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Abstract—In this paper, using the Linear Time Variant 

(LTV) noise model of oscillators, an analytical expression for 

Amplitude Impulse Sensitivity Function (A-ISF) based on the 

limit cycle of the oscillator is derived for the first time. Also 

Considering the existing expression for Phase Impulse 

Sensitivity Function (P-ISF), it is shown that P-ISF and A-ISF 

are correlated. The derived A-ISF is used to simulate the 

amplitude noise of the oscillators in the 1/f2 region of the noise 

spectrum by the LTV model. Simulation and experimental 

results show the validity of the derived formula.  

 
Index Terms— Circuit noise, oscillators, phase noise, white 

noise. 

I. INTRODUCTION 

For many years, phase and amplitude noises of electrical 

oscillators have been the subject of study, and many models 

have been introduced. The Linear Time Variant Model 

(LTV) [1], [2] is a formulated and simple model that offers 

closed form formulas for phase and amplitude noises which 

include the effect of circuit elements in the output noises. In 

the LTV model, Phase and Amplitude Impulse Sensitivity 

Functions (P-ISF and A-ISF respectively) are defined which 

relate circuit noise sources to the output phase and amplitude 

noises respectively. To obtain P-ISF and A-ISF, many 

simulations of the oscillator circuit at certain points and with 

certain parameters are needed [1], [2] which makes the 

method difficult to be performed. Some closed form 

expressions for P-ISF have been presented in [1], [3]–[5] 

which enable us to calculate the P-ISF only by one 

simulation. In [1], this analytical expression has been 

extracted from the limit cycle of the oscillator. In [3]–[5], 

based on the structure of the LC oscillators, some analytical 

expressions have been presented for P-ISF. However, the 

method in [1] is more general since it has been extracted 

from the limit cycle and therefore does not rely on the 

topology of the oscillator. While the phase noise has been 

calculated by the LTV model, there is no closed formula for 

A-ISF and no amplitude noise has been calculated by this 

model [6]. 

Recently, numerical models for the phase noise have been 

introduced which solve nonlinear differential equations of 

the oscillator circuit numerically by Harmonic Balance (HB) 

technique and calculate phase and amplitude noises and 
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their correlation [7]–[11]. While these methods are accurate, 

some special and complicated computations are needed to 

evaluate the phase and amplitude noises which have not 

always been included in the commercial software.  

In this paper, the amplitude and phase noises of electrical 

oscillators using the LTV model are investigated. For the 

first time, an analytical formula is derived for A-ISF based 

on the output limit cycle of the oscillator. So the calculation 

of this function can be easily performed only by one 

simulation. Since the extractions of P-ISF and A-ISF are 

derived from the limit cycle, they have the same origin and 

are correlated which is discussed in this paper. The behavior 

of the derived formula is investigated and the amplitude 

noise of electrical oscillators is calculated. Simulation and 

experimental results show the validity of the derived 

expressions and the evaluated amplitude and phase noises. 

II. BRIEF REVIEW OF THE LTV MODEL 

In a practical oscillator the output signal is [1] 

 ,)().()( 0max ttftVtVout                      (1) 

where )(t and )(tA are instantaneous phase and amplitude 

of the output respectively.  

Consider an ideal and simplified model of a parallel LC 

oscillator shown in Fig. 1.  

 
Fig. 1.  Time domain response of an oscillator (a) impulse is injected at the 

peak (b) impulse is injected at the zero crossing point. 

Based on the LTV model, if a current impulse is injected 

at time  to the system, the instantaneous voltage change in 

the capacitor at the node i is [1] 
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where iq is the total injected charge corresponding to the 

current impulse source and iC is the total equivalent 

capacitance of the node i . For small injected charges, the 

phase change is [1] 
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where )( 0t is the phase impulse sensitivity function (P-

ISF) which is a dimensionless, frequency- and amplitude-

independent periodic function and describes the phase 

deviations for a unit impulse input at time . This phase 

change will be transformed into the output signal by the 

oscillator circuit and makes the phase noise. 

