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1Abstract—This work is based on the Hardware development 

of the Transmission part for the communication inside the 

satellite. Our goal is move as much as possible of the software 

part into the Field-programmable gate array (FPGA) matrix 

due to the single event upsets (SEU). This project is part of the 

collaborative project called “Mission: NET@SPACE”. It was 

chosen by the European Commission under the Seventh 

Framework Program for Research (FP7) to develop an 

Avionics Full Duplex Switched Ethernet (AFDX) demonstrator 

based in FPGA. It has to be able to receive and transmit frames 

and enhance the robustness. The scheduling of the protocol 

should also be moved into the hardware, by still keeping a small 

footprint of the whole design. In this paper, we introduce the 

theory and used technologies, the project flow and 

development, including the decisions and milestones, to arrive 

at the end to the further possibilities and conclusions. 

 
 Index Terms—Aerospace electronics; Aerospace simulation; 

AFDX; Latency measurements.  

I. INTRODUCTION 

Avionics Full Duplex Switched Ethernet (AFDX) is a 

trademark of Airbus and a specific implementation of 

ARINC (Aeronautical Radio, Inc.) Specification 664 Part 7. 

AFDX is a deterministic network based on the same 

hardware as Ethernet (IEEE 802.3) [1]. Airbus developed 

this network to reduce weight on the planes and to provide a 

guaranteed bandwidth and Quality of Service (QoS). It is 

aimed for real-time, safety-critical applications which are 

generally mandatory in avionic systems. AFDX was 

developed around the year 2000 and was used on the planes 

A380 and A350. Later, a similar implementation was used 

on the Boeing 787 Dreamliner. The protocol is able to 

replace simultaneously multiple standard buses with low 

throughput, e.g., ARINC 429, ARINC 629 or MIL-STD 

1553. 

One of the predecessors of ARINC 664 Part 7, also 

known as AFDX, was the ARINC 429 formulated in the late 
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1970s which can still be found in some active and retired 

aircraft series [2]. This was one of the first standards ever 

made in avionics. This standard had as basic unit; the word, 

and two different coexisted in these networks: data words 

and message control words. However, ARINC 429 defined a 

unidirectional and simplex bus so that a station could be 

attached to multiple buses and operate as either sender or 

recipient. Because of this, a severe challenge was assumed 

when interlinking. Even when having few stations, the 

configuration could present important complications, and 

also this affected the weight of the aircraft. 

The first commercial plane that uses AFDX was the A380, 

the biggest plane in the world, or the A350. It was first 

developed by the company “Airbus” and later provided on 

the ARINC 664 Part 7 as a standard. That is why Boeing, the 

direct competition of Airbus, has also started to use it such 

as in Boeing 787. AFDX networks were used to reduce a 

high percentage of the wires found inside of the aircraft. 

ARINC 429 uses wires to interconnect every sensor or end 

system (ES) with monitors or ES. AFDX uses just one wire 

shared by Virtual Links (VL). 

II. STATE OF THE ART 

AFDX added two new parameters related to aircraft 

networks. First of all, an AFDX switch, with similar 

characteristics to LAN switches, and the End System (ES) 

responsible to send and receive the data to/from the network. 

 AFDX Switches: These devices are developed to 

connect the End Systems between them or with other 

switches together and to check that the key parameters 

like delivery, latency, and jitter are inside one specific 

range. This task creates a big overhead - compared to 

Ethernet switches - and slows the switching speed down. 

The main topology used with AFDX Switches and End 

systems is a star formation. 

 AFDX End Systems: These systems are designed to 

work as a receiver, transmitter or both and they make use 

of the final network. Every End System is capable to 
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support multiple applications that can connect to the 

AFDX network. 

Even if it is not a device, it should be pointed out that 

AFDX HW-Links consist of normal full-duplex Ethernet 

cables and connect an End System to a Switch. Every link is 

set up by using two cables for redundancy. Due to this 

redundancy, two identical networks are created. These 

networks are called “A” and “B”, the same data are sent 

through both of them to minimize the error rates when 

transmitting. A concept called “Virtual Link” (VL), that has 

similar characteristics as WLAN, permits the origin End 

Systems sending data to the desired destinations. Without 

these links, we could not select the devices that we want to 

send, and we would send data to all devices without 

discrimination. These links send only in one way (no way 

back), so they are unidirectional. 

This kind of links sends information about pressure, 

humidity, temperature from the engines, state of the wings, 

information about control panels, the movies and the audio 

of each passenger seat at the same time using the same 

network, but this information varies in each aircraft [3]. This 

information is processed and redirected using the AFDX 

switches by means of Fast Ethernet cables (100 Mbps) to its 

corresponding End System. Within the AFDX networks the 

type of traffic is differentiated according to the priority, 

which can be high or low. In this way, it is possible for the 

network to prioritize certain data (pressure, temperature or 

humidity of the engines) over other data (movies and audios 

for passengers). Anyway, two redundant networks always 

exist, just in case one brakes down. 

