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Abstract— This paper discusses detection and identification 

of the moving vehicles based on prerecorded acoustic noise 

patterns. Object movement and object type differences would 

lead to the significant vehicle pattern changes. Doppler shift 

estimations of the measured signal spectral components will 

improve the recognition and classification performance. The 

proposed pattern identification methods could be used for the 

robust single sensor system or as a part of complex multi-

sensor and learning solutions. The experimental results 

illustrate measured signal processing stages. 

 
Index Terms— Acoustic signal processing, vehicle detection, 

pattern matching, classification algorithms, Doppler effect.  

I. INTRODUCTION 

Object detection and identification is widely used in 

traffic tracking, safety and monitoring systems. The sound 

of a moving vehicle (included tanks, off-road vehicles) plays 

an important role in vehicle detection and recognition. In 

limited visibility conditions or in multisensory solutions 

acoustic pattern recognition could provide supportive 

information for moving object identification and tracking. In 

some systems detection and identification of civilian and 

military vehicles on the street, based on shape, speed, etc., 

would provide perception support and understanding of 

threats.  

The compact and low-cost hardware real-time solution 

data could be easily integrated in more complex monitoring 

sensor application. This property could be included into 

CARDINAL and IMECC project systems [1], [2]. 

These paper discuses measured acoustic noise patterns of 

moving vehicles considering vehicle speed changes. The 

Doppler shift estimations could be used for prerecorded 

vehicle pattern processing and for more complex learning 

algorithm solutions [3]. Moreover, the moving object 

detection and identification methods are applied to real 

measured acoustic signals.  

II. MEASURED SIGNAL ANALYSIS 

The acoustic pattern of the moving vehicle will include 

engine and tire acoustic signature, vibration, etc. [4].  In 

general, this pattern could be represented as non-stationary 

random signal, where the non-stationary is determined by 

the moving object speed changes, signal level changes and 

frequency component changes due to the Doppler effect. In 
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small time intervals this signal could be considered as 

stationary but non-ergodic. As far as every moving vehicle 

work in similar conditions, it will generate a specific 

spectral pattern or acoustic noise signature we could apply 

the FT (Fourier Transform) spectral processing methods for 

moving object detection. The short time measured noise 

patterns help military or a surveillance system to detect a 

vehicle and recognize its class. 

Fig. 1 illustrates moving car frequency component 

changes in time. 

 

Fig. 1. Audio signal and spectrogram of the six sequentially moving 

vehicles. 

The main energy of the car noise pattern will be in range 

up to 5 kHz. In practice, the other moving vehicle spectral 

components will be in the same range and 90% in the 

frequency range lower than 4 kHz [5]. 

The real audio measurements would have some unwanted 

effects that should be eliminated or minimized by the 

processing algorithm: background noise, vehicle speed not 

constant (acceleration and deceleration), unknown direction 

of the vehicle, reflections, hardware and sensor differences. 

If the application uses fixed location microphone sensor 

vehicle speed and direction changes would result in the 

Doppler effect. For instance, the 100 km/h vehicle speed 

would give approximately up to  8 % frequency 

component shift (here speed of sound ~340 m/s). However, 

the measured acoustic noise patterns of the specific vehicle 

classes could be processed to detect the moving object from 

background noise and distinguish them from one another. 

There are many ways to perform vehicle noise pattern 

recognition. One of the reliable solutions would be to use 

prerecorded sound signatures of the moving object classes 
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and compare them to the real-time measured signal. As the 

measured signal is constantly changing for the more 

complex systems the training principles [3] should be 

implemented. 

We used the spectrum correlation method in our test 

system which helps us to eliminate issues caused by the 

Doppler effect.  The processing stages could be compared to 

the MFCC (Mel-Frequency Cepstral Coefficients) algorithm 

[6], [7]. 

III. THE MOVING OBJECT IDENTIFICATION METHOD  

Concerning the methods proposed for vehicle 

identification [5], [6], [8] the moving object noise could be 

represented as  

  teSts tj d)( 




 , (1) 

where  S  is a spectrum of )(ts signal [9].  

Obviously, we could not compare the measured moving 

vehicle noise with prerecorded data ( )ps t  from the same 

vehicle class due to the unknown delay and )(ts  signal 

spectrum component and amplitude changes. The spectrum 

analysis showed that direct comparison will not give the best 

result [5], and we need to eliminate the phase uncertainty 

and spectrum component amplitude decrease. Thus, for the 

calculation we should use normalized prerecorded and 

measured object energy spectrums 
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In this case we could compare the signals by the 

correlation coefficient  
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with values from 0 up to 1. 

The object movement, acceleration or deceleration will 

result in the Doppler effect and would be seen in measured 

spectrum component shift and object noise spectrum 

widening. Moreover, this will lead to the decrease of the 

correlation coefficients. As the Doppler shift is defined by 

cos
c

v
ffd  , (5) 

where f
 

is prerecorded object signature frequency 

component, v  – moving object velocity, c  – sound velocity 

in air, 
 

– angle between moving object direction in 

correspondence to the measurement point [10]. Therefore 

every spectrum component of the measured signal spectrum 

would be converted into the frequency 
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where cos
c

v
K  . 

In this case the correlation coefficient could be calculated 

as cross-correlation of the measured and prerecorded signal 

spectrums in the possible Doppler shift area 
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where df – the Doppler frequency shift in a range from  

maxdf  up to maxdf . The value of the frequency shift 

df  
at the stage of object identification by correlation 

coefficient maxdf
C

 
will estimate relative object velocity. 

