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1Abstract—Network programmability is a key feature of fifth 

generation (5G) system which, in combination with cloud-based 

services, can support many use cases, including mission critical 

and healthcare communications. Programmability enables 

flexibility in customization of service connectivity. Multi-access 

Edge Computing (MEC) services and applications are enablers 

for network programmability. In this paper, MEC capabilities 

for programmability of multiparty multimedia call control at 

the network edge are studied. Multiparty video calls are one of 

the key applications of 5G, and are efficient way to exchange 

ideas, knowledge, expertise, information, and so on. The paper 

presents an approach to design MEC Application 

Programming Interfaces (APIs) which enable third party 

applications to create multiparty multimedia sessions and 

dynamically manage session participations. The API 

functionality is described by required information and message 

flows. The paper specifies the proposed MEC API with data 

model. Feasibility study includes modelling and formal 

validation of multiparty session state models supported by the 

network and mobile edge application. The latency injected by 

the API is evaluated by emulation. 

 

 Index Terms—Next generation networking; Multi-access 

edge computing; Network function virtualization; Application 

programming interfaces.  

I. INTRODUCTION 

Fifth generation (5G) system has huge potential to 

improve our daily lives in various aspects, including 

numerous mission critical and healthcare scenarios. In these 

scenarios, multiparty communications are an important 

feature, and 5G technologies can add value enabling 

enhanced broadband connections, ultra-low latency, and 

high reliability. For mission critical multiparty 

communications, 5G can reduce end-to-end latency, provide 

ultra-high reliability, and improve service coverage, and for 

healthcare multiparty communications, 5G can trigger 

optimal quality of service enforcement. 

Traditionally mission critical multiparty communications 

include Push-To-Talk Over Cellular services used by Public 

Safety Agencies, such as fire brigade, police, and 

ambulance. However, mission critical voice services can 

bring advantages and for other industries, such as utilities, 

transport, mining, gas, and oil industries, etc. Mission 

critical video can enrich voice multiparty communication 
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enabling video sharing among the multiparty members, and 

thus improving the perception of the conditions in the 

critical situation.  

Health multiparty communications can be useful in 

diagnosis, treatment or prevention of diseases or other 

conditions, including stress, mental disorder, depression or 

health endangering environment. Examples of mobile 

applications intended for use in health multiparty 

communications can be found in [1]. 

Mission critical and machine type communications usually 

exploit dedicated networks where the communications with 

telecom operator core network is optional. These 

deployments are regarded as distributed core network 

functionality and enable more efficient provisioning of 

network intelligence, and improvement of customer 

experience and network performance [2], [3]. The 

distributed core network functions can be built on purpose 

using Network Function Virtualization (NFV) and are 

typically deployed at the network edge [4], [5].  

Further increase of network intelligence at the mobile 

edge can be achieved by deployment of Multi-access Edge 

Computing (MEC). MEC provides computing environment 

for running cloud-based applications. MEC can address 

challenges imposed by mission critical and healthcare 

communications as it enables building of vertical segments 

and service deployment at network edge. Moving the cloud 

intelligence in the vicinity of end users reduces latency, 

optimizes network resource utilization, and improves 

security [6], [7]. 

In this paper, we study the capabilities for 

programmability of multiparty multimedia communication 

control using MEC technology. The focus is on Application 

Programming Interface (API) that enables mobile edge 

applications to create multiparty multimedia sessions to 

manage dynamically the participants involved and to control 

the media types for each participant. Among the others, the 

API supports mission critical communications, including 

healthcare scenarios, taking advantages of MEC. 

3GPP addresses service requirements, architecture, and 

protocols for mission critical Push-to-Talk service in [8], 

[9]. Alternative architectures for mission critical 

communication are presented in [10]. Feasibility study on 

3GPP mission critical multiparty communications is 

provided in [11]. The authors present realization of mission 

critical Push-to-Talk service and evaluate key performance 

indicators of the service. In [12], the authors propose an 
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architecture for distributed mission critical Push-To-Talk 

service based on IP Multimedia Subsystem (IMS). In the 

proposed architecture, the application server is co-located 

with distributed core network functions for user traffic 

handling, while the control plane travels through the 

operator’s centralized core network. In [13], the key 

performance indicators of mission critical Push-to-Talk 

service in 5G architecture are studied. 