Currently, the use of AFDX networks has become 

widespread and is considered a success. In the medium term, 

the use of this type of network with AFDX Switches and 

AFDX End Systems is proposed in the automotive industry 

for the next generation of connected vehicles. 

A. Bandwidth Allocation Gap 

BAG stands for “Bandwidth Allocation Gap” and is 

measured in ms. It defines the period of a VL and sets the 

maximum amount of packages which can be sent in one 

sending period (128 ms). The BAG number has to be by 

design an element of powers of 2 until 128. Setting BAG 

equal to 2 permits the VL to send 64 messages in one period. 

All these messages are equally distributed and have to be 

sent at the right moment within a maximum jitter of 500 us.  

B. Jitter 

The AFDX standard also introduces a jitter for every End 

System. The jitter is a deviation of the theoretical sending 

time. Depending on the amount of transmitting VLs and 

their bags, an End system will have a certain amount of 

jitter.  

 
Fig. 1.  Traffic without jitter. 

This largest jitter of 500 us is fundamental to the 

demonstration of determinism for AFDX. With this limit, it 

is possible to check if the scheduling is done right. In the 

Fig. 1 and Fig. 2, we can see the differences of a traffic 

simulation with and without jitter. 

 
Fig. 2.  Traffic with jitter = BAG/2. 

C. AFDX Frame 

A data flow is uniquely identified within AFDX network 

by the set of UDP/TCP (User Datagram Protocol/ 

Transmission Control Protocol) destination port, IP (Internet 

Protocol) destination address, MAC (medium access 

control) destination address, and the physical Ethernet 

connection(s) of the receiving ES. In order to use the 

standard Ethernet frame for AFDX, two bits of the 48-bit 

long MAC destination address have to be set to one. For 

routing all these addresses, include a Virtual Link Identifier 

(16 bits). 

 Bit 40: Indicates the group address (always = 1). 

 Bit 41: Indicates the locally administered address 

(always = 1). 

 Virtual Link Identifier: Value to identify the virtual 

links defined by network-designed. 

The MAC source address must be a unique identifier. 

Also, it includes the information of which interface the 

package was sent from. 

 Interface ID (3 bits): Indicates the interface the frame 

was sent from: “001” network A, “010” network B. 

 Bit 40: Indicates the unique address (always = 0). 

 Bit 41: Indicates the locally administered address 

(always = 1). 

 User Defined ID (16 bits): Identifies all hosts in a 

network. 

Every frame at the end of the payload has a sequence 

number - just in front of the MAC CRC (cyclic redundancy 

check) field. This number is bound to a VL and incremented 

with each transmitted frame on the AFDX network. Initially 

- or after a reset - this number has to be zero to communicate 

a fresh start to the receiving ES. The sequence number 

makes it possible to detect missing frames. It is an 8-bit 

number, and after being incremented to 255, it should be 

wrapped around to 1 as 0 is used for communicating a restart 

[4]. 

III. WORK ENVIRONMENTS 

In this section, we are going to describe the main 

hardware used in the topology for the AFDX test as we can 

see in Fig. 3. The Zynq-7000 is a family of system-on-chip 

(SoC) devices developed by Xilinx® that combines 

programmable logic (PL) with a hard-coded processing 

system (PS) [5]. Specifically, the programmable logic is a 

28 nm FPGA, and the processing system is a dual-core ARM 

Cortex-A9 based processor. We had used two different 

developing boards: zc7002, mounting xc7020 SoC with 
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85 K Logic Cells, 560 KB Block RAM, 220 DSP slices, and 

zc7006, mounting xc7045 SoC with 350 K Logic Cells, 

2180 KB Block RAM, 900 DSP slices [6]. 

 
Fig. 3.  Topology for the AFDX test. 

These are designed with useful features, such as on board 

DDR3 socket, a variety of connectors like HDMI, RJ45, 

USB, and PCI-e; two FPGA Mezzanine Card (FMC) ports, 

an SDIO interface, etc. 

The Phenicia board is an End System developed by CES. 

In our case, it is used only in order to observe the reception 

frames circulating on the AFDX network. It could also be 

configured in transmission, but it would need to implement 

to “hand” the content of the frames that you want to send 

(e.g., definition bit-by-bit addresses, checksums, data, etc.). 

TTEthernet is a fault-tolerant security-critical real-time 

communication protocol that integrates time-activated, 

speed-constrained standard Ethernet data streams into a 

physical infrastructure. TTEthernet switches provide the 

skills for robust partitioning between these three classes of 

traffic, enabling mixed criticality systems [7]. 

IV. TESTS AND RESULTS 

The testing of our design was done first by test benches 

for each developed core. Then, to validate the whole system, 

tests have been created in software. There have been 

multiple tests for checking distinct parts as we can see in 

Table I. They can be separately enabled in the main user 

task. All the hardware tests do not depend on the XML file 

and load specific data into the hardware. The other tests use 

the XML configuration for testing. 

TABLE I. TESTS’ TABLE. 

Test type Function 

Hardware test queuing Test the transmission of queuing frames. 

Hardware test sampling Test the transmission of sampling frames. 