In the 1/f
2
 region of the phase noise spectrum, the 

resultant phase noise based on the LTV model is [1] 
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where RMS  is the RMS value of P-ISF, maxq
is the 

maximum charge on the node capacitor, finoise 2 is the 

white noise source spectral density in the oscillator circuit 

and   is the offset frequency from the carrier.  

The conventional method to calculate P-ISF is that an 

impulse current source is injected to the oscillator circuit at 

different phases of the oscillation period. Then the oscillator 

is simulated for a few cycles to reach the stable condition. 

This impulse causes a time shift T in the output waveform. 

The excess phase for this time shift is Tt  2 where 

T is the period of oscillation. By sweeping the time in which 

the impulse is injected, different   and V can be 

measured. Therefore )( 0t is calculated by (3). 

Similar to the phase deviation, for small injected charges, 

the amplitude change is [2] 
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where )( 0t is the amplitude impulse sensitivity function 

(A-ISF) which is a periodic function and describes the 

amplitude deviations for a unit impulse input at time . This 

amplitude change will be transformed into the output signal 

by oscillator circuit and makes the amplitude noise. Similar 

method to that of P-ISF is employed to calculate A-ISF [2]. 

In the 1/f
2
 region of the spectrum, the resultant amplitude 

noise is [2] 
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where RMS is the RMS value of A-ISF, 0 is the angular 

oscillation frequency and Q is the oscillator quality factor. 

III. ANALYTICAL EXPRESSION FOR P-ISF 

In [1], an analytical formula for P-ISF has been derived 

based on the output limit cycle. The extraction is brought 

here for simplicity. 

For a stable oscillator, the limit cycle is defined as a 

closed trajectory in n-dimensional state space, where the 

state vector X  traverses it once in every period of the 

oscillation, as shown in Fig. 2. 

 
Fig. 2.  Limit cycle of an oscillator. 

Suppose that a perturbation vector X , caused by circuit 

noise sources, changes the state of the system from 

X to XX  . This change in the state vector causes an 

equivalent displacement along the trajectory of the limit 

cycle. This displacement in turn makes a time shift which is 

related to the final phase shift. The unit tangential vector at 

the point of perturbation is 
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The equivalent phase shift due to the perturbation vector 

is  
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where X  is the first derivative of the state vector with 

respect to time and   denotes the norm function. If the state 

variables are node voltages and an impulse is applied to the 

node i , there will be a change in iV  given by (2). So (8) 

reduces to  

.

| || |

2

2V

V

C

q

T

i

i

i
i










   (9) 

Considering (9) with the normalized waveform function 

f defined in (1) results in  
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where 0ff   and f is the derivative of the normalized 
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waveform with respect to time on node i . Comparing (10) 

with (3) results in the following P-ISF  
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In the special case of the second order systems (which is a 

usual condition in practical oscillator circuits), (11) leads to 

the following expression for P-ISF [1] 
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IV. ANALYTICAL EXPRESSION FOR A-ISF 

Here, we use the limit cycle of Fig. 2 and derive an 

analytical formula for the amplitude impulse sensitivity 

function (A-ISF). Since this formula is extracted from the 

limit cycle, any nonlinear behavior of the oscillator circuit 

will be included in A-ISF. Also in contrast to the 

conventional method which needs many simulations, using 

the formula only needs one simulation over one cycle of the 

oscillation to calculate A-ISF. 

According to Fig 2, the perturbation vector X can be 

decomposed into its components: the tangential vector to the 

trajectory ||X  and the normal vector to the trajectory X . 

For the normal vector, at the point of the perturbation we can 

write  
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where iX is equal to the amplitude deviation due to 

perturbations, i.e. iA at the node i . Substituting (7) in (13) 

results in  
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If we consider node voltages as the state variables, for 

node i , we have  
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Normalizing (1) to max,iV  and considering (15) gives  

.

| || |

1
2

2

max f

f

V

V
X ii

i






      (16) 

Comparing (16) with (5), we get 
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For second order systems, (17) reduces to  
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which represents the analytical expression for A-ISF.  

Now, we show that P-ISF and A-ISF are correlated. 