Our proposal for deployment of mission critical 

multiparty communication services is based on MEC and 

distributed dedicated core network functionality, including 

access and mobility management, session management, user 

data registry, and user plane functions. The benefit is that the 

signalling path does not need to traverse through the 

operator’s core network.  

The research novelty is in delegating the multiparty call 

control to mobile edge applications deployed in the vicinity 

of end users. The proposed open access to programmability 

of multiparty communications does not require deployment 

of IMS, and thus it reduces the costs and provides the 

necessary performance and reliability. 

The rest of the paper is organized as follows. Next section 

describes how the proposed functionality can be deployed in 

5G for mission critical and machine type communications. 

Section III provides overall description of the new API for 

multiparty multimedia communications by typical use cases. 

Section IV introduces how the API may be used by MEC 

applications and the information that can be exchanged. 

Section V illustrates the API feasibility by modelling the 

multiparty call state from network and application points of 

view. Some performance metrics of the proposed APIs are 

discussed in Section VI, where the injected latency is 

evaluated by emulation. The conclusion summarizes the 

novelty and benefits of the proposed API. 

II. DEPLOYMENT OF API FOR MULTIPARTY 

COMMUNICATION CONTROL AT THE NETWORK EDGE 

Distributed core network functionality for mission critical 

and machine type communications can be deployed by 

virtualization of core network functions and customized to 

the specific requirements using the technique of network 

slicing [14], [15]. Customized core network functions, such 

as Access and mobility Management Function (AMF), 

Session Management Function (SMF), User Data Repository 

(UDR), User Plane Function (UPF), and Policy Control 

Function (PCF), run on an NFV platform. MEC applications 

for mission critical and machine type communications, 

which are run as virtual machines, as well as the mobile edge 

platform, which provides mobile edge services, can share the 

same NFV platform.  

The deployment scenario for MEC and distributed 

virtualized core network functions are shown in Fig. 1.  

We propose a new mobile edge service called “Multiparty 

Communication Control” (MPCC). The service provides 

open access to multiparty call control for MEC applications. 

The call control functions are part of the core network and 

may be accessed through the Network Exposure Function 

(NEF). The NEF securely exposes core network 

functionality and information provided by the network to the 

MEC platform and applications.  

5G core network architecture is centred around services. 

The proposed MPCC service must use the NEF 

Nnef_AFsessionWithQoS service to create an Application 

Function (AF) session with required QoS [16], [19].  

 
Fig. 1.  MEC co-location with distributed virtualized core functionality.  

The communication approach between core network 

services, mobile edge services, and applications follows 

REpresentational State Transfer (REST) architectural style. 

In RESTful API, each entity is represented as a uniquely 

identified resource with associated data, set of methods, and 

relationship to other resources. The RESTful communication 

follows request/response pattern and the resource methods 

correspond to the HTTP methods POST, GET, PUT, 

PATCH, and DELETE. 

So, following the adopted architectural style, the proposed 

MPCC interfaces described in the next section are REST-

based. 

III. OVERALL DESCRIPTION OF API FOR MULTIPARTY 

COMMUNICATION CONTROL 

This section describes the proposed API for multiparty 

multimedia call control. To clarify how the respective API 

functions can be provided, the corresponding core network 

services are also commented. 

The 5G specifications provide access to monitoring of call 

related events and enable setting of application server 

sessions with specific quality of service, but do not provide 

functionality for external applications to manage multiparty 

calls. The proposed MPCC service enables mobile edge 

applications to create multimedia multiparty sessions and to 

manage dynamically the session participation. Using the 

MPCC interfaces, a mobile edge application may: 

 Setup a multiparty call with specified quality of service; 

 Add or remove a participant to or from the call; 

 Retrieve information about multiparty call and call 

participants. 

