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1Abstract—Heart disease classification with high accuracy 

can support the physician’s correct decision on patients. This 

paper proposes a kernel size calculation based on P, Q, R, and 

S waves of one heartbeat to enhance classification accuracy in 

a deep learning framework. In addition, Electrocardiogram 

(ECG) signals were filtered using wavelet transform with dmey 

wavelet, in which the shape of the dmey is closed to that of one 

heartbeat. With this selected dmey, each heartbeat was 

standardized with 300 samples for calculation of kernel sizes so 

that it contains most features in each heartbeat. Therefore, in 

this research, with 103,459 heart rhythms from the MIT-BIH 

Arrhythmia Database, the proposed approach for calculation 

of kernel sizes is effective with seven convolutional layers and 

other fully connected layers in a Deep Neural Network (DNN). 

In particular, with five types of heart disease, the result of the 

high classification accuracy is about 99.4 %. It means that the 

proposed kernel size calculation in the convolutional layers can 

achieve good classification performance and it may be 

developed for classifying different types of disease. 

 
 Index Terms—Deep learning framework; Dmey wavelet; 

Heartbeat standardization; Kernel size calculation; MIT-BIH 

arrhythmia database; Heart disease classification. 

I. INTRODUCTION 

Cardiovascular diseases (CVDs) are the main cause of 

leading the large number of deaths each year in the world. 

In accordance to World Health Organization (WHO), there 

were about 17.9 million people died from CVDs in 2016, of 

which about 31 % of people died globally [1]. In heart 

disease diagnosis, Electrocardiogram (ECG) signals always 

play an important role [2]. Therefore, the ECG signals, 

which are exactly processed, can support the physician’s 

diagnosis of the heart disease more accurately.  

Difficulty lies in the fact that the ECG signals often have 

different types of noise, such as Baseline Wander (BW), 

Power Line Interference (PLI), and artifacts [3]–[5], which 

can affect the evaluation of diagnostic results. For this 

reason, many methods for improving the quality of the ECG 

signals have been proposed [6], [7]. In particular, a band-

pass filter at the frequency range of 0.1 Hz–100 Hz was 

utilized to obtain the necessary information in the ECG 

signals [8]. Moreover, a Butterworth high-pass filter with a 

cut-off frequency of 0.5 Hz and a Finite Impulse Response 

(FIR) filter of the 12th order with a cut-off frequency of 
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35 Hz at the 3 dB point were applied for filtering the 

baseline wander and unwanted high frequency noises in 

ECG signals [9]. The result is that, the maximum accuracy 

value of one classifier with the filtered ECG signals was 

obtained at 98.6 %. In addition to these methods, Wavelet 

Transform (WT) algorithm has been applied for filtering 

noise in ECG signals. 

The WT was utilized to eliminate noise in ECG signals 

[10], [11], such as BW noise, PLI noise or random noise. In 

practice, the WT with a daubechies wavelet function was 

applied for BW removal in ECG signals in order to classify 

heart disease [12]. The results showed that the accuracy of 

the classifier using the filtered ECG signal is higher than 

that of directly the original ECG signals, in which the 

accuracy of the heart disease classifier with the filtered ECG 

signals was about 94.03 %. Another research using the WT 

for extracting features in the ECG signals is a Continuous 

Wavelet Transform (CWT). This research applied the 

daubechies5 (db5) wavelet function to transform heartbeat 

into the two-dimensional (2D) image corresponding CWT 

patterns considered as features for the classification of heart 

disease [13]. 

In addition, different wavelet functions, such as 

daubechies, symlet, coiflet, biorthogonal, and reverse 

biorthogonal, decomposing at level eight were applied to 

remove noises in ECG signals before using classifiers [14]. 

As a result, the accuracy of the classifier with all mentioned 

wavelet functions, in which the neural classifier has high 

accuracy using daubechies wavelet, is 100 % compared to 

other classifiers. However, this paper only shows 

classification for two types of heart disease. In particular, 

the normal and abnormal classes in the testing dataset were 

only 24 and 20 heartbeats, respectively. In practice, filtering 

noise using the WT method is applied for feature extraction 

of the ECG signals for the purpose of improving the 

efficiency in heart disease classifiers [15]–[17]. It is obvious 

that different wavelet families have been employed for 

filtering noises or decomposing ECG signals for enhancing 

classification accuracy. In our research, dmey wavelet 

family will be chosen to be applied due to its shape like that 

of one heartbeat. With this selection of the dmey, the 

classification accuracy in the DNN structure will increase. 

Almost all classifiers using Convolutional Neural 

Networks (CNNs) have been utilized for classifying heart 
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diseases in recent years, in which kernel sizes in 

convolutional layers are differently chosen related to 

classification performance. In particular, different feature 

maps (C1/C2: 12/6, 6/6, 6/12, 3/6, and 6/3) were convoluted 

with different sizes of kernels (3×9, 3×22, 5×9, and 5×11) 

[18]; a CNN with many different convolutional layers was 

applied, in which authors proposed to setup parameters of 

the model using the kernel size of 5 for all layers [19]; there 

were many kernels with different lengths for convolutional 

layers, particularly the first convolutional layer used 20 

kernels with the same size of 661 and different features for 

20 convolutional times. This first layer was connected to the 

second convolutional layer using 50 kernels with the same 

size of 440 [20].  