Hardware test queuing 

and sampling 
Test the transmission of both frame types. 

Hardware test window 

table 
Test the functionality of the window table. 

User test attaching 
Tries to attach sampling and queuing 

ports depending on the XML cong. 

User test update 

sampling 
Test the mutability of sampling frames. 

User test Queuing ports 
Sends repeatedly file like data through 

queuing ports. 

User demo application 
An example of how to use the API for 

sending data through the AFDX network. 

A. TX Frame Format Validation 

The demonstrator is based on AFDX message exchange 

between simulated end-systems, in our case, the 

development of the FPGA systems in the Zynq boards. The 

first step of validation is to check that the frames sent by the 

transmission part of the end-systems are compliant with the 

required AFDX standard. 

The main frame format can be analysed on a PC 

connected to the AFDX network through its Ethernet 

interface. The Wireshark tool is used to expand the frame 

content and analyse in detail the conformance to IP standard 

protocol unless CAD-X can display the frame contents and 

show the parts of protocols that stay common between 

Ethernet and AFDX. This tool is not performed enough to 

catch all frames. Its timing resolution is not precise enough 

to control the respect of BAG policy. 

Wireshark tool is used to check the validity of the 

calculation of the checksums inserted in the IP header and at 

the end of the frame (FCS).  

It is to be noticed that UDP checksum is not used in 

transmission mechanism as it is not mandatory. 

Figure 4 presents an example of Wireshark tool display 

for the Queuing frames for each end-system. 

 
Fig. 4.  Check with Wireshark of a Zynq™ 7045 frame associated to 

Queuing Port. 

In order to analyse more in detail and to check the specific 

parts for AFDX, CES CAD-X is also used. Figure 5 and 

Figure 6 show examples of CAD-X display of captured 

frames on both Networks A and B for both end-systems 

Zynq™ 7045 and Zynq™ 7020. 

In each captured frame, IP header checksum has been 

highlighted and is compliant with the one shown in the 

Wireshark tool. It can be noticed that there is a difference of 

4 bytes in the frame size captured from the Wireshark tool 

and the CES CAD_X tool. This difference is due to the 

frame checksum which is included in the frame count by the 

CAD-X tool. 

Figure 7 shows a console terminal for the two 

development boards during normal execution. It can be 
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noticed that printout does not discriminate the sampling 

received frames from queuing ones. This should be part of a 

further enhancement. 

 
Fig. 5.  Example of CAD-X display for Zynq™ 7045 Sampling port 

Network A. 

 
Fig. 6.  Example of CAD-X display for Zynq™ 7020 Queuing port 

Network B. 

 
Fig. 7.  Zynq™ 7045 Terminal display during normal execution. 

This capture also shows that no erroneous frame is 

detected by the receiver, except the first one received by the 

Zynq™ 7020. This is due to the asynchronous application 

starting of both end-systems. As a consequence, the first 

frame received by the Zynq™ 7020 does not have a 

sequence number equal to “0” since the Zynq™ 7045 began 

to increment this value earlier in the frames it has already 

sent. The first frame is rejected by the Zynq™7020 allowing 

it to resynchronize the sequence numbers for the next 

received frames associated with the VL. 

B. Latency Measurement 

The latency test was made through the CAD-X tool by 

sending multiple frames in one window timeframe, and then 

checking how long it takes for the hardware to send a frame. 

The CAD-X displays the time between the receptions of two 

following frames also testing different lengths of frames. 

The probed values never exceeded 20 µs, for a maximum 

allowed latency is 150 µs [8]. 

C. FPGA Footprint Measurements 

The transmission mechanism implemented within the 

hardware does not change fundamentally the footprint. 

It is important to note that in these results the 

implementation uses a COTS module for MAC layer. Its use 

is not optimized and covers wider usage domain as the one 

really needed for AFDX for Space. Figure 8 shows the 

impact of the number of VL on the footprint. Note that the 

two curves on the left (light blue and orange) side show the 

fast increasing of the footprint with the amount of the 

queuing VL since each VL needs a FIFO. 

 
Fig. 8.  Impact of the VL number on the footprint. 

V. CONCLUSIONS 

After all the work, we can arrive to the conclusion that the 

demonstrator of the AFDX End System implementation over 

FPGA is possible. On the one hand, the design of the system 

gives a dynamic possibility depending on the deterministic 

network result. On the other hand, with respect to the 

footprint measurements, the rise depends on sampling and 

queuing VL increasing number, being sampling method the 

most efficient in FPGA due to the shorter FIFOs needed. 

The benefit of FPGA as communication based in satellites 

brings a step further to the satellite technologies. The 

maintenance and/or upgrades at distance is an option that 

can reduce increasing the obsolete number of satellites in the 

space. Moreover, it is a simple solution to add robustness 

against SEU when implementing directly in hardware a 

typically communication layer integrated mostly in software. 
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Both benefits together allow the option to add higher number 

of redundant channels after the device is already on the 

space and allows the option to be adapted to the 

environmental exposition reducing the risk of satellite 

designs. 
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