platforms combine private 

and public distributed computing clusters. Distributed 

computing tasks are distributed between private and public 

computing resources using various task scheduling 

algorithms. We selected to use BOINC for public distributed 

computing since it is the most popular and widely supported 

public computing platform. Even though the BOINC 

platform supports both Docker and Oracle VM VirtualBox, 

we used Docker since it requires less resources to operate 

58



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 6, 2021 

and is supported by Apache Mesos. Our proposed task 

scheduling algorithm will be presented in Section IV. 

The next section presents the architecture of our proposed 

platform. 

III. PROPOSED DISTRIBUTED HYBRID CLOUD PLATFORM 

ARCHITECTURE 

As shown in Fig. 1, our proposed distributed hybrid cloud 

has a two-level hierarchy and contains physically distributed 

(hierarchical) cooperative schedulers. At the top level, there 

is a master scheduler that distributes tasks between the 

lower-level grids. This architecture provides a scalable and 

resilient core for task execution and gives more control over 

service quality. We propose using two grids: private 

(controlled by Apache Mesos) and public (controlled by 

BOINC) to distribute tasks between the company servers 

and employee computers. Each grid is managed by a 

scheduler specifically designed for each environment. 

 
Fig. 1.  Proposed distributed hybrid cloud platform architecture with 

proposed scheduling algorithm (highlighted in yellow). 

Our design philosophy has been to push task scheduling 

to the lower-level grids by controlling which grid should 

receive the task. Our proposed architecture consists of the 

following main components: master scheduler, private 

computing grid, and public computing grid. We also added 

additional components that are not mandatory but help to 

illustrate the complete solution: 

 Streaming platform: stores all new incoming tasks in 

the waiting buffer until the system accepts the tasks; 

 Result aggregator: collects and aggregates results from 

the executed tasks; 

 Database: used to store the aggregated results. 

The master scheduler is the main focus of our research. 

Figure 1 contains our proposed scheduling method for this 

architecture and will be explained in Section IV-C. It is the 

top-level scheduler that distributes tasks to the lower-level 

schedulers. It consists of the following sub-components: 

 Stalling buffer: the component that stalls tasks for later 

processing in the private computing grid (for more 

details, see Section IV-C); 

 Distributor: the process that stores new incoming tasks 

in the stalling buffer and then distributes to the Apache 

Mesos scheduler whenever the private computing grid 

has available Apache Mesos agents. If the stalling buffer 

is full and the public computing grid has available 

BOINC clients that are idle, then the distributor forwards 

new incoming tasks to the BOINC scheduler. 

Private and public computing grids consist of grid 

schedulers and clients (or agents) responsible for 

distributing and executing tasks in each grid. In Section IV, 

we will review scheduling algorithms to find a suitable 

algorithm for our top-level (master) scheduler. 

It is important to note that our proposed platform may be 

required to deal with specific data privacy and availability 

issues in some cases, such as downloading or uploading 

large amounts of data and processing sensitive information. 

Data size and privacy issues are well-known and there are 

various solutions to these problems [36]–[39]. Such 

solutions could be considered for integration into our 

proposed distributed hybrid cloud architecture, improving 

its data security and availability. However, the analysis of 

these problems is not within the scope of this paper. 

Our proposed platform requires incoming distributed 

computing tasks (Fig. 1) to be defined using the JSON 

(JavaScript Object Notation) format. Any preferred data 

format is suitable for defining tasks. However, we used the 

JSON format since it is well supported and easily readable. 

Here, the task definition is structured as follows 

 {"container": "<task>", "method": "<method >"},  

where <task> is the name and parameters of the Docker 

container that contain task execution files (solution based on 

[40]). <method> can define the task scheduling method or 

specify a specific cluster to execute the task in. This can be 

used to execute urgent or sensitive personal data tasks using 

the private cluster. Examples: 

 {"container": "ashael/pi 100000", "method": "FIFO"}; 

 {"container": "ashael/pi 200000", "method": "TSB-

static(k=10)"}; 

 {"container": "-e \"INPUT_FILENAMES=1.json; 

2.json\" -v /var/data/:/data -v /var/ out/:/out mrquad/map-

reduce", "method ": "mesos"}. 

Docker containers are stored in publicly or privately 

available repositories. This solution allows our platform to 

operate in a heterogeneous environment. Furthermore, it 

reduces network traffic load since Docker containers are 

downloaded only once by the compute nodes instead of 

distributed each time by the schedulers. 

IV. SCHEDULING ALGORITHMS 

In this section, we will review existing well-known 

hierarchical and non-hierarchical task scheduling algorithms 

that could be suitable for the top-level scheduler. The 

algorithm must be compatible with our proposed distributed 

hybrid cloud architecture; thus we will review existing 

hierarchical task scheduling algorithms that fall under the 

following classification [41]: 

 Global. Tasks are executed on multiple compute nodes 

throughout multiple grids; 

 Dynamic. Tasks come online dynamically, and task 

execution costs are unknown; 

 Physically distributed. Scheduling is done using 

various distributed schedulers; 
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 Cooperative. Distributed schedulers cooperate to make 

better scheduling decisions. 