In [21], Guo, Sim, and Matuszewski proposed a densely 

connected CNN and gated a recurrent unit network model 

for tackling an issue in an inter-patient ECG classification 

system. In particular, four convolutional layers with one 

kernel size of eight in this classification system were applied 

to classify heart disease. For calculating this kernel size, the 

ECG signals were sampled at 180 Hz to be eight data points, 

and then the kernel size was presented for 44 ms in time. It 

means that the shortest duration of QRS complex was 

extracted (e.g., the QRS complex duration is around of 

60 ms). The result of the classification is that 

supraventricular (S) disease and ventricular (V) arrhythmia 

were classified with the accuracy of 93.61 % and 93.71 %, 

respectively. It is obvious that in many CNNs, the 

calculation of kernel sizes and the number of convolutional 

kernels used are different for increasing classification 

performance. In our article, the calculation of kernel sizes is 

based on a heartbeat with 300 sampling points effectively 

using seven convolutional layers in the DNN structure. 

In recent years, Machine Learning (ML) algorithms have 

been widely applied in many fields of life and obtained a lot 

of achievements [22]–[25]. In the field of identifying heart 

disease from ECG signals, one of the ML algorithms is the 

CNN, in which its structure often consists of some 

convolutional layers and fully connected layers. In addition, 

the convolutional layers are utilized to extract features in the 

ECG signals, and the fully connected layers, which are 

based on the features extracted from the convolutional 

layers, are used for classifying heart disease [26], [27]. In 

practice, a combination of convolutional layers and Long 

Short-Term Memory layers was employed for extraction of 

ECG features, and these features are used for the input of 

the fully connected layers to identify five types of heart 

disease using the MIT-BIH Arrhythmia Database (AD) [28]. 

The result is that the accuracy of 98.10 % was achieved 

using this classifier. Furthermore, an empirical mode 

decomposition for removing noise and a Faster Regions 

with a Convolutional Neural Network (Faster R-CNN) [29] 

were combined for identifying five types of heart disease 

from the MIT-BIH AD ECG database [11]. Heartbeats, 

which were segmented from the ECG signals, were taken 

into the Faster R-CNN for the feature of extraction and 

classification. The result of the high accuracy of the heart 

disease classifier was at 99.21 %. 

For the study of heart disease classification, pure ECG 

databases play an important role due to the higher 

classification performance. In recent years, many heart 

disease databases have been published on websites for 

research objective and attracted researchers around the 

world [30]–[32]. In the MIT-BIH AD ECG database [33], 

we can just collect five types of heart disease according to 

the American Heart Association (AHA) standard, and this is 

an imbalance among these diseases for using classification 

algorithms. For instance, there are 90431 heartbeats for 

normal beat (N), while Fusion of Ventricular and Normal 

Beat (F) heartbeats have only 802 heartbeats used in a 

classifier. As a result, the classification performance often 

drops due to this imbalance. Another case is that in the 

MIT-BIH QT database [34], heartbeats concerning with N 

and F heart disease categories are 81097 and 251, 

respectively. To tackle this problem, the oversampling and 

undersampling methods were applied [35]. However, the 

originative problem is that dealing with imbalanced data can 

skew the reality of life. Therefore, identifying diseases with 

such condition is not only the imbalance, but also a big 

challenge. To improve the act of identifying these heart 

diseases, one deep learning framework with kernel size 

calculation is implemented in our article to produce higher 

classification performance. 

From the difficulty and challenge due to the effect of 

noise in ECG signals and imbalanced database among 

different diseases, the selection of an appropriate DNN with 

suitable kernel calculation algorithm in convolutional layers 

is very important. In the DNN structures [12], [18], [36], 

one of the most important tasks is to select kernel sizes in 

convolutional layers and the number of convolutional layers 

for calculating main features. In [20], authors proposed an 

automatic segmentation of heart sound signal in a DNN, in 

which feature engineering tasks were not required. The 

result of this proposed method is to detect heartbeats in a 

fully automatic manner with the accuracy of 79.95 %. 

In our article, the goal is to calculate kernel size in 

convolutional layers of the DNN to solve unbalanced 

datasets and increasing classification accuracy. The main 

contribution of this article is the kernel size calculation 

based on P, Q, R, and S waves of one heartbeat with 300 

sampling points; the suitable selection of dmey wavelet 

function; and applying 7 convolutional layers in the DNN 

for heart disease classification. The objectives of this paper 

can be summarized as follows: 1) promoting the best 

suitable wavelet function and wavelet analysis level for 

eliminating noise in the ECG signals; 2) standardizing the 

length of the heartbeat; 3) proposing one algorithm for 

calculating kernel size in convolutional layers and fully 

connected layers to combine the best feature extraction for 

heart disease classification with higher performance in the 

DNN structure; 4) evaluating classification performance. 

II. METHODOLOGY 

For classification of heart disease with high performance, 

ECG signals should be pre-processed and separated into 

heartbeats for standardizing the suitable lengths for kernel 

size calculation. Therefore, the standardized heartbeat with 

P, Q, R, and S waves is used to build kernels in 

convolutional layers in a Deep Neural Network (DNN). In 

Fig. 1, with the MIT-BIH AD ECG database, the heart 
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disease classification method includes the following steps: 

(a) pre-processing ECG signals using a Wavelet 

Decomposition (WD) algorithm and a Wavelet 

Reconstruction (WR) algorithm with thresholds for 

eliminating BW noise and unwanted high frequencies, (b) 

standardizing reconstructed ECG signals for calculating 

kernel sizes in the convolutional layers, and then developing 

a classifier based on the DNN structure, (c) evaluating the 

classification method using confusion matrix. 

 
Fig. 1.  Block diagram of the proposed heart disease classification method using the DNN structure. 