To setup a multiparty communication, a mobile edge 

application first creates a multimedia session in specific 

context that represents a virtual meeting. A unique session 

identifier is assigned and initially no participants are 

connected.  

The mobile edge application subsequently may add 

participants to the multimedia session specifying the media 
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types. This results in setup of AF session with required QoS, 

PCF-initiated session management policy association and 

network triggered service request to the participant User 

Equipment (UE) in the network [17], [18], [19]. The 

multimedia session becomes active with first participant 

connecting. The mobile edge application can check the 

status of the session participants.  

The mobile edge application may dynamically manage 

media streams for a multiparty session participant, e.g., 

adding a video component to a participant using only audio 

so far in the multiparty session. On application request for 

adding or removing a media stream, the network executes 

modification of AF session with QoS.  

During the multiparty multimedia session, the mobile 

edge application may disconnect a participant from the 

session, or it may retrieve information about the multiparty 

session status and session participant status.  

The end of the multimedia session occurs due to mobile 

application-initiated session termination or after all the 

participants have left the session. If the mobile edge 

application has specified the maximum session duration 

during session setup, the session ends on expiry of session 

duration. When the multiparty multimedia session maximum 

duration expires or the mobile edge application terminates 

the session, a removal of AF session with QoS takes place in 

the network [19].  

The mission critical multiparty communications and 

health multiparty communications share a common base of 

functionalities which can be depicted by the following use 

cases.  

A video analytic application detects increased anxiety in 

an elderly patient and initiates a multiparty communication 

that joins the patient, his or her physician, and a specialist to 

assess the patient’s momentary condition and to provide 

patient with specific recommendations and counselling.  

Another exemplary use case of healthcare communication 

is an analytic application which receives data about patient’s 

treatment and status from an ambulance team during their 

way to the hospital, and meanwhile it makes a multiparty 

session with doctor’s group at the emergency department to 

provide quick rescue to the patient. 

To illustrate the proposed functionality, Fig. 2 shows the 

flow of initiation of multiparty multimedia session by a 

mobile edge application for the presented use case.  

The MPCC service is in a role of AF. The sequence of 

steps in creating a multimedia multiparty session is as 

follows: 

1. The mobile edge application using the MPCC 

interfaces requests a multiparty multimedia session 

establishment without any participants initially. The 

application provides a session description and maximum 

number of session participants. Optionally, the maximum 

duration of the multiparty session and the address of the 

multiparty session owner may also be provided. 

2. The MPCC service stores the multiparty session data 

and responds to the application. The response includes 

the identifier of the created multiparty multimedia 

session. 

3. The mobile edge application wishes to involve a 

participant in the multiparty multimedia session. To do 

this, the application sends a request for adding the 

participant, including the media types that are allowed 

for this participant. The request includes the multiparty 

session identifier and participant address. 

 
Fig. 2.  A mobile edge application-initiated multiparty session. 

4. The MPCC service invokes 

Nnef_AFsessionWithQoS_Create service operation 

which requests the network to setup an AF session with 

required QoS. 

5. The NEF authorizes the requests, forwards it in the 

network, subscribes for UE reachability events, and 

responds to the MPCC service. 

6. The MPCC service responds to the application request 

for adding a participant to the multiparty session. 

7–8. The NEF triggers PCF initiated session management 

policy association and network triggered service request 

to the UE of the first multiparty session participant. The 

NEF is notified about UE reachability events, and in turn 

it notifies the MPCC service about the participant. The 

mobile edge application can query about multiparty 

session participant status. 

9. When the mobile edge application wishes to invite the 

next participants in the multiparty session, the steps from 

3 to 8 are repeated.  

IV. DATA MODEL AND API DEFINITION FOR MULTIPARTY 

COMMUNICATION CONTROL  

As a part of MPCC service specification, we build the 

data model and provide interface definition. This section 

describes the required information and message flows. It 

also provides detailed description on all information 

elements used for multiparty call control. 

The entities multiparty session and session participants are 

all presented as RESTful resources. Figure 3 shows the 

MPCC resources organized in a tree structure.  

