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Introduction 

 
 This paper presents the optimization method of 
sensor grid which identifies the cause-effect relations 
between  sensors based on measurements.  

Optimization of sensor grid allows to decrease 
number of sensors in the grid what leads to decrease of 
costs related to commissioning and maintenance of 
measurement infrastructure.  Unfortunately upon removal 
of particular sensors from the grid it may decrease the 
quality of measurements. That is why it is crucial to 
remove only those sensors which can  be replaced by 
others. Otherwise the area armed with the sensor grid 
cannot be covered thoroughly.  

This paper explains optimization method in three 
steps – without post-processing, with post-processing 
calculations and with modeling sensor relationships using 
digital filter to perform causality detection.  
 
Coverage probability in sensor grid 

 
Setting up a sensor grid, the coverage problem of 

measured field is an important issue which received 
considerably high research attention [1–5]. This paper 
deals with inter-sensor coverage, i.e. how particular sensor 
can cover the area of other sensor.  

To classify whether particular point Sx can be 
covered by sensor S1 performing measurements in 
particular point, there is introduced a point-to-point 
coverage probability (����) [1].   

����  is defined as a probability that sensor S1 
(located in the grid) indicates a value which is within a pre-
defined range with respect to actual value in point Sx (not 
necessarily covered by any sensor  

 (1) 

To   estimate   coverage   probability   that  sensor  S1  

covers an area assigned to sensor S2, it is needed to use the 
following formula 

 (2) 

where  is a coverage probability that sensor S2 covers 
own area [1].  

Due to simplification reasons, it is assumed that each 
sensor in the grid covers perfectly its own area, i.e. 

i.e.  

 (3) 

It is considered that sensor S2 is covered by sensor S1 
when coverage probability between those sensors  is 
greater than certain predefined value �min.   

The optimization algorithm proposed in this paper is 
composed of the following steps: 

1. Create an empty sensor grid (GRID2) having the 
same dimensions as grid under optimization 
(GRID1). Whole area of GRID2 is 
UNCOVERED. 

2. Select the sensor having the greatest coverage (i.e. 
can replace the greatest number of sensors) 
among UNCOVERED area of GRID2. 

3. Put selected sensor on the GRID2 classifying area 
covered by this sensor as COVERED.  

4. Go to step 2, unless whole area of GRID2 is 
COVERED. 

To verify how above described algorithm is executed 
in practice, there have been performed measurements on 
the sensor grid.  The grid is charactered by: 

- Measured physical quantity: Temperature 
- Environment: Floor equipped with heating (an 

under floor system of pipes with water acting as a 
heat exchanger). The temperature of the water is set 
to 35oC.  The temperature on the floor surface is 
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measured at various points under steady state 
conditions.  

- Number of sensors: 132  (grid: 11x12)   
- Distance between sensors d: 23 cm  
- Area of the grid: 5.82 m2 
- Number of measurement series: 30 
- Total number of measurements: 3960 (30 series) 

Applying the optimization algorithm defined above, 
the number of kept sensors is 74 of 132 (56.1%) for �min 
equal 0.68 and accuracy range equal ±0.250C. Table 1 
shows optimized sensor grid indicating removed sensors 
(by gray area). Additionally Table 1 indicates covered area 
by particular sensor (1 unit means that sensor covers area 
corresponding to one sensor coverage). 
 
Table 1. Optimized sensor grid using application neighbour 
method 
 1 2 3 4 5 6 7 8 9 10 11 12 
1 1 1 1  3 1   1 1 1 1 
2 1 1 1 1 9  14   1  1 
3 1 1 1 2    1    1 
4 1 1 1 1       2 1 
5  1 1     3    1 
6  1    1    1 1 1 
7 2   1   2 11   1 1 
8 1 2 4      2 1 1 1 
9 1   7   4  3 1 1 1 
10 1 1      1 1 1 1 1 
11 1 1 2  2  1 1 1 1 2  
 

It can be seen that majority of sensors that have been 
removed is in the centre of sensor grid. The edges 
however, where there is no heating floor, require better 
sensor penetration. 