A. ECG Datasets 

In this article, the MIT-BIH AD ECG database was 

employed in the heart disease classification method [33], in 

which five groups of heart disease in the MIT-BIH AD ECG 

database are mapped into the Association for the 

Advancement of Medical Instrumentation (AAMI) 2012 

standard, including Normal Beat (N), Supraventricular 

Ectopic Beat (S or SVEB), Ventricular Ectopic Beat (V or 

VEB), Fusion of the V and N Beats (F), and Unknown Beat 

Type (Q) as shown in Table I.  

TABLE I. MAPPING THE MIT-BIH AD HEARTBEAT TYPES TO THE 

FIVE MAIN CATEGORIES OF AAMI: 2012 STANDARD. 

AAMI heartbeat types MIT-BIH heartbeat types 

Normal beats 

(N) 

Normal Beat (N) 

Left Bundle Branch Block Beat (L) 

Right Bundle Branch Block Beat (R) 

Atrial Escape Beat (e) 

Nodal (Junctional) Escape Beat (j or NE) 

Supraventricular ectopic 

beats 

(S or SVEB) 

Atrial Premature Beat (A) 

Aberrated Atrial Premature Beat (a) 

Nodal (Junctional) Premature Beat (J) 

Supraventricular Premature Beat (S) 

Ventricular ectopic 

beats 

(V or VEB) 

Premature Ventricular Contraction Beat (V) 

Ventricular Escape Beat (E) 

Fusion beat 

(F) 
Fusion of Ventricular and Normal Beat (F) 

Unknown beats 

(Q) 

Paced Beat (P or /) 

Fusion of Paced and Normal Beat (f) 

Unclassifiable Beat (Q) 

 

These five heart disease groups contain 48 recordings of 

47 different subjects (the numbered recordings 201 and 202 

are one subject). ECG signals in the five groups were 

sampled at 360 Hz and 11-bits resolution. While four 

numbered recordings, including 102, 104, 107, and 217, are 

only paced beats and were removed [7]. Therefore, the ECG 

database used in this classification method has all 44 

recordings as shown in Table II, while Table III describes 

the number of heartbeats in each type of the five heart 

disease groups in the MIT-BIH AD ECG database. 

TABLE II. DESIGN OF ECG DATASET FOR THIS EXPERIMENT. 

Group of 

dataset 
Records from MIT-BIH AD 

ADB 

100, 101, 103, 105, 106, 108, 109, 111, 112, 113, 114, 

115, 116, 117, 118, 119, 121, 122, 123, 124, 200, 201, 

202, 203, 205, 207, 208, 209, 210, 212, 213, 214, 215, 

219, 220, 221, 222, 223, 228, 230; 231, 232, 233, 234 

TABLE III. SUMMARY OF EACH HEARTBEAT TYPE IN DIFFERENT 

DATASET. 

Dataset 
Records from MIT-BIH AD 

N S V F Q Total 

ADB 89925 2774 6999 802 2559 103459 

 

Division of the heartbeat database into training and 

testing data using the DNN for classifying is extremely 

important due to classifier’s relation to accuracy. It is clear 

that the classifier accuracy can be very high when the two 

training and testing heartbeat datasets were obtained from 

the same ECG dataset [37]. To evaluate the performance of 

the heart disease classifier, we divided the ECG dataset into 

training data and testing data by different percentages. In 

particular, we divided the dataset into different ratios started 

from 10 % to 90 % and ended from 90 % to 10 % for 

training and testing as shown in Table IV to evaluate the 

classification performance of the different division 

(Table VIII). 

TABLE IV. HEARTBEAT DATASETS DIVIDED FOR TRAINING AND TESTING 

Dataset division 9 cases with different ratios corresponding to heartbeat datasets from MIT-BIH AD 

Training data 
10346 

(10 %) 

20692 

(20 %) 

31038 

(30 %) 

41384 

(40 %) 

51730 

(50 %) 

62075 

(60 %) 

72421 

(70 %) 

82767 

(80 %) 

93113 

(90 %) 

Testing data 
93113 

(90 %) 

82767 

(80 %) 

72421 

(70 %) 

62075 

(60 %) 

51730 

(50 %) 

41384 

(40 %) 

31038 

(30 %) 

20692 

(20 %) 

10346 

(10 %) 
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B. Pre-Processing ECG Signals 

ECG signals usually include information and noise, and 

then the noise can affect classification of heart disease. 

Therefore, the elimination of the noise in the ECG signals is 

essential for improving classifying performance. In this 

paper, the WD and WR algorithms combined with soft and 

hard thresholds were applied as described in Fig. 2. In 

particular, the WD algorithm is employed to decompose the 

ECG signals into approximation and detail coefficients 

through high-pass and low-pass filters with a down-

sampling by two. It means that the detail coefficients are 

obtained after the ECG signals are passed through the low-

pass filter, and the approximation one is collected using the 

high-pass filter. Therefore, assume that [ ]x n  is the ECG 

signals and m is the level of the wavelet decomposition. 

Moreover, the expressions for calculating the approximation 

dm and detail am coefficients are expressed as follows [28]: 

 [ ] [2 ],m
k

d x n h n k




   (1) 

 [ ] [2 ],m

k

a x n g n k




   (2) 

in which m is the level of the WD algorithm, g[2n - k] and 

h[2n - k] denote the high-pass and low-pass filters, 

respectively. 

 
Fig. 2.  Block diagram of noisy elimination stage using the wavelet decomposition and the reconstruction algorithm with hard and soft thresholds. 