Finally, in Section IV-C, we will explore the 

opportunistic load balancing approach using the proposed 

hybrid cloud task scheduling method with the task stalling 

buffer. Although this method is used to distribute tasks in 

queueing systems with two heterogeneous servers, we 

propose adopting and applying this method to grid 

computing. We will show that this method can be used to 

schedule tasks between two grids without requiring any 

additional information about the tasks, and thus improve 

workload balance between the two grids. 

A. Hierarchical Scheduling Algorithms 

The existing hierarchical scheduling algorithms [41] for 

task distribution among multiple grids can be summarized 

using the following four existing solutions, where: 

 Tasks are moved from highly loaded clusters to less 

loaded neighbouring clusters, assuming that task arrival 

rates will not exceed service rates [42]; 

 Tasks are divided into subtasks and time estimations 

are made using simulation results, including possible 

resource allocation conflicts. Subtasks are assigned to 

available local grids that can complete executions the 

fastest [43]; 

 Tasks are sorted in descending order of their average 

execution times and assigned to workers. Execution times 

are estimated using simulation results together with 

historical data [44]; 

 Slow running tasks are replicated expecting quicker 

results from another resource [45]. 

Existing solutions assume that task arrival rates and 

service rates for the whole system always remain stable, 

operate on estimated task execution times, or use task 

replication. Such assumptions and requirements are also 

found in other methods such as QoGS [46], which selects 

the most suitable cloud in the intercloud for task execution. 

Such methods use a set of weighted coefficients, which are 

calculated either by user or by executing a set of test tasks to 

get simulation results. The simulation results are then used 

to calculate the weighted coefficients automatically. 

Although such methods are very efficient in their particular 

use cases, they all require specific information about the 

tasks or depend on simulation results. Our proposed solution 

is different from the currently existing solutions, as it is 

designed to operate in a heterogeneous environment without 

any simulation results or task replication. 

B. Job Schedulers for Distributed Computing 

In this section, we review widely adopted independent 

job schedulers. Some of them are also used for big data 

processing tasks by Facebook, Yahoo, and Hadoop. There 

are at least five well-known scheduling methods [47]–[50]: 

 Fair-share [47], [49]: each job gets an equal amount of 

resources; 

 First In First Out (FIFO) [47], [49] - the oldest tasks 

are executed on the first nodes to become available; 

 Capacity [47], [49]: resources are allocated to job 

processing queues used to accept and process new tasks; 

 Longest Approximate Time to End (LATE) [47]–[49]: 

replicates tasks that are stuck in slow compute nodes, 

using such replicated tasks as a backup (reliability is not 

guaranteed [47]); 

 Round-robin [50]: runs all the applications from the 

first job on the first node, all the applications from the 

second job on the second node, etc. 

The only algorithm here capable of distributing the 

incoming stream of dynamic tasks in a highly heterogeneous 

environment between two grids is FIFO. It does not require 

any information about the tasks and the available node 

capacity. Other well-known task scheduling algorithms, 

such as Min-min [41], [51], Min-max [41], [51], Minimum 

Completion Time (MCT) [41], [50], Suffrage algorithm 

[51], are not applicable since these algorithms require a list 

of all tasks and nodes in advance. Algorithms such as User 

Defined Assignment [51] are also not suitable since tasks 

are assigned in arbitrary order to machines with the best 

expected execution, regardless of the resource availability. 

C. Opportunistic Load Balancing Using a Task Stalling 

Buffer 

According to [52], a task stalling buffer (Fig. 2) improves 

task execution makespan in queueing systems with two 

heterogeneous servers. The task stalling buffer reduces slow 

server load by redirecting more tasks to the fast server. New 

tasks are added to the stalling buffer if the fast server is 

busy. If the buffer is full, the slow server receives the task. 

We applied this method (Fig. 2) to improve the task 

distribution between two grids. The purpose of such an 

approach is similar to [46], as it aims to select the cloud 

most suitable for task execution. Since we can assume that 

the private grid will always perform better than the public 

grid, we can use a task stalling buffer to decrease the 

number of tasks distributed to the public grid. In this way, 

we can expect to reduce the execution makespan of tasks 

and improve the reliability of the service by reducing the 

number of tasks executed using heterogeneous servers. 

 
Fig. 2.  Scheme of a queueing system with a stalling buffer [52]. 

Here, M is the buffer size to store new tasks, K is the 

buffer size for stalling tasks, 𝜇1 is the efficiency of the fast 

channel, 𝜇2 is the efficiency of the slow channel, 1 is the fast 

channel, and 2 is the slow channel. Then, according to [52], 

the length of the buffer for stalling the task K may be 

expressed as follows 

 (1 ),K q   (1) 

where ρ is the task execution efficiency ratio between fast 

and slow channels, and q is the task execution efficiency 

coefficient: 

 1

2

,





  (2) 
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where c is the number of completed tasks, t is the total task 

execution makespan, m is the number of compute nodes in 

the fast channel and 𝜇1 is the fast channel efficiency: 
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where a1 is the number of tasks completed using the fast 

channel, and b1 is the time required to complete those tasks; 

a2 is the number of tasks performed using the slow channel, 

and b2 is the time required to complete those tasks. 