This method keeps penetration of sensor pretty high. 
It identifies properly similar measurement areas and 
ensures that each fragment of sensor grid is properly 
covered. 
 
Optimization method based on application neighbour 
identification aided by post-processing calculations 
 

In this chapter, the optimization method presented in 
previous chapter is aided by post-processing calculations.  
It means that measured values of absent sensors can be 
estimated as linear combination of other sensors that are 
kept in the sensor grid. 

Coverage probability � is calculated not between 2 
sensors, but between the sensor and linear representation of 
other sensor resulting in linear regression calculations  

 (4) 

where S1' is linear representation of S1 sensor 
measurements which coefficients m and b are derived from 
linear regression approximating S2 sensor values.  
Because linear regression coefficients m, b minimize the 
average difference between S1' and S2 series, the following 
inequity is correct: 

 (5) 

It means that aiding the optimization method 
presented in chapter 2 by linear regression calculations 
always increases the coverage probability between 2 
sensors, i.e. number of sensors covering the grid can be 
smaller. 

Applying exactly the same optimization algorithm as 
presented in previous section, the number of kept sensors 
is 39 of 132 (29.5%).  Exact results are shown in Table 4. 
 
Table 2. Optimized sensor grid using application neighbour 
method aided by post-processing 
 1 2 3 4 5 6 7 8 9 10 11 12 
1 1 1 1   9  1 5   1 
2 1 1 1 1        1 
3 1 2          2 
4   5          
5   1 3 1   2     
6      1    1   
7       2 59   1 1 
8 1         5 1 1 
9 1           1 
10 2  8     2     
11       1 1 1 1   
 
Modelling of neighbour relationships with digital filters 

 
Presented optimization methods have one serious 

drawback. They look into measurement value similarities, 
however do not analyse the time series similarity. It is not 
taken into account which sensors are measuring the 
phenomenon cause and which are projection of 
phenomenon effect. Linear regression just shows relation 
between measured values, but do not identify the causal 
connection between them. It is not correct to remove from 
the grid the sensor being located at phenomenon cause 
(cause sensor) and calculate its value basing on 
measurements of the sensor measuring just an effect (effect 
sensor).  

Therefore to detect causality [5], it is proposed to 
estimate the dependency between 2 sensors using digital 
filter as shown in Fig. 1. 

 
Fig. 1. Visualization of modelling the sensor neighbour 
dependencies with digital filters 
 

Majority of physical phenomena in the environment 
can be charactered by following statements: 

- Causality, the cause must happen earlier than 
effect is observed. 
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- Stability, there are no phenomena in the macro 
scale giving infinite amplitude effect triggered by 
bounded cause. 

- Low-passing filter properties, phenomena 
observed in the function of time tends to stability, 
i.e. no matter how strong phenomenon is, its 
effects will tend to average in the function of 
time.  

The above statements create a BIBO stability 
condition (Bounded Input – Bounded Output) used in the 
electrical engineering.  

Assuming that 2 sensors are measuring distribution of 
certain phenomenon, the space between those sensors can 
be modelled as filter with transmittance H(�). 

To calculate the transmittance it is needed to take 
measurement series of 2 sensors measuring particular 
phenomenon into account:  

 (6) 

 (7) 

where s1m(n), s2m(n) – value measured by sensor1, sensor2 
in n-slot, s1(n), s2(n) – measured series by sensor1, 
sensor2 referenced to initial measurement. 

To calculate the frequency spectrum of signals 
created by measurement series, it is needed to apply Fast 
Fourier Transform (FFT), i.e. [4]: 

 (8) 

 (9) 

The dependency between input and output signal is 
defined as follows 

 (10) 

Depending whether S1/S2 or S2/S1 is input/output the 
transmittance is defined in below equations: 

 (11) 

 (12) 

Finally the impulse response h(n) is calculated as 
Inverse FFT, i.e.: 

 (13) 

Having the impulse response calculated it is possible 
to estimate the output signal basing on input signal and 
transmittance which is the convolution function. 

