
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 27, NO. 1, 2021 

 
1Abstract—This paper presents a multiband rectangular 

microstrip antenna using spiral-shaped configurations. The 

antenna has been designed by combining two configurations of 

microstrip and spiral with consideration of careful selection of 

the substrate material, the dimension of the rectangular 

microstrip, the distance between the turned spiral, and the 

number of turns of the spiral. The efficiency and accuracy have 

been improved using machine learning algorithms as well. 

Machine learning has been studied to model the proposed 

antenna based on the performance requirements, which 

requires a sufficient training data to improve the accuracy. 

Three different machine learning models are applied to 

improve the accuracy and generalization performance and 

compared to simulation and measurement results. Simulation, 

measurement, and machine learning results confirm that the 

proposed antenna is a new electrically small and operating 

over a wide range of high-frequency bands between 1 GHz–

4 GHz. Machine learning models have the best prediction 

ability with a mean square error (MSE) of 0.03, and 0.05. The 

antenna structure and size are compatible and suitable for 

several multi-band wireless mobile systems operating in L-

band and S-band. The results, such as directivity, Half-Power 

Beamwidth, Voltage Standing Wave Ratio (VSWR), and S-

parameter curves, are analysed and compared with the 

numerical formulation for both spiral and microstrip antennas. 

 
 Index Terms—Rectangular microstrip; Spiral; Machine 

learning; Error; Accuracy; Directivity. 

I. INTRODUCTION 

In recent years, the need for antennas have widely 

increased. It can certainly be considered as the main leading 

power behind the progressions being achieved in the field of 

modern communication and wireless technologies. 

Therefore, the interest in its development, production, and 

optimization appeared through various simulation 

techniques. The methodology discussed in this paper can be 

categorized into three categories: designing the proposed 

antenna by combining two types of antennas, fabrication, 

and modeling by artificial intelligence [1].  

Because of the attractive similarity between the properties 

of microstrip patch and spiral antennas, they have been 

greatly applied in wireless communications, biological 

medicine, radar and electronic counter measurements [2], 
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[3]. They are more useable among other antennas and have 

attractive configurations for researchers and users due to 

their lightweight, low profile, cost, implementation, and 

ease for combining qualitative to obtain new configuration 

and performance [4]. Therefore, these antennas can be 

easily manufactured in large quantities. Many shapes and 

types of antennas based on different design processes and 

reconfiguration techniques have been researched. It has 

been noticed that microstrip and spiral antennas have simple 

and same condition of the configuration, consisting of a  

very thin radiating element ot   (where o  is the free-

space wavelength and t is the thickness) on a side of a 

substrate material (usually in the range of 2.2 10,r   

where r  is permittivity constant), while the ground plane 

is on the other side [5]. Selection suitable substrate material 

and configuration seem to offer possibilities for reducing the 

size and keeping the performance of an antenna. The 

radiating elements are usually photo-etched on the dielectric 

substrate, while the feed lines are laid on or passed through 

the dielectric. Both the permittivity and the thickness of the 

substrate material influence the performance. Typically, the 

form of radiating element of microstrip antennas may be 

circular, square, rectangular, thin patch, elliptical, triangular, 

and/or any different configuration [4], [5]. In the spiral 

antennas, it may be single, double or more windings 

directed right or left with different configurations, which are 

logarithmic, planar circular, rectangular, self-

complementary, and Archimedean spirals [6]. In addition, 

both of the two types of the proposed may be electrically 

small and an element of a set of an array [7]–[9]. Generally, 

the number of antennas in an array can be as small as two or 

larger (several hundreds).  

The spiral antennas are referred to as frequency 

independent antennas. Antenna polarization is an important 

condition when researching and designing antennas [10]. 

Polarization is one of the fundamental characteristics of the 

antenna and in demand for many applications. Microstrip 

and spiral antennas are circularly polarized [5]. Circular 

polarization can be either right-handed circular polarization 

(RHCP) or left-handed circular polarization (LHCP), 

depending on the direction of the rotation of the field 

propagation versus time [11]. The input impedance (Zin) is 
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based on the type (strip or coaxial elements), dimension 

(thickness of the substrate and dielectric constant), and 

configuration (shape and physical elements) of the feeding 

system of the antenna. Microstrip and spiral antennas can be 

generally designed to transform Zin to 50 and 188 Ohms, 

respectively [5].  

As proven above, the similarity of characteristics of 

microstrip and spiral antennas makes them attractive and 

possible to combine and present as a novel configuration 

[4]. 