The approximation and detail coefficients are applied for 

eliminating noise in ECG signals based on their frequencies 

and thresholds. In particular, one ECG signal is sampled at 

the 360 Hz frequency using Nyquist’s theorem for 

collecting the maximum frequency of 180 Hz. In addition, 

the frequency of approximation and detail coefficients in 

each decomposition level are described as in [38], [39]. In 

the approximation component with the very low frequency 

am, the decomposition of level-m and a hard threshold λa are 

utilized for eliminating the noise from the approximation ma  

using the following formula 

 
, ,

0, .

m m a
m

m a

a if a
a

if a





 
 



 (3) 

The threshold of the approximation λa is calculated by the 

maximum value of the approximation coefficients in ECG 

signals during the WD as follows 

 max( ).a ma   (4) 

In similarity, the detail coefficients of dm can be used to 

remove the unwanted high frequency components using the 

soft threshold λd. In particular, the detail components md  

are determined using the following sign function 

 
( )( ), ,

0, .

m m d m d
m

m d

sign d d if d
d

if d

 



  
 



 (5) 

The soft threshold λd for removing the unwanted 

components is determined using the following expressions 

[40]: 

 2log( ),d N   (6) 

 1.483 ( ),mmedian d    (7) 

where N is the data point number of the detail coefficients 

and σ represents the estimated noise of the detail 

coefficients using the median function median(dm). 

From the filtered approximation and detail coefficients 

ma  and ,
m

d  the filtered ECG signal [ ]x n  is reconstructed. 

In particular, the approximation coefficients ma  go through 

a high-pass filter and the detail coefficients md  pass 

through a low-pass filter with up-sampling by two. 

Therefore, the ECG signal [ ]x n  is reconstructed using the 

following equation 

 0[ ] .m

j

m j

x n a d

   (8) 

The reconstructed ECG (R-ECG) signal [ ]x n  will be 

segmented to obtain heartbeats for calculating kernel size in 

convolutional layers. In this paper, the Pan-Tompkins 

algorithm is employed to determine the R_peak position of 

the heartbeat, in which heartbeat is segmented based on 

R_peak information. Therefore, the location of R_peak in 

one heartbeat is very important in identifying heart disease 

using a DNN classifier. 

In ECG signal, the length of each heartbeat can be 

different, and this can affect the classification performance. 

Particularly it means that the obtained accuracy can be 

different [17], [22], [30]. According to statistics, one ECG 

signal can have heartbeats with different lengths, in which 

one heartbeat with the largest length can be 1.2 seconds. 

Therefore, if one ECG signal is sampled at 360 Hz, the 
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samples of the heartbeat with the largest length are 

calculated by 360 × 1.2 = 432. It means that the R-ECG 

signal [ ]x n  can be segmented to obtain each heartbeat x[n] 

with the maximum length of 432 samples. 

C. Deep Neural Network Structure 

In this paper, the integration of standardized heartbeats 

into a DNN structure is represented. In particular, 

convolutional layers in the DNN structure are utilized to 

extract features of the standardized heartbeats, in which 

optimal kernel sizes in convolutional layers are designed to 

extract features. Moreover, for classifying different types of 

heart disease, Multilayer Perceptron (MLP) with fully 

connected layer is added to the DNN structure (see Fig. 3), 

in which input neurons in the input layer correspond to the 

sample number of one heartbeat x[n], the size of the output 

layer corresponds to the number of heart diseases. In hidden 

layers, the size of kernels and nodes in each hidden layer 

needs to be adjusted for obtaining the best classification 

performance. Furthermore, with the proposed kernel size 

calculation in this paper, seven convolutional layers were 

chosen to extract all important features in the P, Q, R, and S 

waves of the heartbeat signal, in which three first 

convolutional layers will be employed for extracting 

features in the QRS complex and the remaining 

convolutional layers will be used to extract features in 

individual P, Q, R, and S waves. 

 
Fig. 3.  DNN structure with layers designed for heart disease classification. 

In addition, the DNN structure uses a Back-Propagation 

(BP) method for optimizing weights and biases. Thus, the 

relationships of the CNN and MLP are considered to be able 

to increase classification performance. Assume that the 

CNN layer l - 1, CNN layer l, and MLP layer m are 

connected (see Fig. 4), in which the intermediate value al
k of 

the kth neuron in the CNN layer l and the output sl
k of the kth 

neuron in the CNN layer l are determined as follows [41]: 

 
1

1 1

1

( 1 ( , ) ),
lN

l l l l
k ki i k

i

a f Dconv w s b


 



   (9) 

 1 ( ),l l
k ks Ddows a  (10) 

where 1l
is
  is the output value of the neuron i in the CNN 

layer l - 1 (at the CNN layer 1, the 1l
is
  is x[n]) and bl

k is the 

bias value of the neuron k in the CNN layer l. In addition, 

1l
kiw   denotes the 1D weight kernel value between the 

neuron k at the CNN layer l and the neuron i at the CNN 

layer l - 1. Therefore, 1Dconv describes for 1D 

convolutional computation and 1Ddows presents for the 

down-sampling computation, and f(•) describes the 

activation function. In this paper, 1Ddows is implemented 

using a max-pooling function, and a Rectified Linear Unit 

(Relu) is applied for the activation function. Therefore, the 

output expression of the jth neuron sm
j in the MLP layer m is 

presented as follows 

 
1

( ).
lN

m l l m
j jk k j

i

s f w s b


   (11) 

where bm
j is the bias value of the neuron j, wl

jk denotes the 

weight value between the neuron k in the CNN layer l and 

the neuron j in the MLP layer m. Moreover, the hidden 

layers and the output layer in the MLP use tansig and 

softmax functions, respectively. It means that the activation 

function of the fully connected layers is tansig and the 

activation function of the output layer is softmax.  