 (14) 

 (15) 

To verify how dependency modelling using filter is 
working, there have been performed measurements at 2 
points of following properties: 

- Observed phenomenon: turning on the floor 
heating and then turning it off observing how 

particular grid points are warming and then 
cooling. 

- s1 point is located in the middle of the grid.  
- s2 point is located close to the grid edge. 
It can be seen from  Figure 2 that s1 series is followed 

by s2 series. Assuming that s1 series is input to the filter 
and s2 series is its output, the amplitude characteristics of 
filter has low-pass character with dominating frequency. 
Thus it is expected that   will give a good approximation 
of s2. This is confirmed in figure where s2 and  almost 
perfectly overlap.  

Taking the opposite assumption into consideration, 
i.e. s2 series is an input and s1 is an output, the filter 
amplitude characteristics passes almost all frequencies, 
however   amplifying the highest frequencies. Additionally 
H2,1 has much greater amplitude values than H1,2 except 
dominating frequency of H1,2. As causality is not kept, the 
filter is not able to predict s1 values. It would be only 
possible if h(n)>0 for negative n. Thus   does not fit at all 
to s1 what can be seen in Figure 2. 

 

 
Fig. 2. Measured S1 and S2 series (referenced to initial value) 
and estimates of those signal basing on filter calculations (est S2, 
est S1) and amplitude characteristics of transmittance  
 

It is pointless to apply linear regression calculations 
to derive s1 values based on s2 series despite the series 
correlation is very high. It is concluded that linear 
regression calculations can be applied only to selected 
sensor pairs.  

To filter out the sensor pairs not fulfilling the 
causality criteria it is proposed to calculate average error 
caused by estimation and keep only the sensor 
relationships with relatively low avgError (equation 16). 

AvgErrors1,s2 and avgErrors2,s1  are 0.180C and 4.820C 
respectively what is a significant difference.  

There were performed measurements for cooling 
phenomenon for the whole grid. Basing on avgError 
calculations there have been identified good "causers" and 
bad "causers". It was calculated that good causers are 
usually located in the middle of the grid and bad causers 
are  close to edges, and mainly in the corners where impact 
of floor heating is the most limited 

 
 

(16) 
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To improve the optimization method presented in 
previous sections by causal sensor dependencies it is 
needed to apply the following condition on coverage 
probability 
 

  ,    (17) 
 
where THR is a pre-defined threshold to remove neighbour 
relationships. 

As relationships are unidirectional, removing of  
S1�S2 sensor dependency does not remove S2�S1 
dependency and opposite.  
Having applied above defined condition to the exemplary 
sensor grid with THR=0.250C, the results of optimization 
have changed, as follows: 

- Number of sensor increased from 39 to 50 (up to 
37.9%). 

- 34 of 39 sensors remained in the sensor grid. 
- 5 sensors were removed. 
- 16 sensors were added. 
It means that there were observed 21 sensor position 

changes what is a significant change.   
 
Conclusions 
 

The paper discusses optimization method based on 
the coverage probability. Presented optimization method 
can be applied both in the symmetrical sensor grids and 
asymmetrical sensor grids where sensors are not 
distributed uniformly. The discussed exemplary 
measurements relate to temperature; however this method 
can be used successfully for any physical quantity control. 

It is revealed that applying post-processing 
calculations like linear-regression makes incredible 
improvement in the optimization process. However despite 
of good correlation between particular sensors, there is a 
significant risk that causal connection between correlating 
and correlated sensor does not exist. It is pointless to apply 
linear regression calculations when causality is not kept to 
derive particular sensor series values, even despite the 
series correlation is very high. 

Therefore the identification of unidirectional 
relationships between the sensors is desired taking into 

account time series similarities. Before execution of 
optimization process it is crucial to identify possible 
phenomena and simulate them with full set of sensors. 
Deriving causal dependency between the sensors, which is 
modelled by digital filter, it is possible to mitigate those 
sensor connections which do not fulfil causality.  
Dependencies which are modelled by means of low-pass 
filter are fully unidirectional, i.e.  there is a uniquely 
identified cause and effect on both sides of the filter.  
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