As is well known, the modeling of an antenna is 

permanently achieved in 3D electromagnetic simulation 

environment, such as Applied Wave Research (AWR), High 

Frequency Structure Simulator (HFSS), Advanced Design 

System (ADS), Computer Simulation Technology (CST), 

etc., while each of them has a different computational 

method. Beside 3D electromagnetic simulation 

environment, the machine learning (ML) has been identified 

as competitive intelligence technique for antenna modeling 

and optimizing [1], and it can be widely utilized in several 

disciplines, such as engineering, education, science, 

meteorology, medicine, human resources recruiters, banking 

and economics. Various ML algorithms have been 

introduced to model characteristics of antennas, such as 

gain, directivity, and S-parameters ( 11 22, , .S S etc ) [1]. They 

are mathematical processes performing random calculation 

during learning process and have the capability of learning 

and generalization to improve the antenna modeling and 

synthesis efficiency. Therefore, using ML models for 

antenna modeling can improve the efficiency and accuracy 

of the antenna. ML models are trained to realize the 

mapping between the input and output vectors to obtain the 

prediction/result as a data set. The training process finds out 

parameters that predict the best model for presented data. 

Several ML methods have been applied for antenna 

modeling and synthesis, such as Gaussian process [12], 

support vector machine [13], artificial neural networks 

(ANNs) [14], [15], and space mapping [16]. In [17], the 

performance of selection operator (lasso), ANNs, and k-

nearest neighbour (kNN) ML is investigated for designing 

and optimizing of double T-shaped monopole Antenna. In 

[18], multistage collaborative ML (MS-CoML) methods, 

such as single-output Gaussian process regression (SOGPR) 

and symmetric multi-output Gaussian process regression 

(MOGPR) methods are introduced to collaboratively 

construct extremely accurate multi-task surrogate 

solutions/models for different antennas. They are single 

band microstrip antenna, substrate integrated waveguide 

(SIW) cavity-backed slot antenna (CBSA), and tri-band 

patch antenna. Therefore, for antenna modeling, ML 

algorithm can be classified as a constructor of a surrogate 

model/solution and as an optimization method [1]. 

In this study, three ML regressions have been used, which 

are decision tree regression (DTR), decision forest 

regression (DFR), and artificial neural networks (ANNs) 

[19]. These regression algorithms are popular in several 

applications. They save simulation time, train fast, and 

perform successfully, as well as are considered as a 

powerful tool to the overfitting problem.  

The main contribution of this work is developing a novel 

configuration to obtain an electrically small lateral size 

antenna, multiple operating frequencies to fulfil the 

coverage of 1 GHz–4 GHz and return losses with the 

directivity (D) of 7 dBi, a Half Power Beam Width (HPBW) 

lower than 90 °, and good propagation characteristics while 

maintaining matching of VSWR ≤ 2. ML algorithms are 

applied to predict new models, as well as to calculate 

various metrics used for measuring the model’s 

performance, such as the mean squared error (MSE), root of 

mean squared error (RMSE), relative absolute error (RAE), 

and relative squared error (RSE). Finally, the accuracy and 

generalization for predicted, simulated, and measured 

models are compared, as well as differences and agreements 

between the obtained models have been cleared up. 

II. ANTENNA DESIGN STAGES PERMISSIONS 

To achieve the objective previously mentioned, several 

configuration steps have been experimentally realized and 

numerically evaluated [4]. The proposed antenna consists of 

three parts: radiator (microstrip patch: rectangular and 

spiral), substrate, and ground plane. The radiator and the 

ground plane are separated by the substrate. Each part has 

different thickness, while the length and the width of the 

substrate and ground planes have the equal lateral 

dimension [14]. The radiator part consists of a very thin 

metallic strip placed on the substrate. Thickness of the 

radiator is 0.0158 0.0009 ,r ot cm    where r ot   and 

the tangential electric field across a metal is zero ( 0tE  ). 

Copper is the most heavily evaluated and used metal 

because of its electrical characteristics. It has a very high 

conductivity and is recognized as a Perfect Electric 

Conductor (PEC). For practical applications, most metals, 

such as steel, aluminum, gold, and copper can be considered 

as PECs. The microwave substrate is Rogers RT 5880 

(lossy) of dielectric constant r  of 2.2, thickness of the 

height h of 0.1588 0.008 ,ocm   where ,oh   and the 

tangent loss   of 0.0009. The ground plane is necessary in 

the proposed application. It is an electrically conductive 

plane and has different thickness than the conductor. The 

ground plane is a reflector to reflect the electromagnetic 

radiation. The radiation process is due to the fringing field 

between the periphery of the microstrip and the ground 

plane. The feeding system is coaxial located at the center (0, 

0, 0) of the rectangular patch and adjusted for optimal 

matching of 50 Ohms of characteristic impedance. 