The proposed correlation method could be successfully 

used for narrow band object noise patterns. The difference 

between upper uf  and lower lf  frequencies in specific 

object noise spectrum is 

lu ffF  .  (8) 

In this case, Doppler shift will have minimal and 

neglectable effect. 

The wideband object noise spectrum, according to (6) and 

(8) would give the upper and lower frequency difference 

w u lF Kf Kf K F      (9) 

and as a result the significant spectrum widening. This could 

be avoided by the use of logarithmic frequency scale in 

measured and prerecorded signal processing 
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and all spectrum components will have the same shift 
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The main object identification estimation will be 

according to the (5) and (7) 
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IV. MEASURED SIGNAL PROCESSING STAGES 

The hardware implementation will be based on the 

created processing models. The basic model includes three 

processing stages: the real vehicle detection, vehicle class 

identification, based on the prerecorded audio signature 

database, and collecting necessary information for the 

learning and other sensor data fusion stage.  

The first stage of the model provides moving vehicle 

detection in a noisy environment. For the experimental part 

we used prerecorded moving vehicle signature classes. The 

different kinds of vehicles were moving at a specific 

registered speed. Real time application compares the 

microphone sensor measured data with prerecorded 

signature database, extracts the moving vehicle estimations 

form the background noise (minimizing false detection rate) 

and assigning the detection parameters for every detected 

moving vehicle. 

The second stage would do vehicle identification, 

according to the introduced vehicle classes. As the 

prerecorded database contained only civil vehicle 

information, the discussed identification results allow us to 

identify between 3 vehicle classes (2 different cars and large 

truck). For the future research the prerecorded database 

should be updated with specific vehicle signatures. 

The identified vehicle information is stored with a 

timestamp and could be used for the other supported sensor 

data fusion. Moreover, the acoustic data measurement 

system consists of different measurement separate nodes 

with learning ability. Every node collects and processes the 

real time data, providing the identified vehicle type 

estimations. Based on the all audio sensor information the 

system could estimate the speed and direction of movement. 

The proposed methods and processing steps were tested 

on real measured single microphone sound data, which 

includes background noise components. The following 

pictures illustrate the model performance and recorded 

sound spectral analysis. The experimental pictures show the 

moving vehicle detection and identification process of the 

measured acoustic signal. Prerecorded and normalized 

sound signature frequency spectrums, which we have 

chosen from the identification database, consist of different 

spectral components (Fig. 2). 

For this illustration we used two different civil car sound 

signatures and one large truck signature, moving at the 

speed ~20 km/h.  

 

Fig. 2. Prerecorded sound signature spectrum (44.1 kHz, time interval 0.37 

s, vehicle speed 20 km/h). 

 

Fig. 3. Measured audio signal spectrum compared to prerecorded signatures 

(time interval 0.37 s, vehicle speed 20 km/h). 

The following Fig. 4 illustrates the real vehicle spectrum 

differences, measured at different moving speed compared 

to prerecorded ones. In practice, the real vehicle differences, 

acceleration, deceleration, speed and background noise 

change the number of signature frequency components 

significantly. Therefore, the vehicle detection and 

identification should be done with correlation methods.  

 
a) 

 
b) 

Fig. 4. Prerecorded and measured spectrums (44.1 kHz, time interval 0.37 s, 
vehicle speed 20 – 40 km/h). 

Fig. 5 shows measured object noise wideband spectral 

components compared to the prerecorded spectrum in linear 

frequency scale. Obviously, the second maximum 

component frequency shift will be greater than the first one

12  .  

 

Fig. 5. Prerecorded and measured object spectrum components. 
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Fig. 6. Prerecorded and measured object spectrum components in 

logarithmic scale. 

The logarithmic scale implementation would result in 

similar frequency shifts for all spectral components 

12  (Fig. 6). 

Vehicle identification results based on sound signal 

processing are shown in Fig. 7. For the identification we 

used three vehicle classes, which are named car1, car2 and 

large track. The identification is done by the constant 

leveling (black line), and the real time identified vehicle 

type is shown as a dotted line. The identification results are 

shown with measured audio signal time representation. 

  
a) 

 

 
b) 

Fig. 7. Vehicle detection and identification results (large truck identification 
at ~ 20 and 40 km/h). 

From Fig. 7 we can see, that a large truck is successfully 

detected in case of two different speeds based on the 20 

km/h prerecorded signature. 

The modeling results showed that it is possible to 

implement real time moving vehicle detection and 

identification based on the prerecorded signatures. 

Obviously, it is not possible to do exact vehicle type 

identification based on prerecorded information. 

Furthermore, the processing will be supported with 

hierarchical algorithm stages [11]. Nevertheless, the audio 

sensor data should be supported with other sensors and this 

will also decrease the audio system false detection rate.  

V. CONCLUSIONS 

Measured signal analysis showed that the real vehicle 

differences, acceleration, deceleration, speed and 

background noise change the number of object acoustic 

pattern frequency components significantly. Therefore, the 

vehicle detection and identification should be done with 

correlation methods. Generally, sound signal processing 

methods will not provide a standalone audio system for 

exact object (vehicle) identification. Moreover, the complex 

learning multi-sensor solution, where the real-time vehicle 

detection data is combined with other sensor data (vibration 

signature, magnetic data, visual data, etc.) will give more 

reliable results. The data from separate audio measuring 

nodes, with exact location, could be used for vehicle 

position and direction estimations. However, simple solution 

could be used for moving vehicles robust detection and give 

supportive information or other system sensor triggering. 
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