It is important to note that according to [52], the task 

stalling buffer length should be calculated only once. 

However, due to the heterogeneous nature of our grid 

environment, we believe that the task stalling buffer could 

produce better results if re-calculated with each new task 

received. Thus, for our experiments (presented in Sections 

V and VI), we will include two variants of the Task Stalling 

Buffer (TSB) algorithm: 

1. TSB-static: task stalling buffer length is calculated 

once; 

2. TSB-dynamic: task stalling buffer length is re-

calculated with each received new task. 

V. COMPUTER STUDY 

This computer study will test our hypothesis that the 

proposed hybrid cloud task scheduling method with task 

stalling buffer improves the task execution makespan 

compared to FIFO. We will use a virtual environment for 

our tests, programmed using PHP programming language. 

Task execution makespan will be estimated using iteration 

counts (instead of seconds) required to complete all tasks. A 

virtual environment (unlike the real platform experiments 

presented in Section VI) will allow us to simulate the 

infrastructure with more compute nodes and conduct large 

amounts of experiments in a reasonable time. However, our 

virtual environment will not simulate the behaviour of 

private and public cluster schedulers. Furthermore, it will 

not account for data transfer times and network load 

variations. This computer study aims to examine the task 

execution makespan between the following algorithms that 

would distribute tasks among the two grids using: 

 Standard FIFO algorithm; 

 TSB-static(k): our proposed hybrid cloud tasks 

scheduling algorithm with a static length task stalling 

buffer, where k is the buffer length (buffer length is 

estimated only once after each grid has executed at least 

one task); 

 TSB-dynamic: our proposed hybrid cloud tasks 

scheduling algorithm with a dynamic length task stalling 

buffer (buffer length is re-estimated with each new 

incoming task). 

A. Simulation Scenarios 

To evaluate the task execution makespan, we ran 

simulated tasks with established iteration counts for each 

task to complete. Scenarios were generated before 

experiments so that each algorithm would be tested using 

the same conditions. We will use the following annotations: 

 TS: static size tasks. All tasks are of the same size and 

are equal to 200 iterations; 

 TD: dynamic size tasks. The generated task sizes are 

distributed using the Poisson distribution (λ = 200); 

 STS: static task stream. Delays between all tasks are 

equal to 8 iterations; 

 DTS: dynamic task stream. The generated delays 

between tasks are distributed using the Poisson 

distribution (λ = 8). 

The following scenarios were used to test each algorithm: 

 TS_STS: static size tasks (TS), static incoming task 

stream (STS). The same tasks are supplied to the platform 

at a regular interval (or delays); 

 TS_DTS: static size tasks (TS), dynamic incoming task 

stream (DTS). The same tasks are supplied to the 

platform at a changing interval (or delays); 

 TD_STS: dynamic size tasks (TD), static incoming task 

stream (STS). Changing tasks are supplied to the platform 

at a regular interval (or delays); 

 TD_DTS: dynamic size tasks (TD), dynamic incoming 

task stream (DTS). Changing tasks are supplied to the 

platform at a changing interval (or delays). 

The number of iterations and the delays between tasks 

were adapted for the number of simulated compute nodes. 

For best results, the task stalling buffer should not always be 

empty or full. Otherwise, all tasks would be redirected into 

the private grid (the system would be underutilised), or our 

task distribution algorithm would behave exactly like the 

standard FIFO algorithm. 

Each scenario will be executed using every possible task 

count, ranging from 40 to 400 tasks. Results will be 

aggregated. The slow channel will be serviced by 16 agents, 

while 8 agents will serve the fast channel. Slow channel 

agents will have a 1,000 iteration start penalty and will be 

set to perform 10 times slower than the agents servicing the 

fast channel. 

B. Simulation Results 

Aggregated simulation results are presented in Fig. 3 and 

Table I.  

 
Fig. 3.  Task execution makespan decrease compared to FIFO. 
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The results were obtained using 21,660 simulations 

employing different scenarios with various task counts. 

They show that TSB algorithm performs best in TS_STS 

scenario and achieves up to 13 % improvement compared to 

the standard FIFO algorithm.  

TABLE I. SIMULATION RESULTS. MAKESPAN DECREASE 

COMPARED TO FIFO. 

Algorithm Scenario 
Makespan 

(iterations) 

Makespan 

decrease  

FIFO 

TS_STS 6,138 not applicable 

TS_DTS 236,231 not applicable 

TD_STS 5,661 not applicable 

TD_DTS 235,794 not applicable 

TSB-static(10) 

TS_STS 5,330 13.16 % 

TS_DTS 235,450 0.33 % 

TD_STS 5,252 7.22 % 

TD_DTS 235,371 0.18 % 

TSB-dynamic 

TS_STS 5,879 4.22 % 

TS_DTS 235,997 0.10 % 

TD_STS 5,478 3.23 % 

TD_DTS 235,583 0.09 % 

 

This allows us to conclude that the task stalling buffer can 

be applied in hybrid clouds and can outperform the standard 

FIFO algorithm in all scenarios. 