Typically, the matching process is performed by controlling 

the inner, outer radius of the feeding system and the length 

of the slot (cylinder). The characteristics of the feeding 

system and the substrate (except the width sW  and length 

sL  of the substrate) will be constant through experimental 

(configuration) steps. Each experimental step leads to 

another with considering the undesirable mutual coupling 

[20]. 

A. Microstrip Patch Antenna 

As is shown in Fig. 1, the length and width of the basic 

rectangular microstrip patch antenna are 0.3 cm and 0.5 cm, 

respectively, without adding any windings of the spiral. 
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Note that the conductor/radiator and the feeding system are 

photo-etched on the thin dielectric substrate. For this 

configuration, both transmission line and cavity models are 

most accurate and can be easily analysed [21], [22]. 

                
                                         (a)                                          (b)                             

Fig. 1.  (a) Rectangular patch antenna & (b) side view. 

For an efficient conductor, (1) is used to calculate the 

resonating frequency for rectangular microstrip antennas as 

shown in Fig. 1 [23]. Rectangular microstrips are preferred 

due to easy calculation, reconfiguration, and modeling. 

 ,
2 1 2

o
r

c
f

W 



 (1) 

where W is the width of the rectangular patch and c is the 

speed of light in free space. The simulation of Fig. 1 leads to 

the result of f0 = 2.5287 GHz and 13.927 GHz, while 

calculating (1) numerically leads to the result of f0 = 

39.5 GHz. There is a huge difference between simulated 

(1 GHz–4 GHz) and calculated results of f0, which direct us 

to other reconfigurations. 

B. Second Configuration 

This case is realized by adding a spiralled rectangular arm 

with a rotation of 360 ° in the direction of counterclockwise 

(CCW) starting from the left edge at distance of (-0.5, 0.25, 

0.0158) and ending at (-1.0, -1.25, 0.0158) (all dimensions 

are in cm) as shown in Fig. 2. The arm is fed by the basic 

rectangular microstrip shown in first case. The width of the 

spiral rectangular arm is 0.25 cm, and the empty area is 

0.5 cm. It is noted that the length Ls and the width Ws of the 

substrate are increased around 271 % and 360 %, 

respectively.  

 
Fig. 2.  Rectangular patch with one added spiralled arm. 

Figure 2 shows new configuration of the combining the 

rectangular microstrip and spiral antennas. Using (1) leads 

to the result of 9.88 GHz, which is approximately close to 

one of the simulated results not shown in Fig. 4. The 

antenna is still operating more efficiently outside the range 

of 1 GHz–4 GHz range. 

C. Third Configuration 

Third case is similar to the previous case by adding 

another spiral rectangular arm, and under the same physical 

conditions. The new configuration and its increased 

dimensions are shown in Fig. 3. 

 
Fig. 3.  Rectangular patch with two added spiralled arms. 

 
Fig. 4.  S11 for 3 simulation configurations. 

Figure 4 shows the positive effect on the performance of 

the antenna when adding new spiral arms gradually as new 

frequency bands (1 GHz–4 GHz) appeared. Consequently, 

the new spiral arm can be easily added, and then the antenna 

is simulated again to demonstrate the potential for obtaining 

new frequency bands as shown in Table I. 

TABLE I. RESULTS OF THE THIRD SIMULATION CASE OF RSMA. 

f0 (GHz) S11 (dB) D (dBi) VSWR 
HPBW 

Ø = 90 ° 

1.2658 -7.887 worse worse worse 

2.1213 -17.11 5.477 1.324 63.1 ° 

2.8927 -25.45 7.026 1.112 44.1 ° 

D. Fourth Configuration 

This final simulation case shows the final configuration 

of the proposed antenna. In other words, the configuration 

form is a rectangular spiral-shaped microstrip antenna 

(RSMA) as shown in Fig. 5. The spiral arm is reduplicated 

as a length of transmission lines of characteristic impedance 

[22]. Each step of the reduplication increases the spiral arm 

by 0.5 cm (0.00095 o ). The empty spaces between spiral 

arms and mid microstrip are not changed and have a width 

of 0.5 cm. While the distance between angular arms is 

increasing constantly, the size of the shape of RSMA also 

increases the width and the length that affected the results 
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positively. The curvature between arms is at π/2 radians 

counterclockwise. The proposed antenna can be defined by 

its height, width, and number of horizontal and vertical 

spiral turns. This will determine the limit of lower and upper 

frequency bands range (see the final simulation and 

measured results in figures of Section III). The geometrical 

parameters of the antenna are optimized using commercial 

CST Microwave Studio based on the finite integration 

technique (FIT). 

