
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 8, 2012



Abstract—Possible loss of management control is one of the

greatest concerns when adopting agile software development

methods in industrial practice. Therefore, monitoring progress

of agile projects is an important issue in the software industry.

This paper describes a set of measures that provide IT

management with continuous insight in the Scrum-based

software development process. The proposed measures were

applied within the scope of the project of rebuilding the web

site of Slovenian daily newspaper with the highest circulation,

which served as a case study for evaluation of their usability.

The paper presents the measurement results and discusses their

value for project management. The case study showed that each

proposed measure describes a valuable process aspect and that

data collecting does not require additional administrative work

that would harm the agility of Scrum.

Index Terms—Agile methods, Scrum, software development

management, software measurement.

I. INTRODUCTION

Agile development methods and practices [1] have been

gaining wide acceptance in the software development

community. In January 2010 Forrester [2] reported results of

their Global Developer Technographics Survey which

revealed that 35% of respondents used an agile development

process. At the same time Gartner predicted [3] that by 2012

agile development methods will be utilized in 80% of all

software development projects. According to the last State

of Agile Survey the most widespread agile method is Scrum

[4], [5], which is used by 66% of 6042 respondents. The

same survey also revealed that the loss of management

control is one of the greatest concerns about adopting agile.

Therefore, continuous monitoring of the development

process through appropriate set of measures is crucial to

ensure visibility, inspection, and adaptation.

II. RELATED WORK

Measuring agile software development has been studied

by different authors. Hartmann and Dymond [6] pointed out

that agile metrics should not be simply adopted from plan-

driven approach, but must be defined in such a way that they

do not harm the agility of the development process. Ktata

and Levesque [7] described an approach to the design and

implementation of a measurement program for Scrum teams

using the Goal-Question-Metric method. Sulaiman et

Manuscript received March 14, 2012; accepted May 11, 2012.

al. [8] presented an adaptation of the Earned Value

Management method [9] for Scrum projects.

Measuring performance of Scrum-based software projects

has also been the subject of the authors’ research for the last

five years. A model for performance monitoring, which

included views of different stakeholders (i.e., IT

management, Team members, ScrumMaster and Customers)

was developed first [10]. The next step was the introduction

of the measurement repository [11] and consideration of

requirements of the CMMI Measurement and Analysis

Process Area [12]. Then the assessment of the model’s

compliance with COBIT [13] was made.

 Suitability of the model for practical use was extensively

tested in an academic environment within the scope of a

capstone course which requires students of the last semester

of the Computer Science program to develop an almost real

software project [14], [15]. The same course also served as a

case study on agile estimating and planning using Scrum

[16].

In order to test the model in an industrial environment the

collection of IT management measures was further studied

within the framework of a real project, which took place

during 2011 in the largest Slovenian publishing company.

The main project’s business objectives were to renew the

web edition of the company’s daily newspaper with the

largest circulation and introduce Scrum as the development

process to their web applications department [17]. It was

additionally agreed that the project will also serve as a case

study for evaluation of IT management measures defined

within our model. Consequently, the first author helped the

company in preparations for Scrum implementation and

supervised the collection of prescribed base measures during

the first seven Sprints.

Measurement data were collected using a slightly

extended version of the Agilo for Scrum project

management tool and analyzed after completion of the

project. The results of the analysis are presented in the

remainder of this paper.

The following section contains a brief description of the

project that served as a case study, then the measurement

results are presented and discussed, and finally the most

important conclusions are presented. In order to make the

paper more easily understandable the meaning of Scrum

specific terms is explained in Table I.

Measuring Progress of Scrum-based Software

Projects

V. Mahnic, N. Zabkar

Faculty of Computer and Information Science, University of Ljubljana,

Tržaška 25, SI-1000 Ljubljana, phone: +386 1 4768 447

viljan.mahnic@fri.uni-lj.si

http://dx.doi.org/10.5755/j01.eee.18.8.2630

73

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 8, 2012

III. PROJECT DESCRIPTION

The project that served as a case study lasted 7 months

(from May until the end of November) and consisted of 9

Sprints. By rebuilding the web site the publishing company

wanted to establish a new technological platform, renovate

the content of the newspaper’s web edition, standardize

further development and maintenance procedures, and

facilitate editorial teams’ work. Fresh new look and some

advanced technical solutions were expected to increase the

number of portal’s users and their activities. Scrum was

considered an appropriate development method due to vague

and changing requirements, project’s nature (agile methods

are typically used for development of web applications), and

short time to deliver. It was expected that in the case of

successful implementation Scrum would be accepted as a

standard methodology.

TABLE I. SCRUM SPECIFIC TERMS

User story A short description of desired functionality

(user requirement).