 
Fig. 3.  Resource structure supported by the MPCC service. 
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Each resource is uniquely identified by its Uniform 

Resource Identifier (URI), and the common root of service 

resource may be published and discovered by service 

directory. 

A. Multiparty Session Management 

The multipartySessions resource represents all multiparty 

multimedia sessions created by mobile edge applications. 

The resource supports HTTP GET method, which retrieves a 

list of all active application-created multiparty sessions, and 

HTTP POST method, which creates a new multiparty 

multimedia session.  

To initiate a new multiparty multimedia session, a mobile 

edge application sends a HTTP POST request to the 

multipartySessions resource with message body containing 

multipartySessionData data structure. The 

multipartySessionData data type is a JSON structure, where 

the attributes are given in Table I. 

TABLE I. ATTRIBUTES OF MULTIPARTYSESSIONDATA DATA 

TYPE. 

Attribute name Type 
Cardina

lity 
Meaning 

>timeStamp TimeStamp 0…1 TimeStamp 

>sessionDescription String 0…1 

Textual 

description of the 

multiparty session 

>maxParticipant-

Number 
Integer 1 

The maximal 

number of 

participants 

allowed 

>maxDuration Integer 1 
Maximal session 

duration 

>appInsID String 1 

The unique 

application 

instance identifier 

>requestID String 1 

The request 

identifier allocated 

by the application 

>chargingInfo String 0…1 

The tariff the 

session will be 

charged 

 

The MPCC service creates a multipartySessionID 

resource representing the requested multiparty session and 

responds with “201 Created” with message body containing 

the multipartySessionData data structure and the allocated 

multiparty session identifier. 

Figure 4 shows the flow of mobile edge application 

requesting creation of a multiparty multimedia session. 

 
Fig. 4.  Message flow of application-initiated multiparty multimedia 

session.  

The multipartySessionID resource represents an existing 

multiparty multimedia session created by a mobile edge 

application. The resource supports HTTP method GET, 

which retrieves information about the multiparty session, 

HTTP methods PUT or PATCH, which update the 

multiparty multimedia session, and HTTP method DELETE, 

which requests termination of the multiparty multimedia 

session.  

The mobile edge application can request the current status 

of a multiparty multimedia session. To do this, the 

application sends a HTTP GET request to the resource 

representing the respective multiparty multimedia session. 

The MPCC service responds with “200 OK” message 

containing the multipartySessionInfo data structure. The 

multipartySessionInfo data type is a JSON structure, where 

the attributes are given in Table II. 

TABLE II. ATTRIBUTES OF MULTIPARTYSESSIONINFO DATA 

TYPE. 

Attribute name Type 
Cardi

nality 
Meaning 

>timeStamp TimeStamp 0…1 TimeStamp 

>startTime TimeStamp 1 
The time the 

session begins 

>activeTime TimeStamp 1 

The time at 

which the 

multiparty 

session was 

active 

>sessionOwner String 0…1 
The owner of the 

session 

>participantNumber Integer 1…n 

The current 

number of 

participants 

involved in the 

session 

>maxParticipantNumber Integer 1…n 

The maximal 

number of 

participants 

allowed 

>appInsID String 1 

The unique 

application 

instance 

identifier 

>requestID String 1 

The request 

identifier 

allocated by the 

application 

>sessionDescription String 0…1 

Textual 

description of 

the multiparty 

session 

 

Figure 5 shows the flow of retrieving information about 

multiparty multimedia session. 

 
Fig. 5.  Message flow of application-initiated multiparty multimedia 

session. 
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The mobile edge application can modify the multiparty 

multimedia session data partially (e.g., the maximum number 

of participants involved in the multiparty session or 

maximum session duration). To do this, the application 

sends an HTTP PATCH request to the resource representing 

the multiparty multimedia session with message body 

containing the modified multipartySessionData structure. 

The MPCC service modifies the attributes of the multiparty 

session and responds with “200 OK”, including the modified 

multiparty session data. 

Figure 6 shows the flow of modifying multiparty 

multimedia session data. 