VI. REAL PLATFORM EXPERIMENT 

This section will describe the experiment we conducted to 

test the proposed platform and compare our proposed hybrid 

cloud tasks scheduling method with static and dynamic 

length task stalling buffers to FIFO. This experiment aims to 

examine the task execution makespan between the following 

algorithms that would distribute tasks among the two grids 

using: 

 Standard FIFO algorithm; 

 TSB-static(k): our proposed hybrid cloud tasks 

scheduling algorithm with a static length task stalling 

buffer, where k is buffer length (buffer length is estimated 

only once after each grid has executed at least one task); 

 TSB-dynamic: our proposed hybrid cloud tasks 

scheduling algorithm with a dynamic length task stalling 

buffer (buffer length is re-estimated with each new 

incoming task). 

This real platform experiment will further test our 

hypothesis that the proposed hybrid cloud tasks scheduling 

method with a task stalling buffer improves task execution 

makespan compared to FIFO. 

A. Experimental Setup 

We used two different setups (server setup A and B) to 

test different environments. Setup A had two separate 

servers running Docker containers (Fig. 4). The master 

server was used to control the grids and distribute tasks. The 

slave server was used to simulate the two grids by running 

multiple virtual machines representing separate compute 

nodes. Since both grids were on one single server, we added 

the upper limits for memory (RAM) and CPU usage using 

Docker container, VirtualBox image (required and run by 

BOINC clients), Mesos agent, and BOINC client settings. 

These limits allowed us to control resource usage and ensure 

equal resource distribution per task. 

 
Fig. 4.  Server setup A scheme. The master server and one slave server are 

running on different servers. 

The server Setup B is very similar to the server Setup A, 

except that it uses two slave servers instead of one (Fig. 5). 

In this way, we separated the two grids and gained 

additional resources to simulate more compute nodes. In 

both setups, the number of simulated nodes was limited to 

the number of cores per server. Using the server Setup A, 

we simulated two Apache Mesos agents and two BOINC 

clients. Using the server Setup B, we simulated two Apache 

Mesos agents and four BOINC clients. These two server 

setups allowed us to test if adding more compute nodes to 

the public grid changes the results. In both configurations, 

we used a task generator to simulate the incoming task 

stream. 

The server hardware specification was as follows: 

 Master: Intel(R) Xeon(R) 5160 CPU, 2 cores, 

3.00 GHz, 8 GB, 500 GB HDD, Ubuntu Linux 16.04.6 

with 4.15.0-88-generic kernel (x86_64); 

 Slave 1: Intel(R) Core(TM) i5-4460 CPU, 4 cores, 

3.20 GHz, 24 GB, 450 GB SSD, Ubuntu Linux 18.04.4 

with 4.15.0-91-generic kernel (x86_64); 

 Slave 2: Intel(R) Core(TM) i7-6700HQ CPU, 4 cores, 

2.60 GHz, 16 GB, 128 GB SSD, Linux Fedora 31 with 

5.3.16-300.fc31.x86_64 kernel (x86_64). 

 
Fig. 5.  Server setup B scheme. The master server and two slave servers are 

running on different servers. 

B. Experiment Scenarios 

To evaluate task execution makespan, we ran distributed 

tasks estimating the value of  using the Monte Carlo 

Method [53]. We selected this simple task to estimate task 

execution times depending only on CPU and eliminating 

other factors, such as networking and data storage. The 

same annotations are used as in Section V-A. However, due 

to the specifics of the experiment, there are some 

adjustments: 

 TS(i): static size tasks, where i is the number of 

iterations per task to calculate ; 

 TD(I): dynamic size tasks, where I is a set of task sizes. 
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The generated task sizes are distributed using a discrete 

uniform distribution (a = 0, b = 1); 

 STS(d): static task stream, where d is the delay in 

seconds between incoming new tasks; 

 DTS(D): dynamic task stream, where D is a set of 

possible delays between tasks. The generated delays are 

distributed using the Poisson distribution (λ = 30). 

The following scenarios were used to test each algorithm: 

 TS_STS: static size tasks TS(100000), static incoming 

task stream STS(60); 

 TS_DTS: static size tasks TS(100000), dynamic 

incoming task stream DTS ({60, 120}); 

 TD_STS: dynamic size tasks TD({100000, 200000}), 

static incoming task stream STS(60); 

 TD_DTS: dynamic size tasks TD({100000, 200000}), 

dynamic incoming task stream DTS({60, 120}). 

The number of iterations and the delays between tasks 

were adapted for the hardware that we used for our 

experiments. For best results, the task stalling buffer should 

not always be empty or full. Otherwise, all tasks would get 

redirected into the private grid (system would be 

underutilised), or our task distribution algorithm would 

behave exactly like the standard FIFO algorithm. 

1. Experimental results using Setup A 

The first experiment was aimed at providing an overview 

of how the platform and the algorithms perform. Therefore, 

100 tasks were executed using Setup A. The results show 

that the proposed hybrid cloud tasks scheduling method 

with task stalling buffer improves task execution makespan 

(see Fig. 6 and Table II). 

 

Fig. 6.  Total makespan of 100  value estimation tasks using the Monte 

Carlo method. 