Story point Measure of effort required for implementing a

user story. Usually corresponds to an ideal

day of work.

Product Backlog A set of all user stories currently known.

Sprint An iteration.

Sprint Backlog Subset of the Product Backlog consisting of

user stories that the Team committed to

implement in a particular Sprint. Each story is

further split into tasks.

Scrum Team Developers responsible for implementing

functionality.

Product Owner Represents the interests of everyone with a

stake in the project and maintains the Product

Backlog.

ScrumMaster Manages the Scrum process and ensures that

everyone follows Scrum rules and practices.

The number of people working on the project varied

slightly from Sprint to Sprint between 6 and 8. The associate

editor of the newspaper’s web edition was assigned the role

of the Project Owner, while the head of the web

development department played the role of the

ScrumMaster. During his absence this role was performed

by his assistant. Other project members were developers,

constituting the Scrum Team responsible for implementation

of desired functionality.

Sprints lasted three weeks. Each Sprint started with the

Sprint planning meeting on Thursday and ended with the

Sprint review and the Sprint retrospective meetings on

Tuesday of the third week of the Sprint. In between the

Scrum Team had 12 working days to develop software. At

the end of each Sprint the Product Owner evaluated all

implemented stories strictly considering the concept of

“done”. All stories that did not conform to user requirements

were rejected.

In order to measure progress the following base measures

had to be collected: the size (in story points) of each user

story in the Product Backlog, and the amounts of work spent

and work remaining (in hours) for each task in the Sprint

Backlog. The size of each user story was estimated using

planning poker at the Sprint planning meeting, while the

amounts of work spent and work remaining were recorded

every day at the Daily Scrum meetings. These measures

(together with some basic project parameters, such as the

Sprint length, and the cost of each developer’s engineering

hour) enabled the computation of derived measures

indicating the project progress.

IV. RESULTS

During the case study the following derived measures of

progress were observed: velocity, amount of work remaining

(represented by the Release and Sprint burndown charts),

and schedule and cost performance indexes. The first two

measures are well known and established measures of agile

projects progress. With the purpose of monitoring

development costs the earned value indexes were added by

the authors, since these are not included in other measures.

A. Velocity

Velocity represents the amount of work accomplished in

each Sprint expressed in story points. Fig. 1 shows the

difference between the planned and actual velocity for seven

Sprints that we observed during the study. The planned

velocity was estimated by the Scrum Team at the beginning

of each Sprint and the user stories were allocated to the

Sprint so that the sum of story points fitted within the

capacity determined by the velocity estimate. The actual

velocity was calculated at the end of the Sprint by summing

up story points for all the stories accepted by the Product

Owner.

The results revealed that the actual velocity was behind

the planned velocity for the majority of Sprints. This was

understandable for the first Sprint, since there was no

previous experience and the planned velocity was estimated

by simply assuming a working day (i.e., a story point) to be

equal to 6 hours of effective work. The actual velocity was at

its lowest in the fifth Sprint due to two new developers

added to the development team, who were expected to

increase the amount of work completed, but created

disruption instead, which decreased the productivity of other

team members. A substantial difference between the

planned and actual velocity in Sprint 6 was a consequence of

too optimistic velocity estimate. Instead of adapting the

estimate to actual achievement in previous Sprints the team

succumbed to the pressure of approaching deadline and

promised to deliver more functionality than actually

possible.

Fig. 1. Planned and actual velocity in Sprints 1–7.

74

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 8, 2012

Analysis of velocity revealed two common mistakes that

should be avoided in Scrum projects: planned velocity

should be estimated considering the actual velocity of

previous Sprints and there should be no changes in

development team in the middle of the project.

B. The Release burndown chart

It shows the amount of work remaining at the beginning of

each Sprint by plotting the sum of story points of all

unfinished stories in the Product Backlog. It makes visible

the correlation between the amount of work remaining and

the progress of the Scrum Team in reducing this work. The

trend line for work remaining indicates the most probable

completion of work at a given point in time.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7

R
e
m

a
in

in
g
 S

to
ry

 P
o
in

ts

SprintActual Ideal

Fig. 2. Release burndown chart at the beginning of Sprint 7.

The Release burndown chart in Fig. 2 indicates that the

Team was not able to reduce the amount of work remaining

quickly enough to complete the project in seven Sprints as it

was expected at the beginning of the project. The main

reason for this were emerging requirements, which were not

part of the initial Product Backlog, but were constantly

added by the Product Owner during the project. In such

cases the Release burndown chart can be used to simulate

the impact of removing functionality from the release to get

a more acceptable completion date. Using this approach the

publishing company reexamined the contents of the Product

Backlog and successfully launched a reduced release after 9

Sprints.