 
Fig. 5.  Final model of the rectangular patch with three added spiralled 

arms. 

The reduction of mutual coupling is considered the most 

important process in the case of design both single and 

arrays of rectangular, circular spirals and microstrips [24] 

[25], [26]. Mutual coupling, in the case of voltage/power 

transmitted, is confused by possible mismatches at both 

channels of transmitter and receiver. Therefore, the empty 

distance between arms, widths, and thickness of the 

configuration are carefully experimented and located. The 

wavelength is larger than the total length of the spiral. So, 

the magnitude and the current scattered constantly through 

the surface of the proposed conductors. The current path 

starts distributing from the mid to spiral conductor in a 

clockwise direction. The distribution of the current through 

the conductors makes the radiation [27].  

There are 13 straight segments/sections (total of the 

conductor patches of the spiral) that show the negative and 

positive mutual inductance paths (see Fig. 6). Figure 6 

shows that opposite segments carrying current in the inverse 

direction have negative mutual inductance while having 

positive mutual inductance in the case of the same directions 

[3], [28], [29]. The identity of all segments is assumed for 

the magnitude and the phase of the current. 

Therefore, 13 segments and 3.25-spiral turns can be 

written as a total of all inductances added to (positive - 

negative) mutual inductances and mathematically realized as 

 
4 2

, 4 , 2
1 1 1 1

2 ,
m n m m

i i i j i i j
i j i i

c c M M
 

 
   

  
    

   
     (2) 

where m = 13 is the number of segments, n = 3 is the 

number of whole spiral turns, and M is the total of positive 

and negative mutual inductances. Similarly, the negative 

and positive mutual inductances M 
 can be given by 

    4 1 2 4 .M n n n m n        (3) 

 
Fig. 6.  Positive and negative mutual inductance paths. 

The expression of M 
 is 

       

24

2 4 4 2 4 1 4 / 3 .

M n

n m n m n m n m n

  

           (4) 

For all that M 
 is larger than ,M   so their contribution 

ratio to all inductances (C) values is much less due to the 

much considerable distance.  

Figure 7 implies that the antenna radiates best at 1.6 GHz, 

2.04 GHz, 2.4 GHz, and 2.9 GHz with a bandwidth of 

0.056 GHz, 0.105 GHz, and 0.145 GHz, respectively, at the 

return loss of -10 dB. Besides, VSWR curve in the 

frequency bands is presented in Fig. 8.  

For lowf  and ,highf  an additional numerical calculation 

can be verified. Enveloping two circles on the mid and the 

outer spiral arm with radius of 0.2inR cm  and 

1.9outR cm  as shown in Fig. 5. Note that the small circle 

must touch the upper edges of the middle microstrip with a 

circumference of 1.33 cm, and the large circle must also 

touch the inner edges of the outer arm of the spiral with a 

circumference of 11.99 cm. 

 
Fig. 7.   S11 for the final simulation case. 
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Fig. 8.  VSWR result for the final case. 

For low and high frequencies, the spiral formulas are 

given as: 

 ,
2

low
out

c
f

R
  (5) 

 .
2

high
in

c
f

R
  (6) 

According to (5) and (6), the result of operating 

frequencies is 2.51 GHz and 23.87 GHz for lowf  and 

,highf  respectively.  

Comparing the results shown in Table II to the previous 

results shown in Table I, the performance of the proposed 

antenna has been clearly realized by adding the final spiral 

arm.  

TABLE II. RESULTS OF THE FINAL SIMULATION CASE OF RSMA. 

f0 

(GHz) 

S11 

 (dB) 

D 

(dBi) 
VSWR 

HPBW 

∅ = 0 ° ∅ = 90 ° 

1.618 -11.16 2.75 1.765 48° 52.5 ° 

2.043 -16.65 7.01 1.346 42.9° 43.6 ° 

2.454 -28.37 7.38 1.079 45.1° 39.5 ° 

 

Now, the results proven below characterize the far-field 

radiation pattern in the positive z-direction of the final 

configuration in addition to the directivity over phi ∅ and 

theta θ angle in linear scaling mode (Fig. 9 and Fig. 10). 