The static length task stalling buffer provides up to 

15.45 % improvement over the standard FIFO algorithm, 

while the dynamic length task stalling buffer provides up to 

36.48 % improvement. 

TABLE II. TASK EXECUTION MAKESPAN DECREASE COMPARED 

TO FIFO (USING SETUP A). 

Algorithm Scenario 
Makespan 

(seconds) 

Makespan 

decrease 

FIFO 

TS_STS 22,863 not applicable 

TD_STS  20,627 not applicable  

TS_DTS 14,318 not applicable  

TD_DTS 19,251 not applicable  

TSB-static(10) 

TS_STS 19,331 15.45 % 

TD_STS  17,832 13.55 % 

TS_DTS 13,495 5.75 % 

TD_DTS 19,562 -1.62 % 

TSB-dynamic 

TS_STS 14,522 36.48 % 

TD_STS  17,394 15.67 % 

TS_DTS 13,727 4.13 % 

TD_DTS 17,830 7.38 % 

Table II shows that the best results are achieved in the 

TS_STS and TD_STS scenarios. These results correspond 

to the simulation results presented in Fig. 3.  

2. Experimental results using Setup B 

We continued to run experiments using Setup B to test if 

adding more compute nodes to the public grid will produce 

similar results. We conducted multiple experiments using 

different numbers of tasks: 20, 40, and 60. Furthermore, we 

repeated each experiment five times to test the average time 

deviations. The aggregate results of 180 tests are presented 

in Tables III–V. We used the null hypothesis (two-tailed,  

= 0.05) to prove that the alternate hypothesis is correct with 

at least 95 % probability. Here, the null hypothesis states 

that the task stalling buffer does not impact the task 

execution makespan. In this way, we tested whether the 

average task execution makespan using the FIFO scheduler 

is different compared to the average task execution 

makespan using our proposed scheduling algorithm: 

1. TSB-static(10) scheduler. 

2. TSB-dynamic scheduler. 

TABLE III. TASK EXECUTION AVERAGE MAKESPAN USING THE 

FIFO ALGORITHM. 

Scenario 
Number of 

tasks 

Average 

makespan 

(seconds) 

Standard 

deviation 

(seconds) 

TS_STS 

20 3,598.4 189.20 

40 7,063.6 212.86 

60 9,995.4 223.01 

TD_STS  

20 5,841.8 654.40 

40 9,622.2 1,229.63 

60 14,905.4 1,382.52 

TS_DTS 

20 3,474.0 104.82 

40 6,576.0 145.25 

60 9,754.0 340.32 

TD_DTS 

20 5,933.4 455.89 

40 10,038.4 1,439.31 

60 14,620.4 1,255.28 

TABLE IV. TASK EXECUTION AVERAGE MAKESPAN USING THE 

TSB-STATIC(10) ALGORITHM (COMPARED TO FIFO). 

Scenario Tasks 

Average 

makespan 

(seconds) 

Standard 

deviation 

(seconds) 

Makespan 

decrease 

p-

value 

TS_STS 

20 3,503.8 394.22 2.63 % 0.6460 

40 6,377.8 32.80 9.71 % 0.0020 

60 8,978.6 297.52 10.17 % 0.0005 

TD_STS  

20 3,967.4 959.76 32.09 % 0.0090 

40 9,068.4 172.92 5.76 % 0.3750 

60 13,381.8 393.63 10.22 % 0.0640 

TS_DTS 

20 3,241.6 203.00 6.69 % 0.0630 

40 6,168.8 256.39 6.19 % 0.0210 

60 9,254.0 240.38 5.13 % 0.0310 

TD_DTS 

20 3,127.0 824.78 47.30 % 0.0010 

40 8,690.0 301.94 13.43 % 0.1100 

60 12,293.0 1,566.73 15.92 % 0.0320 

 

The scenarios in which our proposed algorithms 

performed better than FIFO (with a significance level α = 

0.05) are highlighted in Table IV and Table V. The results 

show up to 47.3 % improvement using static length task 

stalling buffer and up to 20.84 % improvement using 

dynamic length task stalling buffer compared to the standard 

FIFO algorithm. The static length task stalling buffer 

performed better because task stalling buffer capacity was 

never reached when executing only 20 tasks. It is inefficient 

to use the public grid to execute a small number of tasks, 
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since the private grid outperforms the public grid. The 

public grid did not receive any tasks. Thus, the platform 

underutilisation scenario occurred (as discussed in Section 

VI-B). Since the system was underutilised, we will not 

include the results from this particular test in our 

conclusions. 

TABLE V. TASK EXECUTION AVERAGE MAKESPAN USING THE 

TSB-DYNAMIC ALGORITHM (COMPARED TO FIFO). 