 
Fig. 6.  Message flow of modifying multiparty multimedia session data. 

When the mobile edge application decides to terminate a 

multiparty multimedia session, it sends an HTTP DELETE 

request to the resource representing the session. On 

receiving the request, the MPCC service deletes the 

respective resource and responds with “204 No Content”. If 

the multiparty session status is active, the MPCC service 

invokes Nnef_AFWithQoS_Create service operation of NEF 

indicating the release of the AF session with QoS. 

Figure 7 shows the flow of terminating a multiparty 

multimedia session. 

 
Fig. 7.  Message flow of terminating a multiparty multimedia session. 

B. Multiparty Session Participant Management 

The multipartySessionParticipants resource represents all 

participants connected to the multiparty multimedia session. 

The resource supports HTTP POST and GET methods. A 

mobile edge application uses the GET method to retrieve a 

list of all participants involved in the multiparty session. The 

MPCC responds with “200 OK” message, including the list 

of participants URIs. 

The application can add a participant to the multiparty 

multimedia session. To do so, the application sends an 

HTTP POST requests to the sessionParticipants resource of 

the respective multiparty session. The message body 

contains participantData data structure which specifies the 

participant URI and the information about media streams 

used for the initial connection. Each media stream is defined 

by its type, QoS Class Identifier, and priority level. The 

participantData data type is a JSON structure, where the 

attributes are given in Table III.  

Upon receiving the request, the MPCC service creates a 

sessionParticipant resource representing the participant and 

responds with “201 Created” message, including the data of 

the participant. The MPCC invokes the 

Nnef_AFWithQoS_Create service operation of NEF 

requesting the network to set up an AF session with 

specified QoS with implicit subscription for bearer level 

events. The NEF authorizes the request and forwards it into 

the network. When the participant connects to the session, 

the NEF invokes Nnef_AFWithQoS_Notify service 

operation to notify the MPCC service about the bearer level 

event as described in [19]. 

TABLE III. ATTRIBUTES OF PARTICIPANTDATA DATA TYPE. 

Attribute name Type 
Cardi

nality 
Meaning 

>timeStamp TimeStamp 0...1 TimeStamp 

>participantInfo Structure 1…n 

The initial 

information about 

the participant 

>>participantURI URI 1 
The participant 

address 

>>mediaInfo Structure 1…n 
The media 

information 

>>>media String 1 

The media type 

(e.g., voice, video, 

data, text) 

>>>QCI Integer 1 

The QoS Class 

identifier as defined 

by 3GPP 

>>>priorityLevel Integer 1 

Allocation and 

Retention Priority 

as defined by 3GPP 

>requestID String 1 

The request 

identifier allocated 

by the application 

 

Figure 8 shows the flow of adding a participant to a 

multiparty multimedia session. 

 
Fig. 8.  Flow of adding a participant to a multiparty multimedia session. 

The sessionParticipantID resource represents an existing 

participant involved in a multiparty multimedia session. It 

supports HTTP methods GET, PUT, and DELETE. 

The mobile edge application can retrieve information 

about a multiparty session participant by sending an HTTP 

GET request to the respective sessionParticipantID 
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resource. The MPCC service responds with “200 OK” 

message which transfers the participantStatus data type. The 

participantStatus data type is JSON structure, and its 

attributes are given in Table IV. 

Figure 9 shows the flow of retrieving information about 

multiparty session participant. 

The mobile edge application can add or remove media for 

participant involved in a multiparty multimedia session. To 

do this, the application sends an HTTP PATCH request to 

the sessionParticipantID resource containing in its body the 

updated media information. The MPCC invokes the 

Nnef_AFWithQoS_Update service operation of NEF 

requesting the network to update some of the properties of 

the established AF session with specified QoS.  

TABLE IV. ATTRIBUTES OF PARTICIPANTINFO DATA TYPE. 