 
Fig. 4.  The DNN structure with the connection between the CNN layers 

and MLP layers. 

Assume that l = 1 is the input layer and l = L is the output 

layer of the DNN structure. For the input data vector x[n], 

1[ , ..., ]
L

L L
N

y y  is the corresponding output data vector and 
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1[ , ..., ]
LNt t  denotes the target class vector. The cost 

function E for the minimum training goal is to adjust the 

kernel weights and biases, in which the Mean Squared Error 

(MSE) in the output layer of the DNN is described as 

follows 

 
2

1
1

1
( , ..., ) ( ) ,

2

L

L

N
L L L

i iN
i

E E y y y t


    (12) 

in which N is the total number of neurons in the output layer 

corresponding to the number of heart disease.  

Moreover, the weights wl
ki and biases bl

ki in the DNN 

structure are updated based on the derivative of the cost 

function and the previous weights with the learning rate η 

and the momentum α as follows: 

 ( 1) ( ) ( ( ) ( 1)),
( )

l l l l
ki ki ki kil

ki

E
w t w t w t w t

w t
 


     


(13) 

 ( 1) ( ) ( ( ) ( 1)),
( )

l l l l
ki ki ki kil

ki

E
b t b t b t b t

b t
 


     


 (14) 

where wl
ki(t + 1) and bl

ki(t + 1) are the weights and biases of 

the DNN structure at the iteration of t + 1, respectively. 

wl
ki(t) is the weights at the iteration of t and bl

ki(t) is the 

weights at the iteration of t of the DNN structure. While 

wl
ki(t - 1) and bl

ki(t - 1) are the weights and biases of the 

DNN structure at the iteration of t - 1, respectively. In 

addition, the momentum α is added in order for the network 

to pass the local minimum value and get the global 

minimum one. 

D. Calculation of Kernel Size 

Calculation of the kernel size is an important task in a 

deep learning framework with convolutional layers in this 

research. In the DNN structure, the algorithm of the optimal 

kernel sizes in convolutional layers is proposed to calculate 

based on P, Q, R, and S waves to produce features. In this 

research, ECG signals are periodic and its characteristic is 

usually determined based on the shape of the heartbeat 

signal, such as QRS complex and P_wave as shown in Fig. 

5. Therefore, a kernel size is determined based on the 

duration of QRS complex, P_wave, and T_wave of one 

standardized heartbeat, in which their durations in the time 

domain are described in detail (see Table V) [42]. 

 
Fig. 5.  Heartbeat with QRS complex and waves of P and T for calculation 

of kernel size. 

In this article, the heartbeat x[n] is segmented from one 

R-ECG signal [ ],x n  and then the convolutional kernel size 

is calculated relative to the duration of P, Q, R, and S waves 

of the heartbeat x[n] as is shown in Table V using the 

following equation 

 ,kL D F   (15) 

in which Lk is the kernel size, with k = 1, 2, …, 8, F denotes 

the sampled frequency of ECG signals. D describes the 

duration of P, Q, R, and S waves and can be chosen for 

calculating the kernel size dependent on the order of 

convolutional layers in the DNN. Therefore, the size of the 

convolutional kernel is proposed to be calculated as follows: 

 Layer-1: Dmax of QRS duration, then L1 = DmaxxF; 

 Layer-2: Daver of QRS duration, then L2 = DaverxF; 

 Layer-3: Dmin of QRS duration, then L3 = DminxF; 

 Layer-4: Dp of P_wave duration, then L4 = (DpxF)/2; 

 Layer-5: DR of R_wave duration, then L5 = DRxF; 

 Layer-6: DS of S_wave duration, then L6 = DSxF; 

 Layer-7: DQ of Q_wave duration, then L7 = DQxF. 

TABLE V. DURATION OF P, Q, R, S, AND T WAVES IN THE 

HEARTBEAT. 

Feature Explication Duration  

P_wave Interval of P wave  95 ± 15 ms 

QRS_complex 
Interval of QRS complex from Q 

wave to S wave 
80 ± 20 ms 

R_wave Interval of R wave 35 ± 10 ms 

S_wave Interval of S wave  25 ± 4 ms 

Q_wave Interval of Q wave  20 ± 4 ms 

E. Evaluation of Classification System 

In this research, with the DNN structure applied for 

classifying heart disease, the performance of the classifier 

needs to be evaluated. Therefore, a confusion matrix with 

multi-class is utilized in the classifier, in which the 

confusion matrix is a square matrix with the number of 

dimension C coressponding to the output nodes in the 

output layer. In particular, the parameters of the overall 

accuracy (ACC), the overall sensitivity (SEN), and the 

overall positive predictive value (PPV) are calculated in the 

confusion matrix [32] as described in Table VI. 

TABLE VI. THE CONFUSION MATRIX WITH MULTICLASS. 
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In the confusion matrix, for the ith class, nT
ii is the amount 

of the correctly classified samples and nT
ij is the number of 

samples of class i classified as class j(i  j). In addition, Pi 

denotes the number of samples; Ni describes the total 

number of samples, and NT is the total number of samples in 

the testing dataset, in which the expression of Ni, Pi, and NT 

are depicted as follows: 
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Then the ACC, SEN, and PPV are defined as follows: 
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With the mentioned parameters above, a classifier with 

the high parameter values ACC, SEN, and PPV means that 

this classification system will produce high performance. 