C. The Sprint burndown chart

It is similar to the Release burndown chart, but instead of

giving the big picture of the entire release it represents the

amount of work remaining that needs to be accomplished till

the end of the Sprint. The horizontal axis shows the days of a

Sprint, while the vertical axis shows the number of

remaining working hours. The chart is updated every day by

aggregating the estimates of work remaining for all tasks in

the Sprint Backlog, which are collected at the Daily Scrum

meeting. The trend line of remaining working hours

indicates whether the Team will accomplish the tasks

committed by the end of the Sprint.

Fig. 3 shows how the amount of work remaining was

changing in Sprint 2 of our case study. In contrast to chart in

Fig. 2, this chart shows a more evident falling trend

indicating that the development team developed software for

almost all user stories planned for that Sprint.

0

10

20

30

40

50

60

70

80

90

0 1 2 3 4 5 6 7 8 9 10 11 12

W
o
rk

 R
e
m

a
in

in
g
 H

o
u
rs

Day of SprintActual Ideal

Fig. 3. Sprint burndown chart for Sprint 2.

D. Earned value management (EVM)

It is not part of Scrum, but is often required as good

practice (e.g., by the government projects in the United

States). While other studies that explore the use of EVM

within Scrum (e.g., [8]) describe the computation of earned

value at the release level, we introduced the computation of

EVM indexes at the Sprint level. An interested reader can

find detailed description in [11]. Our approach provides the

values of schedule performance index (SPI) and cost

performance index (CPI) on a daily basis, thus enabling

immediate response in the case of deviation from the plan,

which can be especially useful when longer Sprints are used.

Computation of SPI and CPI requires collection of only one

additional base measure, i.e., the number of hours spent on

each task between two consecutive Daily Scrum meetings.

Fig. 4 and Fig. 5 show the SPI and CPI values for Sprint 2

of our case study. The CPI values were computed assuming

that the cost of engineering hour was the same for all

members of the Scrum Team.

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12

S
P

I

Day of SprintActual Ideal

Fig. 4. SPI for Sprint 2.

0

0,2

0,4

0,6

0,8

1

1,2

1 2 3 4 5 6 7 8 9 10 11 12

C
P

I

Day of SprintActual Ideal

Fig. 5. CPI for Sprint 2.

Fig. 4 shows that the Sprint was behind plan (SPI value

75

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 18, NO. 8, 2012

less than 1) since the third day, thus providing early

indication that something went wrong. The Team was again

quite close to the plan (target value of 1) on the eighth and

tenth day, but finished the Sprint without accomplishing all

tasks. Similar information is presented in the Sprint

Burndown chart (Fig. 3), where the gap between the actual

and ideal amount of work remaining is the smallest on days

2, 8, and 10.

Fig. 5 shows that the labor costs exceeded the plan (CPI

value less than 1) on the second day and remained too high

till the end of the Sprint. However, unlike in SPI and Sprint

burndown charts, CPI on days 2, 8 and 10 was not close to

the target value 1, since more working hours were spent than

planned.

While SPI provides similar information as Sprint

burndown chart (when the amount of work remaining is

above the ideal line in the burndown chart, the value of SPI

is less than 1 and vice versa), the CPI provides the

information that is not available from any other measure.

V. CONCLUSIONS

The case study proved that each proposed measure

indicates a valuable aspect of measuring progress of Scrum-

based software projects and that data collecting does not

require additional administrative work that would harm the

agility of development process. Velocity enables IT

management to learn from the previous planning cycles and

improve their estimates of the amount of work that can be

done in subsequent Sprints. Release Burndown chart gives a

big picture of the project trends, which can be used for the

prediction of the completion date. It reflects the impact that

an addition (or removal) of user stories has on the

completion date and functionality of the Release. Sprint

burndown chart shows project trends during one Sprint,

which can be used for the prediction of the scope fulfillment

by the end of the Sprint. SPI presents information similar to

Sprint burndown in EVM terminology, while CPI completes

the whole picture with the information about cost efficiency,

which is not included in other measures.

In the future the authors plan to extend their model for

performance monitoring by measuring accuracy of effort

estimates obtained through planning poker [18], an agile

group estimation technique that is usually used for

estimating user stories. Preliminary studies [19], [20]

provided promising results indicating that the planning poker

estimates tend to be more accurate than the statistical

combination of individual estimates if planning poker is used

by experienced professionals. The authors would like to

further explore the impact of accuracy of effort estimates on

velocity and thus improve progress measurement of Scrum-

based software projects.

