
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

1Abstract—This work is based on the Hardware development

of the Transmission part for the communication inside the

satellite. Our goal is move as much as possible of the software

part into the Field-programmable gate array (FPGA) matrix

due to the single event upsets (SEU). This project is part of the

collaborative project called “Mission: NET@SPACE”. It was

chosen by the European Commission under the Seventh

Framework Program for Research (FP7) to develop an

Avionics Full Duplex Switched Ethernet (AFDX) demonstrator

based in FPGA. It has to be able to receive and transmit frames

and enhance the robustness. The scheduling of the protocol

should also be moved into the hardware, by still keeping a small

footprint of the whole design. In this paper, we introduce the

theory and used technologies, the project flow and

development, including the decisions and milestones, to arrive

at the end to the further possibilities and conclusions.

 Index Terms—Aerospace electronics; Aerospace simulation;

AFDX; Latency measurements.

I. INTRODUCTION

Avionics Full Duplex Switched Ethernet (AFDX) is a

trademark of Airbus and a specific implementation of

ARINC (Aeronautical Radio, Inc.) Specification 664 Part 7.

AFDX is a deterministic network based on the same

hardware as Ethernet (IEEE 802.3) [1]. Airbus developed

this network to reduce weight on the planes and to provide a

guaranteed bandwidth and Quality of Service (QoS). It is

aimed for real-time, safety-critical applications which are

generally mandatory in avionic systems. AFDX was

developed around the year 2000 and was used on the planes

A380 and A350. Later, a similar implementation was used

on the Boeing 787 Dreamliner. The protocol is able to

replace simultaneously multiple standard buses with low

throughput, e.g., ARINC 429, ARINC 629 or MIL-STD

1553.

One of the predecessors of ARINC 664 Part 7, also

known as AFDX, was the ARINC 429 formulated in the late

Manuscript received 16 May, 2020; accepted 18 September, 2020.

1970s which can still be found in some active and retired

aircraft series [2]. This was one of the first standards ever

made in avionics. This standard had as basic unit; the word,

and two different coexisted in these networks: data words

and message control words. However, ARINC 429 defined a

unidirectional and simplex bus so that a station could be

attached to multiple buses and operate as either sender or

recipient. Because of this, a severe challenge was assumed

when interlinking. Even when having few stations, the

configuration could present important complications, and

also this affected the weight of the aircraft.

The first commercial plane that uses AFDX was the A380,

the biggest plane in the world, or the A350. It was first

developed by the company “Airbus” and later provided on

the ARINC 664 Part 7 as a standard. That is why Boeing, the

direct competition of Airbus, has also started to use it such

as in Boeing 787. AFDX networks were used to reduce a

high percentage of the wires found inside of the aircraft.

ARINC 429 uses wires to interconnect every sensor or end

system (ES) with monitors or ES. AFDX uses just one wire

shared by Virtual Links (VL).

II. STATE OF THE ART

AFDX added two new parameters related to aircraft

networks. First of all, an AFDX switch, with similar

characteristics to LAN switches, and the End System (ES)

responsible to send and receive the data to/from the network.

 AFDX Switches: These devices are developed to

connect the End Systems between them or with other

switches together and to check that the key parameters

like delivery, latency, and jitter are inside one specific

range. This task creates a big overhead - compared to

Ethernet switches - and slows the switching speed down.

The main topology used with AFDX Switches and End

systems is a star formation.

 AFDX End Systems: These systems are designed to

work as a receiver, transmitter or both and they make use

of the final network. Every End System is capable to

Implementation of an AFDX Interface with

Zynq SoC Board in FPGA

Fernando Molina1, Pablo Corral2, *, Miguel Aljaro3, Guillermo de Scals4, Alberto Rodriguez2
1Department of Engineering, Creative Electronic Systems,

Geneva, Switzerland
2Department of Communications Engineering, University Miguel Hernandez of Elche,

Elche, Spain
3Department of Computers Engineering, University Miguel Hernandez of Elche,

Elche, Spain
4Department of Applied Physics, University Miguel Hernandez of Elche,

Elche, Spain

pcorral@umh.es

http://dx.doi.org/10.5755/j01.eie.26.5.26008

11

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

support multiple applications that can connect to the

AFDX network.