The results are shown for successive simulation cases. 

The final simulation case is considered as the optimum, 

which demonstrates the aim of the designed antenna; hence, 

it can be summarized as small size, narrow beam, and low 

frequency. In the third simulation case, some good and 

acceptable results have been obtained as well. However, 

entirely acceptable results that maintain the objective of the 

proposed antenna were obtained in the final case.  

         
                            (a)                                                         (b)                                  

 
(c) 

Fig. 9.  Two-dimensional far-field patterns at ∅ = 0 °: (a) f0 = 1.618 GHz; 

(b) f0 = 2.043 GHz; (c) f0 = 2.454 GHz. 

       
                            (a)                                                           (b)                               

 
(c) 

Fig. 10.  Two-dimensional far-field patterns at ∅ = 90 °: (a) f0 = 1.618 GHz; 

(b) f0 = 2.043 GHz; (c) f0 = 2.454 GHz. 

III. MEASUREMENT 

Figure 11 shows the front section of the fabricated model, 

the metal part is copper (PEC) and spirally curled on the 

substrate. The back section is fully covered 11S  by the 

copper (PEC) which is called ground, drilled in the midpoint 

of radius 0.2 cm as an outer cylinder, but the inner cylinder 

is about 0.0585 cm to allow access of feeding. Middle 

section that has a dielectric constant of 2.2 is called 

substrate with material of Rogers RT 5880.  
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Fig. 11.  Front section of fabricated model of RSMA. 

Figure 12 clearly shows the disagreement between 

simulation and measurement models. Hence, ML 

regressions have been used to obtain an equivalent/surrogate 

model using the simulation model as an input included to 

the training data of the ML (see equations in Section V). 

Figure 13 shows the frequency chart describing the 

change of resonant frequencies while moving from a 

simulation case to the next in addition to the measurement 

case at the end.  

 
Fig. 12.  Comparison of S11 of simulation and measurement models. 

 
Fig. 13.  Chart of operating frequencies for all simulation and measurement cases. 

IV. MACHINE LEARNING REGRESSION ALGORITHMS 

The goal of using ML algorithms in antenna modeling is 

to predict new models’ characteristics using the training 

data generated by the original computational EM model [1], 

[30]. In other words, ML is used to evaluate model’s 

accuracy and generalization [1], [18]. It can be realized by 

learning the interconnection between the input x  and the 

corresponding output y  parameters by fitting a model from 

the data such that 

 ( ),y M x  (7) 

where y  is the output of the antenna model and 

,uy Y   while u is the output variable and cx X   

is an input vector collecting c modeling variables. 

Therefore, the parameters of the models are typically 

computed to reach the minimized prediction error. The 

prediction error is the difference between the original 

(measured) value and the predicted value. Mean squared 

error (MSE) function is used to measure the accuracy while 

the MSE value settles at the minimum 

  
2

1

1
,

n
pred meas

ii
i

MSE y y
n 

   (8) 

where 
pred
iy  is the predicted value, meas

iy  is the measured 

value, and n  is the number of data samples, starting from i  

sample. Equation (9) generally defines a fundamental 

performance metric that can be written as 

 1, , ,
predz z z meas

i n iiy y  (9) 

where z  is numerical index of the regression methods,  

is the process of aggregation of sample distances through 

data,  is the process of determining sample distance, and 

 is the process of normalization. According to Table III, 

performance metrics can be used for ML regressions, which 

are root of mean squared error (RMSE) that measures the 

average of the squares of the error, and then applies the 

square root to the obtained result, relative absolute error 

(RAE) that is the percentage of the result error, and relative 

squared error (RSE) that normalizes the total squared error 

by dividing the total error of the predicted values.  

Three ML regression algorithms are used for the purpose 

of antenna modeling and comparison of results: decision 

tree regression (DTR), decision forest regression (DFR), 

and artificial neural networks (ANNs) [19]. In general, the 

regression algorithm learns the value of the parameters of a 

function for an exceptional model of data. It might predict 
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antenna performance’s height by using a height function or 

predict the probability of performance drop based on test 

data values [31]. Regression algorithms have an advantage 

represented in combining input parameters from various 

characteristics by setting the contribution of each 

characteristic of the data to the regression function. The 

models of the antenna are built and trained using Azure 

machine learning based on global infrastructure that is made 

up of physical and connective network elements. The 

physical element consists of more than 160 Azure 

datacenters interconnected with one of the greatest networks 

on the world. These datacenters provide high availability, 

minimal latency time, scalability, and the latest 

advancements in cloud infrastructure [32], [33]. 