III. RESULTS 

From the deep learning framework for heart disease 

classification, experimental results related to pre-processing, 

classifying, and evaluating were represented. In particular, 

the pre-processing results of ECG signals using the wavelet 

transform to eliminate noise, and then the length of each 

heartbeat with the R peak of the QRS complex of the 

filtered ECG signals were standardized. After pre-

processing the heartbeats, heart disease data were separated 

into two datasets with different percentage for training and 

testing in the classifier. In this research, the DNN structure 

was adjusted the convolutional layers with the calculated 

kernel sizes for the evaluation of the classification 

performance using confusion matrix. 

A. Noise Elimination and Standardization of Heartbeat 

Length 

The results of ECG signal decomposition and the noise 

elimination by applying the hard and soft thresholds are 

shown in Fig. 6. In particular, the hard threshold was 

applied for the approximation a8 to eliminate the BW noise 

and the soft threshold was utilized to reduce the high and 

unwanted frequency in the detail components of d1, d2, and 

d3. 

Fig. 6(a) shows the waveform of the approximation and 

detail coefficients by applying the WD algorithm at level 

eight with the dmey wavelet.  

 
(a) 

 
(b) 

Fig. 6.  Representation of the approximation and detail coefficients: (a) the 

coefficients obtained from an original ECG signal using the WD; (b) the 

coefficients obtained using the soft and hard thresholds. 

In particular, the approximation coefficient a8 with the 

lowest frequency is considered as the BW noise and it is 

completely eliminated by the hard threshold. The detail 

components d1, d2, and d3 with the highest frequency were 

nearly filtered by the soft threshold as in Fig. 6(b). 

The original ECG signal (blue) of one patient with the 

222 code was collected from the MIT-BIH AD, and the 

reconstructed ECG signal (red) after being recovered from 

the filtered approximation and detail coefficients are shown 

in Fig. 7. It is clear that the red ECG signal was processed to 

produce the smoother signal between heartbeats, and this 

may result in the better classification performance. 

 
Fig. 7.  Representation of the original ECG signals (blue) and the filtered 

ECG signals (red). 

Heartbeats in one filtered ECG signal need to be 

determined by the R_peak position of the QRS complex 

using the Pan-Tompkins algorithm [43] for calculating 

kernel sizes as depicted in Fig. 8. In particular, the ECG 

signal with the blue line was filtered using the wavelet 

transform, and the red circle describes the detected R_peak 

position in one heartbeat. The filtered ECG signal was 

separated into heartbeats based on the R-positions. 

Therefore, the length of the heartbeat (red) was standardized 

to be 300 samples, including 150 samples in front of the 

R_peak, 149 samples behind the R_peak, and 1 sample of 

the R_peak. In addition, intervals of Pre_R and Pos_R can 

be different depending on each ECG signal. In two red 

heartbeats, although the R_peak of the second heartbeat is 

higher than that of the first one, these heartbeats still do not 
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affect the classification performance. 
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Fig. 8.  Description of heartbeats in one filtered ECG signal. 

B. Noise Elimination and Standardization of Heartbeat 

Length 

Each R-ECG signal (in Table II) was segmented into 

heartbeats, and then all heartbeats of R-ECG signals in the 

ADB dataset were divided into two groups for training and 

testing as shown in Table IV. In this paper, the DNN 

structure with seven convolutional layers (in Fig. 3) was 

applied, in which seven kernel sizes were calculated based 

on P, Q, R, S, and T waves as follows: 

 Layer-1: L1 = Dmax × F = 100 × 360 × 10-3 = 36; 

 Layer-2: L2 = Daver × F = 80 × 360 × 10-3 = 28; 

 Layer-3: L3 = Dmin × F = 60 × 360 × 10-3 = 22; 

 Layer-4: L4 = (DP × F)/2 = (95 × 360 ×10-3)/2 = 17; 

 Layer-5: L5 = (DR × F) = 35 × 360 × 10-3 = 10; 

 Layer-6: L6 = (DS × F) = 22 × 360 × 10-3 = 8; 

 Layer-7: L7 = (DQ × F) = 22 × 360 × 10-3 = 6. 

In this DNN, we just propose seven convolutional layers 

due to only seven kernel sizes calculated based on waves of 

one heartbeat from Layer-1 to Layer-7 containing almost of 

features of heart disease. Moreover, from the 8th layer to the 

9th one, the kernel sizes are very small and actually they do 

not affect the classification performance. In addition to 

calculation of kernel sizes in convolutional layers, the 

activation functions of the convolutional layers and fully 

connected layers in the DNN are Relu function and tansig 

function, respectively. In the output layer of the DNN 

model, the softmax function is employed to classify five 

types of heart disease. Moreover, the number of kernels in 

the seven convolutional layers are 32, 64, 32, 16, 16, 16, 

and 16, respectively, in which the size of max-pooling 

window used in the first stage is 4 samples, and in the 

remaining ones - 2 samples. Detail training parameters are 

described in Table VII. 

TABLE VII. TRAINING PARAMETERS IN CLASSIFIER. 

Parameter Value Parameter Value 

Initial Learn Rate 0.05 Optimizer SGDM 

Momentum 0.8 Max Epochs 150 

Hidden layer active 

function 
Tansig 

Output active 

function 
Softmax 

 

From Table VIII, the classification performance of the 

DNN in the proposed deep learning framework achieved 

results with the high percentage. In particular, about 50 % of 

data was used for training in the DNN, the accuracy of 

classifying five types of heart disease is more than 99 %, 

and this is the very high classification performance. With 

90 % of dataset for training, the accuracy of PPV, SEN, and 

ACC are 98.14 %, 98.18 % and 99.37 %, respectively. 

Filtered noise and undesired frequencies in ECG signals 

using one suitable wavelet function in wavelet transform 

can increasingly create higher classification performance. 