Even if it is not a device, it should be pointed out that

AFDX HW-Links consist of normal full-duplex Ethernet

cables and connect an End System to a Switch. Every link is

set up by using two cables for redundancy. Due to this

redundancy, two identical networks are created. These

networks are called “A” and “B”, the same data are sent

through both of them to minimize the error rates when

transmitting. A concept called “Virtual Link” (VL), that has

similar characteristics as WLAN, permits the origin End

Systems sending data to the desired destinations. Without

these links, we could not select the devices that we want to

send, and we would send data to all devices without

discrimination. These links send only in one way (no way

back), so they are unidirectional.

This kind of links sends information about pressure,

humidity, temperature from the engines, state of the wings,

information about control panels, the movies and the audio

of each passenger seat at the same time using the same

network, but this information varies in each aircraft [3]. This

information is processed and redirected using the AFDX

switches by means of Fast Ethernet cables (100 Mbps) to its

corresponding End System. Within the AFDX networks the

type of traffic is differentiated according to the priority,

which can be high or low. In this way, it is possible for the

network to prioritize certain data (pressure, temperature or

humidity of the engines) over other data (movies and audios

for passengers). Anyway, two redundant networks always

exist, just in case one brakes down.

Currently, the use of AFDX networks has become

widespread and is considered a success. In the medium term,

the use of this type of network with AFDX Switches and

AFDX End Systems is proposed in the automotive industry

for the next generation of connected vehicles.

A. Bandwidth Allocation Gap

BAG stands for “Bandwidth Allocation Gap” and is

measured in ms. It defines the period of a VL and sets the

maximum amount of packages which can be sent in one

sending period (128 ms). The BAG number has to be by

design an element of powers of 2 until 128. Setting BAG

equal to 2 permits the VL to send 64 messages in one period.

All these messages are equally distributed and have to be

sent at the right moment within a maximum jitter of 500 us.

B. Jitter

The AFDX standard also introduces a jitter for every End

System. The jitter is a deviation of the theoretical sending

time. Depending on the amount of transmitting VLs and

their bags, an End system will have a certain amount of

jitter.

Fig. 1. Traffic without jitter.

This largest jitter of 500 us is fundamental to the

demonstration of determinism for AFDX. With this limit, it

is possible to check if the scheduling is done right. In the

Fig. 1 and Fig. 2, we can see the differences of a traffic

simulation with and without jitter.

Fig. 2. Traffic with jitter = BAG/2.

C. AFDX Frame

A data flow is uniquely identified within AFDX network

by the set of UDP/TCP (User Datagram Protocol/

Transmission Control Protocol) destination port, IP (Internet

Protocol) destination address, MAC (medium access

control) destination address, and the physical Ethernet

connection(s) of the receiving ES. In order to use the

standard Ethernet frame for AFDX, two bits of the 48-bit

long MAC destination address have to be set to one. For

routing all these addresses, include a Virtual Link Identifier

(16 bits).

 Bit 40: Indicates the group address (always = 1).

 Bit 41: Indicates the locally administered address

(always = 1).

 Virtual Link Identifier: Value to identify the virtual

links defined by network-designed.

The MAC source address must be a unique identifier.

Also, it includes the information of which interface the

package was sent from.

 Interface ID (3 bits): Indicates the interface the frame

was sent from: “001” network A, “010” network B.

 Bit 40: Indicates the unique address (always = 0).

 Bit 41: Indicates the locally administered address

(always = 1).

 User Defined ID (16 bits): Identifies all hosts in a

network.

Every frame at the end of the payload has a sequence

number - just in front of the MAC CRC (cyclic redundancy

check) field. This number is bound to a VL and incremented

with each transmitted frame on the AFDX network. Initially

- or after a reset - this number has to be zero to communicate

a fresh start to the receiving ES. The sequence number

makes it possible to detect missing frames. It is an 8-bit

number, and after being incremented to 255, it should be

wrapped around to 1 as 0 is used for communicating a restart

[4].