Attribute name Type 
Cardin

ality 
Meaning 

>timeStamp TimeStamp 0…1 TimeStamp 

>participantInfo Structure 1…n 

The initial 

information about 

the participant 

>>participantURI URI 1 
The participant 

address 

>>mediaInfo Structure 1…n 
The media 

information 

>>>media String 1 

The media type 

(e.g., voice, video, 

data, text) 

>>>QCI Integer 1 

The QoS Class 

identifier as 

defined by 3GPP 

>>>PriorityLevel Integer 1 

Allocation and 

Retention Priority 

as defined by 3GPP 

currentStatus Enumerated 1 

The current 

participant status: 1 

= connected; 2 = 

disconnected 

 
Fig. 9.  Flow of retrieving information about multiparty session participant. 

The NEF authorizes the request and forwards it to the 

network. When the established AF session with specified 

QoS is updated, the NEF invokes Nnef_AFWithQoS_Notify 

service operation to notify the MPCC service about the 

bearer level event as described in [19]. The MPCC service 

responds to the application with “200 OK” message with 

body containing updated participant media information. 

Figure 10 shows the flow of information update about 

participant connected to a multiparty multimedia session. 

When the mobile edge application decides to remove a 

participant from a multiparty multimedia session, it sends an 

HTTP DELETE request to the sessionParticipantID 

resource containing in its body the updated media 

information. The MPCC invokes the 

Nnef_AFWithQoS_Delete service operation of NEF 

requesting the network to remove all properties of the 

established AF session with specified QoS. The NEF 

authorizes the request and interacts with PCF to terminate 

the session. The MPCC service responds to the application 

with “204 No Content” message. 

 
Fig. 10.  Flow of multiparty session participant information update. 

Figure 11 shows the flow of removing a participant from a 

multiparty multimedia session. 

 
Fig. 11.  Flow of removing a participant from a multiparty multimedia 

session. 

Table V summarizes the API resources and supported 

methods for multiparty communication control.  

TABLE V. API RESOURCES AND SUPPORTED METHODS FOR 

MULTIPARTY COMMUNICATION CONTROL. 

Resource 

name 
Resource URI 

HTTP 

method 
Meaning 

All 

multiparty 

multimedia 

sessions 

initiated by 

application 

/multipartySessions 

GET 

 

 

POST 

 

Retrieves the list 

of all multiparty 

sessions 

Creates a new 

multiparty session 

An existing 

multiparty 

multimedia 

session 

/multipartySessions 

/{multipartySessio

nID}  

GET 

 

 

PATCH 

 

 

DELETE 

Retrieves 

information about 

existing 

multiparty session 

Modifies existing 

multiparty session 

Cancels existing 

multiparty session 

All 

participants 

of a 

multiparty 

multimedia 

session 

/multipartySessions 

/{multipartySessio

nID} 

/sessionParticipant

s 

GET 

 

 

 

POST 

Retrieves list of 

all participants in 

a multiparty 

session 

Adds a new 

participant to a 

multiparty session 
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Resource 

name 
Resource URI 

HTTP 

method 
Meaning 

Existing 

participant 

of a 

multiparty 

multimedia 

session 

/multipartySessions 

/{multipartySessio

nID} 

/sessionParticipant

s 

/{sessionParticipan

tID} 

 

GET 

 

 

 

PATCH 

 

 

 

DELETE 

 

Retrieves 

information about 

existing 

participant in a 

multiparty session 

Updates data of a 

participant in a 

multiparty session 

Removes a 

participant from a 

multiparty session  

V. FEASIBILITY STUDY 

To assess the feasibility of the proposed API, we model 

the visions of the network and mobile edge application on 

the state of a multiparty multimedia session. The network 

and mobile edge application must have synchronized visions 

and the multiparty multimedia session state models must 

expose equivalent behaviour.  

In this section, models representing the multiparty 

multimedia session state are proposed and described 

formally using the concept of Labelled Transition Systems 

(LTS). A mathematical proof for behavioural equivalence of 

the models is provided formally using the concepts of bi-

simulation. 

Figure 12 shows a simplified multiparty session state 

model supported by application.  

 
Fig. 12.  A simplified multiparty session state model supported by 

application. 