Consider Fig. 2. The components ||X and X of the 

perturbation vector X  have the same origin and are 

correlated. Extraction of (12) shows that P-ISF corresponds 

to ||X . Also extraction of (18) shows that A-ISF 

corresponds to X . Therefore P-ISF and A-ISF is 

correlated. Using (12) and (18), the relationship between P-

ISF and A-ISF will be  

.)(.1)( 00 tft     (19) 

V. SIMULATION RESULTS 

To investigate the amplitude noise, two oscillator 

structures are considered. First, a Colpitts oscillator topology 

presented in [1] is proposed as in Fig. 3 with the given 

parameters for the transistor BFR520. With R=10kΩ, 

L=200nH, C1=40pF and C2=200pF, the oscillation 

frequency is 62MHz. For this oscillator, the output current, 

the output ac voltage (with dc value omitted) versus Radian 

and the A-ISF calculated by (18) are shown in Fig. 4a, Fig. 

4b and Fig. 4c respectively.  

 
Fig. 3.  The Colpitts oscillator. 

To investigate the behavior of the calculated A-ISF, 

consider Fig. 1a. If an impulse is injected at the peak of the 

output signal, it makes the maximum amplitude deviation. If 

an impulse is injected at the zero crossing of the output, no 

amplitude deviation occurs as in Fig. 1b. 

Considering Fig. 4b and Fig. 4c, applying an impulse at 

the positive or negative peak of the output voltage of the 

Colpitts oscillator (point A in Fig. 4b) causes maximum 

amplitude deviation at the output and consequently, at this 

point A-ISF must have maximum magnitude which is point 

A in Fig. 4c. Also, applying an impulse at zero crossing 
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point (point B in Fig. 4b) causes no amplitude deviation at 

the output and consequently A-ISF must be zero at this point 

which is point B in Fig. 4c. This discussion shows that the 

behavior of A-ISF calculated by (18) is correct. 

 
Fig. 4.  (a) Transistor current (b) output voltage (c) A-ISF (Colpitts 

oscillator, R=10kΩ, L=200nH, C1=40pF, C2=200pF, f=62MHz). 

 
Fig. 5.  Ring oscillator. 

As another example a 19-stage ring oscillator (in TSMC 

0.18μm technology) with oscillation frequency of 943 MHz 

is considered as in Fig. 5. The output current, the output ac 

voltage (with dc value omitted) versus Radian and the A-ISF 

calculated by (18) are shown in Fig. 6a, Fig. 6b and Fig. 6c 

respectively.  

Similar to discussion for A-ISF behavior done for the 

Colpitts oscillator, applying an impulse at the positive or 

negative peak of the output voltage of the ring oscillator 

(point A in Fig. 6b) causes a maximum amplitude deviation 

at the output and consequently A-ISF at this point must have 

maximum magnitude which is point A in Fig. 6c).  

Also applying an impulse at the zero crossing point B in 

Fig. 4b causes no amplitude deviation at the output and 

therefore A-ISF is zero at point B in Fig. 4c). This 

discussion shows that the behavior of A-ISF calculated by 

(18) is valid for this kind of oscillators. 

 
Fig. 6.  (a) Branch current (b) output voltage (c) A-ISF (ring oscillator). 

The transistor current of the Colpitts oscillator in Fig. 4a 

has a pulse shape and its magnitude is nearly zero during a 

part of the period. It modulates any stationary noise sources 

in the oscillator circuit (thermal noise of the resistor and shot 

noise of the transistor) and makes cyclostationary noise 

sources. In this case, new effective A-ISF will be introduced 

as [1] 

     ,000 ttteff                   (20) 

where )( 0t is a periodic function that describes the noise 

source modulation and can be calculated from the transistor 

current and is normalized to one [1]. The same situation 

exists for the current of the ring oscillator as in Fig. 6a. 

Fig. 7 shows  t0 , )( 0t  and  teff 0  for the Colpitts 

oscillator. Fig. 8 shows  t0 , )( 0t  and  teff 0  for the 

ring oscillator. It is concluded from the figures that since the 

shape of the effective A-ISF is changed, the cyclostationary 

noise behavior has significant effects on amplitude noise and 

therefore must be always considered. 