III. WORK ENVIRONMENTS

In this section, we are going to describe the main

hardware used in the topology for the AFDX test as we can

see in Fig. 3. The Zynq-7000 is a family of system-on-chip

(SoC) devices developed by Xilinx® that combines

programmable logic (PL) with a hard-coded processing

system (PS) [5]. Specifically, the programmable logic is a

28 nm FPGA, and the processing system is a dual-core ARM

Cortex-A9 based processor. We had used two different

developing boards: zc7002, mounting xc7020 SoC with

12

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

85 K Logic Cells, 560 KB Block RAM, 220 DSP slices, and

zc7006, mounting xc7045 SoC with 350 K Logic Cells,

2180 KB Block RAM, 900 DSP slices [6].

Fig. 3. Topology for the AFDX test.

These are designed with useful features, such as on board

DDR3 socket, a variety of connectors like HDMI, RJ45,

USB, and PCI-e; two FPGA Mezzanine Card (FMC) ports,

an SDIO interface, etc.

The Phenicia board is an End System developed by CES.

In our case, it is used only in order to observe the reception

frames circulating on the AFDX network. It could also be

configured in transmission, but it would need to implement

to “hand” the content of the frames that you want to send

(e.g., definition bit-by-bit addresses, checksums, data, etc.).

TTEthernet is a fault-tolerant security-critical real-time

communication protocol that integrates time-activated,

speed-constrained standard Ethernet data streams into a

physical infrastructure. TTEthernet switches provide the

skills for robust partitioning between these three classes of

traffic, enabling mixed criticality systems [7].

IV. TESTS AND RESULTS

The testing of our design was done first by test benches

for each developed core. Then, to validate the whole system,

tests have been created in software. There have been

multiple tests for checking distinct parts as we can see in

Table I. They can be separately enabled in the main user

task. All the hardware tests do not depend on the XML file

and load specific data into the hardware. The other tests use

the XML configuration for testing.

TABLE I. TESTS’ TABLE.

Test type Function

Hardware test queuing Test the transmission of queuing frames.

Hardware test sampling Test the transmission of sampling frames.

Hardware test queuing

and sampling
Test the transmission of both frame types.

Hardware test window

table
Test the functionality of the window table.

User test attaching
Tries to attach sampling and queuing

ports depending on the XML cong.

User test update

sampling
Test the mutability of sampling frames.

User test Queuing ports
Sends repeatedly file like data through

queuing ports.

User demo application
An example of how to use the API for

sending data through the AFDX network.

A. TX Frame Format Validation

The demonstrator is based on AFDX message exchange

between simulated end-systems, in our case, the

development of the FPGA systems in the Zynq boards. The

first step of validation is to check that the frames sent by the

transmission part of the end-systems are compliant with the

required AFDX standard.

The main frame format can be analysed on a PC

connected to the AFDX network through its Ethernet

interface. The Wireshark tool is used to expand the frame

content and analyse in detail the conformance to IP standard

protocol unless CAD-X can display the frame contents and

show the parts of protocols that stay common between

Ethernet and AFDX. This tool is not performed enough to

catch all frames. Its timing resolution is not precise enough

to control the respect of BAG policy.

Wireshark tool is used to check the validity of the

calculation of the checksums inserted in the IP header and at

the end of the frame (FCS).

It is to be noticed that UDP checksum is not used in

transmission mechanism as it is not mandatory.

Figure 4 presents an example of Wireshark tool display

for the Queuing frames for each end-system.

Fig. 4. Check with Wireshark of a Zynq™ 7045 frame associated to

Queuing Port.

In order to analyse more in detail and to check the specific

parts for AFDX, CES CAD-X is also used. Figure 5 and

Figure 6 show examples of CAD-X display of captured

frames on both Networks A and B for both end-systems

Zynq™ 7045 and Zynq™ 7020.

In each captured frame, IP header checksum has been

highlighted and is compliant with the one shown in the

Wireshark tool. It can be noticed that there is a difference of

4 bytes in the frame size captured from the Wireshark tool

and the CES CAD_X tool. This difference is due to the

frame checksum which is included in the frame count by the

CAD-X tool.

Figure 7 shows a console terminal for the two

development boards during normal execution. It can be

13

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

noticed that printout does not discriminate the sampling

received frames from queuing ones. This should be part of a

further enhancement.

Fig. 5. Example of CAD-X display for Zynq™ 7045 Sampling port

Network A.

Fig. 6. Example of CAD-X display for Zynq™ 7020 Queuing port

Network B.