Therefore, in this paper, six wavelet functions, including 

dmey, bior5.5, db4, sym1, bior1.3, and db1 were applied to 

determine the most suitable functions. Simulation results 

related to the classification performance based on three 

parameters (PPV, SEN, and ACC) are shown in Table IX. In 

particular, the first three wavelet functions dmey, bior5.5, 

and db4, called “Group-1”, basically have the same 

waveform shapes with that of a heartbeat, while the 

remaining waveforms (sym1, bior1.3, and db1), called 

“Group-2”, are different from that of the heartbeat. Based 

on the three parameters, the first three wavelet functions 

produce better classification performance. 

TABLE VIII. REPRESENTATION OF THREE PARAMETERS RELATED TO TRAINING AND TESTING DATASETS FOR THE CLASSIFICATION 

PERFORMANCE. 

Training 10 20 30 40 50 60 70 80 90 

Testing 90 80 70 60 50 40 30 20 10 

PPV 92.74 94.36 95.38 95.64 95.92 96.40 96.88 97.80 98.14 

SEN 92.84 94.6 95.06 96.40 96.64 96.94 97.22 97.89 98.28 

ACC 98.00 98.52 98.73 98.83 99.01 99.09 99.10 99.16 99.37 

TABLE IX. COMPARISON OF THREE PARAMETERS FOR 

EVALUATION OF THE CLASSIFICATION PERFORMANCE USING 

DIFFERENT WAVELET FUNCTIONS. 

Wavelet function PPV (%) SEN (%) ACC (%) 

dmey 98.14 98.28 99.37 

bior5.5 98.06 98.08 99.25 

db4 98.12 98.17 99.31 

sym1 97.96 97.99 98.97 

bior1.3 98.02 98.04 99.12 

db1 98.04 98.04 99.09 

C. Classification Performance with Different Heartbeat 

Lengths 

The length of a heartbeat related to the classification 

performance should be considered due to features contained 

in P, Q, R, and S waves. In particular, Table X presents the 

statistics of the heart disease classification performance 

corresponding to different heartbeat lengths from previous 

research. In these studies, the classification accuracy of the 

heartbeat length with 300 ms is very high [11]. However, 
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the high accuracy depends not only on the length, but also 

on the quality of datasets, pre-processing methods, types of 

classification system, and others. In our article, the most 

suitable length of one heartbeat was segmented to be 300 

samples, and it produces the best classification performance. 

TABLE X. STATISTICS OF THE CLASSIFICATION ACCURACY 

USING DIFFERENT HEARTBEAT LENGTHS WITH R-PEAKS. 

Ref. 

Heartbeat 

length 

(sample) 

Pre-

position of 

R peak 

(Pre_R) 

Pos-

position of 

R peak 

(Pos_R)  

Accuracy 

(%) 

[17] 200 100 100 99.28 

[22] 300 130 170 96.60 

[11] 300 ms 150 ms 150 ms 99.21 

[44] 200 100 100 98.52 

[45] 143 71 R and 71  94.64 

[46] 235 90 144 99.01 

[47] 170 70 100 98.43 

[48] 260 99 R and 160 98.10 

 

In order to find the suitable length of a heartbeat, this 

article performed six different lengths on heartbeats. The 

kernel sizes were calculated based on the six different 

lengths and used in the same DNN for evaluating 

classification accuracy as shown in Table XI. In this 

experiment, with the evaluation based on the parameters 

(PPV, SEN, and ACC), the minimum length with 143 

samples has the lowest classification accuracy, and the 

maximum one with 432 samples produces the highest 

performance. Therefore, the heartbeat length with 300 

samples selected is optimal for calculating kernel sizes in 

the DNN to produce the highest classification accuracy. 

TABLE XI. COMPARISON OF THREE PARAMETERS FOR 

EVALUATION OF THE CLASSIFICATION PERFORMANCE USING 

DIFFERENT HEARTBEAT LENGTHS. 

Length of one 

heartbeat  
PPV (%) SEN (%) ACC (%) 

143 97.75 97.79 98.53 

170 97.94 97.89 98.88 

200 97.99 98.04 98.97 

235 98.02 98.07 99.02 

300 98.14 98.28 99.37 

432 98.01 98.03 98.99 

D. Classification Performance with Different 

Convolutional Layers 

In addition to applying the dmey wavelet and the 

heartbeat length for optimizing kernel sizes, convolutional 

layers in the DNN were built based on the kernel sizes in the 

relation with heartbeat features. Therefore, the number of 

the convolutional layers chosen in the DNN may affect the 

classification performance. In this paper, we have performed 

experiments with the number of different convolutional 

layers (from one to nine layers) for evaluating the 

classification performance as shown in Fig. 9. The result 

shows that the nine convolutional layers were just chosen 

without the higher convolutional layers due to reduced 

classification performance. 

In the experiments related to the change of the 

convolutional layers, Fig. 9 shows the different 

classification performance based on PPV, SEN, and ACC in 

the DNN. In particular, the classification performance just 

increases from one layer to seven layers, while the use of 

eight or nine convolutional layers produces the lower 

classification performance evaluated through the evaluation 

parameters (PPV, SEN, and ACC).  

 
Fig. 9.  Representation of the PPV, SEN, and ACC values for evaluating the classification performance related to applying different convolutional layers 

using seven kernel sizes proposed in Section B. 