ACKNOWLEDGMENT

The authors are grateful to Janez Urevc and Rok Stebe for

their contribution while piloting proposed model in

industrial environment.

REFERENCES

[1] L. Williams, “Agile software development methodologies and

practices”, Advances in Computers, vol. 80, pp. 1–44, 2010.

[2] D. West, T. Grant, “Agile Development: Mainstream adoption has

changed agility, Trends in real-world adoption of agile methods”,

Forrester, Jan. 20, 2010, [Online]. Available:

http://www.forrester.com/rb/Research/agile_development_mainstrea

m_adoption_has_changed_agility/q/id/56100/t/2

[3] T. E. Murphy, J. Duggan, D. Norton, B. Prentice, D. C. Plummer, S.

Landry, “Predicts 2010: Agile and Cloud Impact Application

Development Directions”, Gartner, Dec., 2009.

[4] K. Schwaber, M. Beedle, Agile Software Development with Scrum.

Upper Saddle River, USA: Prentice-Hall, 2002, p. 158.

[5] K. Schwaber, Agile Project Management with Scrum. Redmond,

USA: Microsoft Press, 2004, p. 163.

[6] D. Hartmann, R. Dymond, “Appropriate Agile Measurement: Using

Metrics and Diagnostics to Deliver Business Value”, in Proc. of

AGILE 2006 Conference (AGILE’06), Minneapolis, Minnesota,

2006, pp. 126–134.

[7] Q. Ktata, G. Levesque, “Designing and Implementing a Measurement

Program for Scrum Teams: What do agile developers really need and

want?”, in Proc. of C3S2E-10, Montreal, Canada, 2010, pp. 101–

107.

[8] T. Sulaiman, B. Barton, T. Blackburn, “AgileEVM - Earned Value

Management in Scrum Projects”, in Proc. of AGILE 2006

Conference (AGILE’06), Minneapolis, Minnesota, 2006, pp. 7–16.
[Online]. Available: http://dx.doi.org/10.1109/AGILE.2006.15

[9] A Guide to the Project Management Body of Knowledge (PMBOK

Guide), 4th ed., Newtown Square, USA: Project Management

Institute, 2008, p. 506.

[10] V. Mahnic, I. Vrana, “Using stakeholder driven process performance

measurement for monitoring the performance of a Scrum-based

software development process”, Elektrotehniski vestnik, Ljubljana:

Electrotechnical Society of Slovenia, no. 5, pp. 241–247, 2007.

[11] V. Mahnic, N. Zabkar, “Measurement repository for Scrum-based

software development process”, in Proc. of the 2nd WSEAS Interna-

tional Conference on Computer Engineering and Applications

(CEA'08), Acapulco, Mexico, 2008, pp. 23–28.

[12] V. Mahnic, N. Zabkar, “Introducing CMMI measurement and

analysis practices into Scrum-based software development process”,

International Journal of Mathematics and Computers in Simulation,

NAUN, vol. 1, no. 1, pp. 65–72, 2007.

[13] V. Mahnic, N. Zabkar, “Using COBIT indicators for measuring

scrum-based software development”, WSEAS Transactions on

Computers, vol. 10, no. 7, pp. 1605–1617, 2008.

[14] V. Mahnic, “Teaching Scrum through team-project work: students’

perceptions and teacher’s observations”, International Journal of

Engineering Education, vol. 1, no. 26, pp. 96–110, 2010.

[15] V. Mahnic, “A capstone course on agile software development using

Scrum”, IEEE Transactions on Education, vol. 1, no. 55, pp. 99–106,

2012. [Online]. Available:

http://dx.doi.org/10.1109/TE.2011.2142311

[16] V. Mahnic, “A Case Study on Agile Estimating and Planning using

Scrum”, Elektronika ir elektrotechnika (Electronics and Electrical

Engineering). no. 5, pp. 123–128, 2011.

[17] J. Urevc, R. Stebe, V. Mahnic, “Scrum implementation in publishing

house „Delo”, in Proc. of the Conference Dnevi slovenske

informatike, Portoroz, Slovenia, 2012.

[18] J. Grenning, “Planning poker or how to avoid analysis paralysis while

release planning”, April 2002, [Online]. Available:

http://www.renaissancesoftware.net/files/articles/PlanningPoker-

v1.1.pdf

[19] K. Moløkken-Østvold, N. C. Haugen, H. C. Benestad, “Using

planning poker for combining expert estimates in software projects”,

Journal of Systems and Software, vol. 81, no. 12, pp. 2106–2117,

2008.

[20] V. Mahnic, T. Hovelja, “On using planning poker for estimating user

stories”, Journal of Systems and Software, vol. 85, no. 9, pp. 2086–

2095, 2012.

76