For simplicity sake, the model does not show 

application’s queries about multiparty participant status. 

The Null state is the initial one, where the multiparty 

multimedia session does not exist. In Passive state, the 

multiparty multimedia session is created with maximum 

duration Δt, and no participants are connected yet. When the 

application adds a multiparty participant, the state moves to 

Active. 

In Active state, the multiparty multimedia session has 

participant(s), and the application may request adding or 

removing a multiparty participant. When the application 

decides to cancel the multiparty session, the state becomes 

Terminated state. In each state, the application may query 

the MPCC service about the multiparty session status.  

An LTS is formal representation of a state model defined 

by a set of states, a set of inputs, a set of transitions, and a 

set of initial states.  

By Tapp, it is denoted an LTS representing the multiparty 

session state model supported by a mobile edge application. 

Tapp = (Sapp, Inpapp, Transapp, s0
app), where: 

Sapp = {Null [sapp
1], Passive[sapp

2], Active[sapp
3], 

Terminated [sapp
4]; 

Inpapp = {createSession [tapp
1], createSessionRes [tapp

2], 

getSessionStatus [tapp
3], getSessionStatusRes(passive) [tapp

4], 

addParticipant [tapp
5], addParticipantRes [tapp

6], 

getSessionStatusRes(active) [tapp
7], removeParticipant [tapp

8], 

removeParticipantRes [tapp
9], 

getSessionStatusRes(terminated) [tapp
10], cancelSession 

[tapp
11], cancelSessionRes [tapp

12]}; 

Transapp = {(sapp
1, tapp

1, sapp
2), (sapp

2, tapp
2, sapp

2), (sapp
2, tapp

3, 

sapp
3), (sapp

2, tapp
4, sapp

2), (sapp
2, tapp

5, sapp
2), (sapp

2, tapp
6, sapp

3), 

(sapp
3, tapp

6, sapp
3), (sapp

3, tapp
3, sapp

3), (sapp
3, tapp

7, sapp
3), (sapp

3, 

tapp
5, sapp

3), (sapp
3, tapp

8, sapp
3), (sapp

3, tapp
9, sapp

3), (sapp
3, tapp

10, 

sapp
1), (sapp

3, tapp
11, sapp

4), (sapp
2, tapp

11, sapp
4), (sapp

4, tapp
12, 

sapp
1)}; 

s0
app = sapp

1. 

In the formal model description, short notations of state 

and input names are given in brackets.  

Figure 13 shows the multiparty state model supported by 

the network. 

 
Fig. 13.  A simplified multiparty session state model supported by the 

network. 

In Idle state, there is no multiparty multimedia session. 

When the MPCC service receives a request for multiparty 

session creation, it creates an object representing the session 

with maximal duration Δt, and the session state becomes 

NoParticipants. In NoParticipants state, the multiparty 

multimedia session is created with no participants. 

Upon receiving a request for adding a participant, the 

MPCC service initiates a procedure for establishment of AF 

session with required QoS to the UE. In 
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AFSessionWithQoSCreation state, the MPCC service waits 

for notification about UE reachability. The multiparty 

session becomes WithParticipants when at list one UE is 

connected. In WithParticipants state, a request for adding a 

participant may be received. Upon receiving a request for 

removing a participant, the MPCC service initiates a 

procedure for release of the AF session with the UE. In 

AFSessionWithQoSDeletion state, the MPCC service waits 

for notification about UE reachability. Upon receiving a 

request for the multiparty session termination, the MPCC 

service initiates a procedure to terminate the multiparty 

session and the multiparty session state becomes 

AppTerminated. In AppTerminated state, the MPCC service 

waits for notification about session termination. In 

NetworkTerminated state, the multiparty session is 

terminated by the network, and the MPCC service maintains 

the multiparty session state until the maximum session state 

expires and moves to Idle state. 

In each state, when an application request for multiparty 

session state status is received, the MPCC service sends a 

response. 