A. Artificial Neural Networks (ANNs) 

ANNs are the most common method to calculate and 

develop nonlinear regression based on a model of biological 

neurons [14]. ANN is the structure of many layers. These 

layers are categorized as follows: input layer, hidden layer, 

and output layer; each layer contains neurons. Neurons are 

interconnected with the corresponding links (weights). They 

basically perform computations, and then transmit 

knowledge from the input to the output. Multilayer ANN 

model is trained and defined as 

 1 ,k k k k
j dj d bj

d

x f W x B  (10) 

where 
k

djW  are weights connecting thd  neuron in the layer 

k  to thj  neuron in the layer 1k ; they were initialized 

randomly. 
k
bjB  represents the bias of thj  neuron in the layer 

,k  and (.)f  term represents the nonlinear activation 

function, such as the sigmoid function.  

B. Decision Tree Regression (DTR) 

Decision tree is regression or classification model built in 

the form of a tree and also known as a predictive model 

[34]. It is a stepwise method, depending on using a 

predefined loss function ,L y F x  to optimize the 

parameter values in the model. In other words, it measures 

the error in each learning stepwise, and then 

minimize/correct it in the following step, which is continued 

to the number of iterations of M [30].  

In general, the decision tree splits a huge amount of 

training data into smaller subset training datasets and 

features containing instances with similar values 

(homogenous), and an associated decision tree is 

incrementally optimized [35]. The result is a tree with two 

kinds of nodes, such as decision and leaf/terminal nodes. In 

addition, from two or more kinds of branches extending 

from a decision node, each represents values for the 

parameters that are tested. Leaf node is considered as a 

decision on the numerical target output. Knowing that 

decision trees can handle and generate a model with two 

kinds of data, which are categorical and numerical data. The 

root node is the topmost decision node in a tree 

corresponding to the bestead model predictor as shown in 

Fig. 14. The size of the tree depends on the size of the input 

and output data 
1

, .
n

i i i
x y  The aim is to achieve an 

estimated approximation of ˆ ( )F x  to a function of ( ),F x  

which reduces the expected value of some values of the loss 

function 

 ,
ˆ ( ) arg min ( , ( )) .F x yF x y F x  (11) 

Most important part of algorithm for building decision 

trees is ID3 [36]. Therefore, ID3 is a realization algorithm 

developed to construct a decision tree for regression by 

replacing Gain with standard deviation reduction (SDR). 

 
Fig. 14.  Perspective of decision tree regression. 

C. Decision Forest Regression (DFR) 

It is an ensemble method that builds multiple decision 

trees and integrates their predicted models together to obtain 

a more accurate and stable model rather than depend on an 

individual tree [37], [38]. Each tree in the forest learns 

randomly from the samples of the training data. Some 

samples are selected to be used multiple times in an 

individual tree and some samples may not absolutely be 

selected as shown in Fig. 15. In other words, it is training 

each tree on different samples. Even though each tree may 

have a variance according to the training data, the forest will 

have minimum variance, but not at the value of increasing 

the bias [39].  

 
Fig. 15.  Perspective of decision forest regression. 

The used resampling method is bagging. In this method, a 

novel training data of 
1

,
n

i i i
x y  are randomly generated 

from the original training data of 
1

, ,
n

i i i
x y  and have the 

same number of samples as in the original training data, 

known as bootstrapping. In bagging, a predefined number 

set to ( )p  of bootstrap samples 
1

,
p

i i i
x y  is generated 

according to [40], which shows that 63.2 %  of the original 
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samples are reserved for a bootstrap sample. Hence, a 

decision tree algorithm is applied on each bootstrap sample 

of 
1

,
p

i i i
x y  in order to generate |p| number of trees for 

the forest regression [41].  

V. TRAINING OF MACHINE LEARNING REGRESSIONS 

The first process in ML model development is the 

generation and collection of datasets for training and testing. 

There are three data sets generated for the proposed antenna, 

namely, simulation, measurement, and test [14], [15]. 

Simulation data are generated by CST Microwave Studio, 

while the measurement data are given from Rhode & 

Schwarz ZVB20 Vector Network Analyzer. Test data are 

obtained outside (extrapolation) of the simulation and 

measurement to independently test the quality (accuracy and 

generalization capability) of the trained model. 
1

,
n

i i i
x y  

could be used for training the ML methods and testing the 

resulting ML models. The number of training data is 

5001n  samples and the test data are 1001m  samples. 