Scenario Tasks 

Average 

makespan 

(seconds) 

Standard 

deviation 

(seconds) 

Makespan 

decrease 

p-

value 

TS_STS 

20 3,493.0 133.24 2.93 % 0.3420 

40 6,191.8 218.76 12.34 % 0.0002 

60 9,147.8 264.42 8.48 % 0.0010 

TD_STS  

20 5,016.4 117.66 14.13 % 0.0500 

40 8,759.8 257.83 8.96 % 0.2000 

60 13,256.2 480.22 11.06 % 0.0530 

TS_DTS 

20 3,497.4 133.06 -0.67 % 0.7650 

40 6,342.2 88.81 3.56 % 0.0180 

60 9,204.0 118.35 5.64 % 0.0190 

TD_DTS 

20 4,697.0 607.02 20.84 % 0.0080 

40 9,018.8 193.90 10.16 % 0.1920 

60 13,262.2 461.70 9.29 % 0.0720 

TABLE VI. TASK EXECUTION MAKESPAN DECREASE COMPARED 

TO FIFO (USING SETUP B). 

Algorithm Scenario 
Makespan 

(seconds) 

Makespan 

decrease 

FIFO 

TS_STS 31,361 not applicable 

TD_STS  47,502 not applicable 

TS_DTS 32,154 not applicable 

TD_DTS 45,159 not applicable 

TSB-static(10) 

TS_STS 30,504 2.73 % 

TD_STS  44,718 5.86 % 

TS_DTS 30,431 5.36 % 

TD_DTS 44,226 2.07 % 

TSB-dynamic 

TS_STS 30,700 2.11 % 

TD_STS  44,504 6.31 % 

TS_DTS 30,547 5.00 % 

TD_DTS 44,963 0.43 % 

 

Finally, an extensive test was conducted by running 200 

tasks. The results showed an improvement of up to 5.86 % 

using TSB-static(10) and an improvement of up to 6.31 % 

using TSB-dynamic (see Table VI). 

VII. DISCUSSION 

The proposed hybrid distributed computing platform can 

perform distributed computing tasks using cloud computing 

services and personal employee computers. Our proposed 

task scheduling method improves the efficiency of the 

platform, maintaining the same quality and reliability of the 

service. This innovation allows us to schedule tasks between 

two grids without requiring any additional information 

about the tasks. 

The focus of ongoing research will be to test the 

capabilities of the proposed platform to solve big data 

mining tasks. Energy consumption and hardware usage cost 

minimisation could also be considered for future research. 

VIII. CONCLUSIONS 

Computer study and experiments show that the proposed 

hybrid cloud tasks scheduling method with static task 

stalling buffer reduces up to 47.3 % of the total task 

execution time. This allows us to conclude that a task 

stalling buffer can be applied for distributed hybrid cloud 

computing solutions and improve workload balance 

between two grids. The experiments showed that the most 

significant improvement is obtained when small batches of 

tasks are executed on a moderately loaded system. When the 

system is heavily loaded with large amounts of short tasks, 

the observed improvement is smaller. 

CONFLICTS OF INTEREST 

The authors declare that they have no conflicts of interest. 

REFERENCES 

[1] A. Rojko, “Industry 4.0 concept: Background and overview”, Int. J. of 

Interactive Mobile Technologies (iJIM), vol. 11, no. 5, pp. 77–90, 

2017. DOI: 10.3991/ijim.v11i5.7072. 

[2] A. Jurgelevičius and L. Sakalauskas, “BOINC from the view point of 

cloud computing”, in CEUR Workshop Proceedings, 2017, pp. 61–66, 

vol. 1973. [Online]. Available: http://ceur-ws.org/Vol-

1973/paper08.pdf 

[3] Gartner Top 10 Strategic Technology Trends For 2020. [Online]. 

Available: https://www.gartner.com/smarterwithgartner/gartner-top-

10-strategic-technology-trends-for-2020/ 

[4] Gartner Top 10 Strategic Technology Trends For 2021. [Online]. 

Available: https://www.gartner.com/smarterwithgartner/gartner-top-

strategic-technology-trends-for-2021/ 

[5] A. Jurgelevičius, L. Sakalauskas, and V. Marcinkevičius, “Task 

stalling for a batch of task makespan minimisation in heterogeneous 

multigrid computing”, Computational Science and Techniques, vol. 8, 

pp. 631–638, 2021. DOI: 10.15181/csat.v8.2103. 

[6] G. L. Stavrinides and H. D. Karatza, “Dynamic scheduling of bags-of-

tasks with sensitive input data and end-to-end deadlines in a hybrid 

cloud”, Multimedia Tools and Applications, vol. 80, pp. 16781–

16803, 2021. DOI: 10.1007/s11042-020-08974-8. 

[7] H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Performance-effective and 

low-complexity task scheduling for heterogeneous computing”, IEEE 

Transactions on Parallel and Distributed Systems, vol. 13, no. 3, pp. 

260–274, 2002. DOI: 10.1109/71.993206. 

[8] L. F. Bittencourt and E. R. M. Madeira, “HCOC: A cost optimization 

algorithm for workflow scheduling in hybrid clouds”, Journal of 

Internet Services and Applications, vol. 2, pp. 207–227, 2011. DOI: 

10.1007/s13174-011-0032-0. 

[9] L. F. Bittencourt, E. R. M. Madeira, and N. L. S. Da Fonseca, 

“Scheduling in hybrid Clouds”, IEEE Communications Magazine, 

vol. 50, no. 9, pp. 42–47, 2012. DOI: 10.1109/MCOM.2012.6295710. 