In this research, the DNN structure with the seven 

convolutional layers was also chosen to apply for 

classifying heart diseases due to seven proposed kernel sizes 

based on the standardized heartbeat with 300 sampling 

points. In addition, each convolutional layer was combined 

with the Relu layer and the Max-pooling layer for feature 

extraction during training and classifying. With the obtained 

experimental results, the DNN structure with the seven 

convolutional layers in the deep learning framework 

produced the high classification performance. This 

illustrates the effectiveness of processing ECG signals, 

standardizing heartbeat, optimizing kernel sizes, and the 

chosen DNN structure. 

IV. DISCUSSION 

From the results achieved in this research, it can be seen 

that the DNN framework with convolutional layers for heart 

disease classification is highly effective. In particular, the 

dmey wavelet function with the heartbeat shape was chosen 

to filter the ECG signals before segmenting to produce 

heartbeats. The heartbeat length was standardized to be 300 

samples for calculating seven different kernel sizes applied 

to seven convolutional layers in the DNN. It means that 

heart disease features calculated in the seven convolutional 
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layers went through the dropout layer to eliminate 

unnecessary elements before reaching the fatten layer for 

converting 2D data to 1D. 

With the proposed deep learning framework for 

classifying five types of heart disease, the high classification 

performance is very important. Ji, Zhang, and Xiao [11] 

used a combination of the MIT-BIH database and ECG data, 

and an empirical mode decomposition method for pre-

processing the ECG signals was proposed to obtain smooth 

ECG signals. In addition, the authors proposed a Faster R-

CNN structure for classifying five heart diseases, and the 

high accuracy was 99.21 %. In addition, Oh, Ng, Tan, and 

Acharya [48] proposed a CNN - Long Short-Term Memory 

(CNN-LSTM) model for extracting features of heart disease 

from the MIT-BIH ECG database. In this research, one 

heartbeat in ECG signals were segmented to produce the 

length of 260 samples, and then they were standardized 

using a z-score method before applying the input data of the 

classification model. In this classification model, heart 

disease features extracted using the CNN-LSTM model 

were applied in a MLP with fully connected layers, and the 

result was 98.10 %. 

In addition, Xia, Wulan, Wang, and Zhang [36] proposed 

the combination of the Stationary Wavelet Transform 

(SWT) and the DCNN in a classifier for classifying heart 

diseases. In particular, an elliptical band-pass filter with the 

10th order and the passband of 0.5 Hz–50 Hz were utilized 

to remove BW power-PLI and muscle noise to obtain the 

filtered ECG signals. Therefore, this signal was decomposed 

by using a SWT algorithm at level-6 to achieve six 

components of each detail and approximation. All these 

components were used as a 2D data input of the DCNN, 

including two convolutional layers, two max-pooling layers, 

two Relu layers, one dropout layer, two fully-connected 

layers, and one softmax layer. The MIT-BIH Atrial 

Fibrillation (AF) and non-AF used to test the model 

produced the classification performance with the accuracy 

of 98.63 %. 

In our study, we proposed how to calculate kernel sizes in 

the convolution layers of the DNN to be able to retain the 

most features in heartbeats. Furthermore, we selected the 

dmey wavelet function, which has a heartbeat-like shape for 

the best filtering efficiency compared with other wavelet 

functions as shown in Table IX. From determining the 

kernel sizes, we performed the determination of the number 

of convolutional layers corresponding to the kernel sizes. 

Thus, the result of statistics in Fig. 9 produced the selection 

of seven convolutional layers with the best classification 

accuracy in the DNN classifier. 

In the previous studies [11], [28], the authors used the 

daubechies wavelet function for filtering ECG signals. In 

our study, the dmey wavelet function was chosen because 

its shape is close to that of a heartbeat. Furthermore, the use 

of kernel sizes in different CNNs is described in Table XII, 

in which, in [11], [36], [48], the common point is that these 

studies applied different kernel sizes according to the choice 

to be suitable to the typical classification system. In our 

study, the kernel sizes were determined based on the 300 

sampling length of a heartbeat. From this calculation, the 

number of the most suitable convolutional layers is seven in 

the DNN, and the result is that the high classification 

accuracy in our classification system for five types of heart 

disease is 99.37 %. 

TABLE XII. COMPARISON OF CLASSIFICATION ACCURACY OF 

DIFFERENT METHODS. 

Ref., 

Year 

Feature 

extraction and 

classification 

Kernel method 
Wavelet 

function 

Accuracy 

(%) 

[28], 

2019 
DWT + S-AEs NA 

daubechies 

(db2) 
96.82 

[48], 

2018 
CNN-LSTM 

Individual setup 

[20×1, 10×1, 

5×1] 

NA 98.10 

[36], 

2018 

SWT and 

DCNN 

Individual setup 

[5×5] 

daubechies 

(db5) 
98.63 

[11], 

2019 
Faster R-CNN 

Individual setup 

[3×3] 
NA 99.21 

Proposed 

method,  

2020 

DNN with 

CNN layers 

7 kernels 

calculated using 

Eq. (15) 

dmey  99.37 

V. CONCLUSIONS 

In this paper, the proposed kernel size calculation was 

applied to calculate convolutional layers in the deep 

learning framework for increasing performance in 

classifying five types of heart disease. In addition, the dmey 

wavelet was chosen to be able to extract features of almost 

each heartbeat standardized to be 300 samples. The results 

have shown that the classifier using the proposed kernel 

sizes has the high accuracy in the DNN structure with seven 

convolutional layers and three fully connected ones. In 

particular, the classification effectiveness of five types of 

heart disease in the DNN is very high, with the accuracy of 

99.37 %, the sensitivity of 98.28 %, and the positive 

predictive value of 98.14 %. This means that the proposed 

kernel size algorithm for calculating convolutional layers 

can be applied for developing other classifications. 
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