The procedure for obtaining extrapolation test data is by 

calculating the average of first set of 5s  samples 

1 5, ...,s i i  of the training data to determine the first 

sample of the test data, and then this process will uniformly 

continue to last 5 samples 4097 5001, ..., .s i i  In general, 

average m  of each s  set is obtained by 

 min, max,
1

1
... ,

s

i s
i

m x x
s

 (12) 

where min,ix  and max,sx  are the set of first and last values 

of the s  of n  samples in the training data. Each average of 

1 2 3 1001, , , ...,m m m m  determines one sample of the test 

data. Note that 1 1001, ..., , .
n

i i i
m m x y  A sample 

generated is a uniform and independent from the training 

data, where samples between max,sx  and min,ix  are 

independent. 

In training process, samples of the training data are being 

iteratively provided to the model. Then the model exercises 

the current parameter samples and predicts a new prediction. 

Prediction is compared to target, and the difference is shown 

as an error. Then returns to modulate and update itself to 

decrease that error in next prediction states. This means that 

model will update the values of its parameters according to 

the ML regression algorithms based on which they were 

generated as shown in Fig. 16. Models are trained by 

modulating their parameters’ values to realize preferable 

results. Therefore, models are the results of the learned ML 

from training data. The measured model that is used as a 

target for prediction is seen in Fig. 11 and Fig. 12. 

The dimensions and configuration parameters of RSMA 

are variables, hence inputs and outputs {xi, yi} of the 

corresponding RSMA machine learning model are given by: 

 1 2 3 11, , , , ,
T

simx l l l f s  (13) 

 11 ,
T

y S  (14) 

where f  is operating frequency, 1 2, ,l l and 3l  represent the 

width, length of middle microstrip, and height of the 

radiating element, respectively. 11
simS  is the simulation data. 

The subscript T  points out the transpose of the input and 

output vectors or matrices. ,
n

i i i
x y  can be expressed based 

on RSMA modeling problem as shown in (7). According to 

the proposed study, there are one output variable and 

multiple input variables. Note that ML models can 

accommodate and learn from multiple input variables to 

predict multiple output variables.  

 
Fig. 16.  Perspective of machine learning regression work. 

The accuracy of the resulting regression models has been 

first achieved through the methods’ plots as shown in 

Figs. 17–19, and then through measuring errors as shown in 

Table III. It is in line with using multiple predicting 

accuracy measures. 

ANN model is developed using Levenberg-Marquardt 

learning algorithm that combines two minimization 

methods, which are gradient descent and Gauss-Newton, 

with a learning rate of 0.005, number of iterations of 100, 

initial learning weights diameter of 0.1, and 1 hidden layer, 

including number of neurons of 100 (Fig. 17). 

Decision tree regression model is developed using single 

parameter for the trainer mode, number of leaves/tree is 

maximized to 20, number of samples/leaf nodes is 

minimized to 10, learning rate of 0.2 and the total number of 

trees constructed is 100 (Fig. 18).  

Decision forest regression model is developed using 

number of decision trees of 8, maximum depth of the 

decision trees of 32, number of random splits/nodes of 128, 

and maximum number of samples/leaf nodes of 1 (Fig. 19). 

The error obtained by different measures is compared 

using measured ( measy ) and predicted ( predy ) data. A 

measure predy  is realized for comparing errors with .measy  

The main result was that the DTR and DFR algorithms have 

the best measure of error as shown in Table III. 

TABLE III. ACCURACY COMPARISON BETWEEN REGRESSION 

MODELS. 

Regression model MSE RMSE RAE RSE 

ANN 2.021 3.289 1.092 1.150 

DTR 0.038 0.491 0.021 0.025 

DFR 0.055 0.263 0.029 0.077 
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Figure 20 shows the extent of the correlation between the 

measurement and the prediction for regression models. 

While the correlation in the Fig. 20(b) and Fig. 20(c) is a 

positive remarkable, the correlation in the Fig. 20(a) is 

negative and quite small. 

 

 
Fig. 17.  Comparison of S11 of measurement, simulation, and ANN prediction models. 

 
Fig. 18.  Comparison of S11 of measurement, simulation, and DTR prediction models. 

 
Fig. 19.  Comparison of S11 of measurement, simulation, and DFR prediction models. 

 
(a) 

 
(b) 
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(c) 

Fig. 20.  Scatter graphs for a) ANN, b) DTR, and c) DFR. 