[10] R. N. Calheiros, C. Vecchiola, D. Karunamoorthy, and R. Buyya, 

“The Aneka platform and QoS-driven resource provisioning for 

elastic applications on hybrid Clouds”, Future Generation Computer 

Systems, vol. 28, no. 6, pp. 861–870, 2012. DOI: 

10.1016/j.future.2011.07.005. 

[11] C. Vecchiola, R. N. Calheiros, D. Karunamoorthy, and R. Buyya, 

“Deadline-driven provisioning of resources for scientific applications 

in hybrid clouds with Aneka”, Future Generation Computer Systems, 

vol. 28, no. 1, pp. 58–65, 2012. DOI: 10.1016/j.future.2011.05.008. 

[12] R. Van Den Bossche, K. Vanmechelen, and J. Broeckhove, “Online 

cost-efficient scheduling of deadline-constrained workloads on hybrid 

clouds”, Future Generation Computer Systems, vol. 29, no. 4, pp. 

973–985, 2013. DOI: 10.1016/j.future.2012.12.012. 

[13] R. Duan, R. Prodan, and X. Li, “Multi-objective game theoretic 

scheduling of bag-of-tasks workflows on hybrid clouds”, IEEE 

Transactions on Cloud Computing, vol. 2, no. 1, pp. 29–42, 2014. 

DOI: 10.1109/TCC.2014.2303077. 

[14] B. Wang, Y. Song, Y. Sun, and J. Liu, “Managing deadline-

constrained bag-of-tasks jobs on hybrid clouds”, in Proc. of the 24th 

High Performance Computing Symposium, 2016, article no. 22. DOI: 

10.22360/SpringSim.2016.HPC.039. 

[15] Y. Zhang and J. Sun, “Novel efficient particle swarm optimization 

algorithms for solving QoS‐demanded bag‐of‐tasks scheduling 

problems with profit maximization on hybrid clouds”, Concurrency 

and Computation: Practice and Experience, vol. 29, 2017. DOI: 

10.1002/cpe.4249. 

[16] S. Abdi, L. PourKarimi, M. Ahmadi, and F. Zargari, “Cost 

minimization for deadline-constrained bag-of-tasks applications in 

federated hybrid clouds”, Future Generation Computer Systems, vol. 

71, no. C, pp. 113–128, 2017. DOI: 10.1016/j.future.2017.01.036. 

64



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 6, 2021 

[17] Y. Zhang, J. Zhou, L. Sun, J. Mao, and J. Sun, “A novel firefly 

algorithm for scheduling bag-of-tasks applications under budget 

constraints on hybrid clouds”, IEEE Access, vol. 7, pp. 151888–

151901, 2019. DOI: 10.1109/ACCESS.2019.2948468. 

[18] Y. Zhang, J. Zhou, and J. Sun, “Scheduling bag-of-tasks applications 

on hybrid clouds under due date constraints”, Journal of Systems 

Architecture, vol. 101, article ID 101654, 2019. DOI: 

10.1016/j.sysarc.2019.101654. 

[19] G. A. McGilvary, A. Barker, and M. Atkinson, “Ad hoc cloud 

computing”, in Proc. of IEEE 8th Int. Conf. (CLOUD 2015), 2015, pp. 

1063–1068. DOI: 10.1109/CLOUD.2015.153. 

[20] CharityEngine. [Online]. Available: http://charityengine.com 

[21] GridMP. [Online]. Available: https://en.wikipedia.org/wiki/Grid_MP 

[22] Xgrid. [Online]. Available: 

https://www.apple.com/server/docs/Xgrid_TB_v10.4.pdf 

[23] XtremWeb. [Online]. Available: http://xtremweb.gforge.inria.fr 

[24] Berkeley Open Infrastructure for Network Computing. [Online]. 

Available: https://boinc.berkeley.edu 

[25] A. Jurgelevičius and L. Sakalauskas, “Big data mining using public 

distributed computing”, Information Technology and Control, vol. 47, 

no. 2, pp. 236–248, 2018. DOI: 10.5755/j01.itc.47.2.19738. 

[26] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. 

H. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-

grained resource sharing in the data center”, in Proc. of the 8th 

USENIX conference on Networked systems design and 

implementation, 2011, pp. 295–308. 

[27] Hadoop. [Online]. Available: https://github.com/mesos/hadoop 

[28] MPI. [Online]. Available: https://github.com/mesosphere/mesos-hydra 

[29] Apache Chronos. [Online]. Available: 

https://mesos.github.io/chronos/ 

[30] G. McGilvary, A. Barker, A. Lloyd, and M. Atkinson, “V-BOINC: 

The virtualization of BOINC”, in Proc. of 13th IEEE/ACM 

International Symposium on Cluster, Cloud and Grid Computing, 

(CCGrid), 2013, pp. 285–293. DOI: 10.1109/CCGrid.2013.14. 