Fig. 7. Zynq™ 7045 Terminal display during normal execution.

This capture also shows that no erroneous frame is

detected by the receiver, except the first one received by the

Zynq™ 7020. This is due to the asynchronous application

starting of both end-systems. As a consequence, the first

frame received by the Zynq™ 7020 does not have a

sequence number equal to “0” since the Zynq™ 7045 began

to increment this value earlier in the frames it has already

sent. The first frame is rejected by the Zynq™7020 allowing

it to resynchronize the sequence numbers for the next

received frames associated with the VL.

B. Latency Measurement

The latency test was made through the CAD-X tool by

sending multiple frames in one window timeframe, and then

checking how long it takes for the hardware to send a frame.

The CAD-X displays the time between the receptions of two

following frames also testing different lengths of frames.

The probed values never exceeded 20 µs, for a maximum

allowed latency is 150 µs [8].

C. FPGA Footprint Measurements

The transmission mechanism implemented within the

hardware does not change fundamentally the footprint.

It is important to note that in these results the

implementation uses a COTS module for MAC layer. Its use

is not optimized and covers wider usage domain as the one

really needed for AFDX for Space. Figure 8 shows the

impact of the number of VL on the footprint. Note that the

two curves on the left (light blue and orange) side show the

fast increasing of the footprint with the amount of the

queuing VL since each VL needs a FIFO.

Fig. 8. Impact of the VL number on the footprint.

V. CONCLUSIONS

After all the work, we can arrive to the conclusion that the

demonstrator of the AFDX End System implementation over

FPGA is possible. On the one hand, the design of the system

gives a dynamic possibility depending on the deterministic

network result. On the other hand, with respect to the

footprint measurements, the rise depends on sampling and

queuing VL increasing number, being sampling method the

most efficient in FPGA due to the shorter FIFOs needed.

The benefit of FPGA as communication based in satellites

brings a step further to the satellite technologies. The

maintenance and/or upgrades at distance is an option that

can reduce increasing the obsolete number of satellites in the

space. Moreover, it is a simple solution to add robustness

against SEU when implementing directly in hardware a

typically communication layer integrated mostly in software.

14

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

Both benefits together allow the option to add higher number

of redundant channels after the device is already on the

space and allows the option to be adapted to the

environmental exposition reducing the risk of satellite

designs.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] N. E.-D. Safwat, A. Zekry, and M. Abouelatta “Avionics full-duplex

switched Ethernet (AFDX): Modeling and simulation”, in Proc. of

2015 32nd National Radio Science Conference (NRSC), 2015. DOI:

10.1109/nrsc.2015.7117841.

[2] AFDX®/ARINC 664 Tutorial, TechSAT GmbH, Poing (Germany),

29 Aug., 2008.

[3] R. Gomez, P. Corral, S. M. Froes, A. C. D. Lima, I. De Barros, and G.

De Scals, “An emulation model for embedded networks used in

avionics”, in Proc. of 2019 Brazilian Symposium on Computing

Systems Eng. (SBESC), 2019. DOI:

10.5753/sbesc_estendido.2019.8635.

[4] J. Yao, W. Shaojun, M. Ning, and P. Yu, “A SEU test and simulation

method for Zynq BRAM and flip-flops”, in Proc. of 2017 13th IEEE

International Conference on Electronic Measurement & Instruments

(ICEMI), 2018. DOI: 10.1109/ICEMI.2017.8265693.

[5] Zynq-7000 All Programmable SoC, Technical Reference Manual

(v1.4), San José, US, 2012.

[6] Xilinx Manual, LogiCORE IP AXI Ethernet (v3.00a), San José, US,

2011.

[7] Tttech manual, TTTech. [Online]. Available:

https://www.tttech.com/fr/products/aerospace/development-test-

vv/development-switches/tte-development-switch-1-gbits-12-ports/

[8] Q. Guo, R. Feng, Y. Wu, and N. Yu, “Measurement of the AFDX

switch latency based on FPGA”, in Proc. of 2016 IEEE International

Conference on Aircraft Utility Systems (AUS), 2016. DOI:

10.1109/AUS.2016.7748018.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

15

http://www.tttech.com/fr/products/aerospace/development-test-