VI. COMPARISON AND ANALYSIS RESULTS 

A. Measurement and Simulation 

Figure 4 and Figure 12 show the results of S-parameters 

of the all simulation and measurement stages. Therefore, the 

change between resonating frequencies and bandwidth in 

each case is clearly appeared. There are shifting without 

exact overlapping and generating new operating frequencies 

in every simulation stage, in addition to displaying multiple 

resonant frequencies in the measurement case, which are 

1.4 GHz, 1.8 GHz, 2.27 GHz, 2.73 GHz, 3.26 GHz, and 

3.73 GHz as shown in Fig. 12 and Fig. 13. It depends on 

adding a new spiral arm in each case. 3.4 GHz–3.8 GHz 

band with the bandwidth of 200 MHz is widely recognized 

as a supported band for 5G systems in LTE TDD mode, 

allocating asymmetric distribution of uplink and downlink 

resources in wireless systems. It is clearly shown that the 

number of resonant frequencies can be multiplied by 

increasing the length of the spiral conductors (C), with 

considering the empty space between them. The bandwidth 

is wider in the first, second, third, and fourth simulation 

cases than in the measurement case, but the value of the 

return loss in measurement case is less than in simulation 

cases. Equations (2), (5), and (6) theoretically show 

approximate results agreeing fairly with simulation results 

in some cases, while the results do not agree in most 

simulations (see Table II and the section of first and fourth 

configurations). The far-field patterns show the radiated 

power as a function of the direction of z-axis and vary as a 

function of the angles of ∅ = 0 ° and ∅ = 90 °. Observing 

two-dimensional far-field patterns, the radiation is 

maximum at 0 ° and 90 ° along z-axis and is a minimum 

broadside to the antenna. The angle HPBW is around 45 % 

of the peak power. Remarkably, good patterns can be 

obtained with combining microstrip and spiral conductors.  

B. Measurement and Regression Methods 

As it can be observed from the regression models, the 

proposed DTR and DFR evidently realized accurate models 

when compared to ANN model. Compared to ANN, the 

high performance of DTR and DFR is mainly achieved from 

the systematic, non-parametric, and methodical feature of 

the tree structure that can predict the target variable through 

simple processes learned from measured training data. Thus, 

there is a remarkable agreement between the prediction and 

measurement models with some differences as shown in 

Fig. 18, Fig. 19, Fig. 20(b), and Fig. 20(c), as well as in 

Table III. While ANN model is not highly accurate, it 

hardly remains within measurement boundaries as shown in 

Fig. 17 and Fig. 20(a). For a straightforward comparison, 

Table III includes error metrics for used regression models 

that enhance understanding accuracy and generalization 

capability of the model of RSMA.  

In [17] and [18], a similar comparative study is presented 

using three ML and EM models. As a result, ML techniques 

used in our study, [17], and [18] can additionally be utilized 

to recognize and solve significantly more complex antenna 

problems. Therefore, the results received from the studies 

imply that ML methods can be a parallel solution to EM 

simulation in novel antenna technology. 

The analysis of the previous results may lead the 

researchers to focus on developing and optimizing antennas 

through artificial intelligence methods. 

VII. CONCLUSIONS 

This article gradually discussed how to combine 

rectangular microstrip antennas with spiral antennas. The 

model results are numerical, 3D-EM, machine learning 

simulation, and measurement. In the sequence of simulation 

cases, the combined configuration called “spiral-shaped 

microstrip antenna” (RSMA) has been developed, making 

the goal of the proposed antenna, such as small size, good 

patterns, and less HPBW, to be achieved. The operating 

frequency range covers the range of 1 GHz–4 GHz (L-band 

and S-band). To verify the design of the proposed antenna, 

the model has been fabricated and measured. It can be a 

good choice for small covering with high data rate capacity, 

in addition to be operable and suitable for different wireless 

communication in indoor/outdoor environments (WLAN: 

2.4 GHz–2.48 GHz, WiMAX: 3.4 GHz–3.69 GHz, and 

WiFi: 2.40 GHz–2.48 GHz).  

This research also explores three regression algorithms 

based on machine learning for predicting models of the 

proposed antenna, calculating the accuracy and 

generalization capability. Algorithms, such as decision tree 

regression, decision forest regression, and artificial neural 

network, were used in solving such modeling problem. 

Regression models predicted rightly with some acceptable 
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differences. This work is successfully applied by regression 

algorithms for modeling the proposed antenna. The results 

indicate the reliability of the proposed prediction methods. 

Moreover, both researchers and practitioners may use 

different machine learning methods for modeling antennas. 
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