[31] Docker. [Online]. Available: https://www.docker.com 

[32] Kubernetes. [Online]. Available: https://kubernetes.io 

[33] Oracle VM VirtualBox. [Online]. Available: 

https://www.virtualbox.org 

[34] QEMU. [Online]. Available: https://www.qemu.org 

[35] VMware. [Online]. Available: https://www.vmware.com 

[36] P. Sun, “Security and privacy protection in cloud computing: 

Discussions and challenges”, Journal of Network and Computer 

Applications, vol. 160, article ID 102642, 2020. DOI: 

10.1016/j.jnca.2020.102642. 

[37] A. Celesti, M. Fazio, M. Villari, and A. Puliafito, “Adding long-term 

availability, obfuscation, and encryption to multi-cloud storage 

systems”, Journal of Network and Computer Applications, vol. 59, pp. 

208–218, 2016. DOI: 10.1016/j.jnca.2014.09.021. 

[38] I. Sousa, M. P. Queluz, and A. Rodrigues, “A survey on QoE-oriented 

wireless resources scheduling”, Journal of Network and Computer 

Applications, vol. 158, article ID 102594, 2020. DOI: 

10.1016/j.jnca.2020.102594. 

[39] D. Cidem Dogan and H. Altindis, “Storage and communication 

security in cloud computing using a homomorphic encryption scheme 

based Weil pairing”, Elektronika ir Elektrotechnika, vol. 26, no. 1, pp. 

78–83, 2020. DOI: 10.5755/j01.eie.26.1.25312. 

[40] N. Schlitter and J. Lässig, “Distributed data analytics using 

RapidMiner and BOINC”, in Proc. of the 4th RapidMinder 

Community Meeting and Conference (RCOMM 2013), 2013, pp. 81–

96. 

[41] F. Dong and S. G. Akl, “Scheduling algorithms for grid computing: 

State of the art and open problems”, School of Computing, Queen’s 

University, Kingston, Ontario, Tech. Rep. 2006-504, Jan. 2006. 

[42] M. Nandagopal and V. Uthariaraj, “Hierarchical load balancing 

approach in computational grid environment”, International J. of 

Recent Trends in Engineering and Technology, vol. 3, no. 1, May 

2010. 

[43] J. Cao, S. A. Jarvis, S. Saini, and G. R. Nudd, “GridFlow: Workflow 

management for grid computing”, in Proc. of 3rd IEEE/ACM 

International Symposium on Cluster Computing and the Grid, 2003, 

pp. 198–205, DOI: 10.1109/CCGRID.2003.1199369. 

[44] E. Heymann, M. A. Senar, E. Luque, and M. Livny, “Adaptive 

scheduling for master-worker applications on the computational grid”, 

in Grid Computing — GRID 2000. GRID 2000. Lecture Notes in 

Computer Science, vol. 1971. Springer, Berlin, Heidelberg, 2000. 

DOI: 10.1007/3-540-44444-0_20. 

[45] D. Paranhos, W. Cirne, and F. Brasileiro, “Trading cycles for 

information: Using replication to schedule bag-of-tasks applications 

on computational grids”, in Euro-Par 2003 Parallel Processing. 

Euro-Par 2003. Lecture Notes in Computer Science, vol. 2790. 

Springer, Berlin, Heidelberg, 2003. DOI: 10.1007/978-3-540-45209-

6_26.  

[46] G. Vilutis, R. Butkiene, I. Lagzdinyte-Budnike, D. Sandonavicius, 

and K. Paulikas, “The QoGS method application for selection of 

computing resources in intercloud”, Elektronika ir Elektrotechnika, 

vol. 19, no. 7, pp. 98–103, 2013. DOI: 10.5755/j01.eee.19.7.2080. 

[47] M. Usama, M. Liu, and M. Chen, “Job schedulers for Big data 

processing in Hadoop environment: Testing real-life schedulers using 

benchmark programs”, Digital Communications and Networks, vol. 3, 

no. 4, pp. 260–273, Nov. 2017. DOI: 10.1016/j.dcan.2017.07.008. 

[48] D. Yoo and K. M. Sim, “A comparative review of job scheduling for 

MapReduce”, in Proc. of IEEE Int. Conf. Cloud Computing and Intel. 

Syst. (CCIS), 2011, pp. 353–358. DOI: 10.1109/CCIS.2011.6045089. 

[49] J. V. Gautam, H. B. Prajapati, V. K. Dabhi, and S. Chaudhary, “A 

survey on job scheduling algorithms in Big data processing”, in Proc. 

of 2015 IEEE International Conference on Electrical, Computer and 

Communication Technologies (ICECCT), 2015, pp. 1–11. DOI: 

10.1109/ICECCT.2015.7226035. 

[50] R. Wisnesky, “Evaluating scheduling algorithms on distributed 

computational grids”, 2010. 

[51] M. Bhatia, “Task scheduling in grid computing: A review”, Advances 

in Computational Sciences and Technology, vol. 10, no. 6, pp. 1707–

1714, 2017. 

[52] L. Kaklauskas, L. Sakalauskas, and V. Denisovas, “Stalling for 

solving slow server problem”, RAIRO - Operations Research, vol. 53, 

no. 4, pp. 1097–1107, 2019. DOI: 10.1051/ro/2018056. 

[53] Calculate Pi with Monte Carlo. [Online]. Available: 

https://hub.docker.com/r/ashael/pi

 
 

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/). 

65