 

Fig. 7.  (a)  t0 ; (b) )( 0t ; (c)  teff 0  for Colpitts oscillator. 
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Fig. 8.  (a)  t0  (b) )( 0t  (c)  teff 0 for ring oscillator. 

Now we calculate the amplitude noise of the Colpitts 

oscillator. In the 1/f
2
 region of the output noise spectrum, the 

total white noise power spectral density of the oscillator 

circuit is the shot noise of the transistor and the thermal 

noise of the resistor [1]  

,
4

2
2

R

KT
Iq

f

i
Ce

noise 


   (21) 

where 
eq is the unit electron charge, T is the absolute 

temperature, k is the Boltzmann constant and
CI is the 

transistor dc current. Also Q can be approximated by 

C
R

L
for the LC oscillators where the variables are the 

resonator components. With R=10 kΩ, L=200nH, C1=40pF 

and C2=200pF, IC=8mA and Ctotal=33.33pF. The maximum 

voltage swing is 8.14V. Therefore qmax=271.47 pC. Also 

Q=129, Λeff,RMS=0.22, and the noise power spectral density 

is 2.56×10
-21

 A
2
/Hz. 

Fig. 9 shows the amplitude noises calculated by (6) and by 

the Harmonic Balance (HB) method. Very good agreement 

can be inferred from the figure which can validate the 

derived expression of A-ISF. 

Table I shows the amplitude noise for a Colpitts oscillator 

measured in [14] and calculated by (6). Good agreement for 

the results can be achieved from the table. The differences 

are for the colored noise sources. 

TABLE I. AMPLITUDE NOISES MEASURED IN [14] AND CALCULATED BY (6).  

Freq. (kHz) 100 300 800 1000 

Measured [14] -143.7 -144.6 -145.3 -145.5 

Calculated (6) -145.9 -146.5 -146.8 -147.0 

 

Now we calculate the amplitude noise of the ring 

oscillator. For this oscillator, the quality factor is [12] 

max

0

3
3

,
8 dd

dVN
dt

Q
V




     (22) 

where N  is the numbers of stages and dtdV / is the 

derivative of the output voltage of the ring oscillator with 

respect to the time and 0 is the oscillation frequency.  

 
Fig. 9.  Amplitude noises calculated by HB and (6) for Colpitts oscillator 

with R=10kΩ, L=200nH, C1=40pF, C2=200pF.  

In the 1/f
2
 region of the output noise spectrum, the total 

white noise power spectral density for the ring oscillator 

circuit is the channel thermal noise which is [13]  

,42
Thermal mgkTI          (23) 

where T is the absolute temperature, k  is the Boltzmann 

constant,   is the thermal noise coefficient and is typically 

2/3 for the MOSFETs. mg is the transconductance of the 

transistor. 
mg is measured at the middle of  the output 

transition in which the output voltage changes from zero to 

maximum. 

For the 19-stage ring oscillator, Ctotal=1.256pF and the 

maximum voltage swing is 1.8V. Therefore qmax=2.261pC. 

Also Q=8.1964, Λeff,RMS=0.0304. For PMOS mg is 28.1 mS 

and for NMOS is 62.4 mS. So the noise power spectral 

density is 1.01×10
-21

 A
2
/Hz. Fig. 10 shows amplitude noises 

calculated by (9) and the HB method. Very good agreement 

can be inferred from the figure which can validate the 

derived expression of A-ISF.  

 

 
Fig. 10.  Amplitude noises calculated by HB and (6) for 19-stage ring 

oscillator. 

VI. CONCLUSIONS 

In this paper, for the first time, an analytical expression 
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was presented for the amplitude impulse response function 

(A-ISF) of the electrical oscillators. Also it was shown that 

the phase impulse response function, P-ISF, and A-ISF were 

correlated and their relationship was derived. Based on the 

derived A-ISF and the LTV model, amplitude noise of 

Colpitts and ring oscillators in the 1/f
2
 region of the noise 

spectrum were calculated. 
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