By Tmec, it is denoted an LTS representing the multiparty 

multimedia session state model supported by the network 

Tmec = (Smec, Inpmec, Transmec, s0
mec), where: 

Smec = {Idle [smec
1], NoParticipants [smec

2], 

AFSessionWithQoSCreation [smec
3], WithParticipants [smec

4], 

AFSessionWithQoSDeletion [smec
5], AppTerminated [smec

6], 

NetworkTerminated [smec
7]}; 

Inpmec = {createSessionReq(Δt) ([tmec
1], 

getSessionStatusReq [tmec
2], addParticipantReq [tmec

3], 

Nnef_AFWithQoS_Notify [tmec
4], removeParticipantReq 

[tmec
5], Nnef_AFWithQoS_Notify(all) [tmec

6], Δt [tmec
7], 

cancelSessionReq [tmec
8], Nnef_AFWithQoS_Notify(last) 

[tmec
4]}; 

Transmec = {(smec
1, tmec

1, smec
2), (smec

2, tmec
2, smec

2), (smec
2, 

tmec
3, smec

3), (smec
3, tmec

4, smec
4), (smec

4, tmec
5, smec

5), (smec
5, tmec

4, 

smec
4), (smec

4, tmec
8, smec

6), (smec
4, tmec

2, smec
4), (smec

6, tmec
2, 

smec
6), (smec

6, tmec
6, smec

1), (smec
4, tmec

6, smec
7), (smec

7, tmec
2, 

smec
7), (smec

7, tmec
7, smec

1), (smec
2, tmec

8, smec
1), (smec

5, tmec
9, 

smec
2)}; 

s0
mec = smec

1. 

Both models may be regarded as concurrent processes 

which external actions are identical, i.e., visible process 

behaviours are equivalent. To prove that the LTS behaviours 

are equal, we use bi-simulation concept. The bi-simulation 

concept enables to study the behavioural features of the 

processes and to abstract from their details. Bi-simulation is 

considered as one of the most important mathematical tools 

in concurrency theory of computer science.  

The formal model validation enables to prove that both 

LTSs behave the same way, i.e., the network view on 

multiparty multimedia session state is synchronized with the 

mobile edge application’s view on the multiparty multimedia 

session state. In strong bi-simulation, there must be a strong 

relationship between each transition in the one LTS and the 

respective transition in the other LTS, i.e., both LTSs need 

to display the same result. In weak bi-simulation, there may 

exist internal transitions that can be discarded. 

Proposition: Both LTSs Tapp and Tmec have a weak bi-

simulation relationship. 

Proof: The weak bi-simulation relationship requires 

identification of pairs of LTSs states that match each other’s 

transitions. Let Rapp&mec = {(sapp
1, smec

1), (sapp
2, smec

2), (sapp
3, 

smec
4)}. Then, the following functional mapping between the 

transitions in Tapp and Tmec exists: 

1. The mobile edge application requests a multiparty 

multimedia session creation and the MPCC creates an 

object representing the session: for (sapp
1, tapp

1, sapp
2), 

(sapp
2, tapp

2, sapp
2)  (smec

1, tmec
1, smec

2). 

2. While the multiparty session is passive with no 

participants connected, the application queries about the 

multiparty session state: for (sapp
2, tapp

3, sapp
3), (sapp

2, tapp
4, 

sapp
2)  (smec

2, tmec
2, smec

2). 

3. The mobile edge application invites the first session 

participant and the MPCC service initiates an 

establishment of a session with his/her UE, and the 

multiparty session becomes active: for (sapp
2, tapp

5, sapp
2), 

(sapp
2, tapp

6, sapp
3)  (smec

2, tmec
3, smec

3), (smec
3, tmec

4, smec
4). 

4. While the multiparty session is active, the application 

queries about multiparty session state: for (sapp
3, tapp

3, 

sapp
3), (sapp

3, tapp
7, sapp

3)  (smec
4, tmec

2, smec
4). 

5. The mobile edge application removes a participant 

(not the last one) from the multiparty session, and the 

MPCC service initiates a deletion of the AF session with 

his/her UE, and the multiparty session states remains 

active: for (sapp
3, tapp

8, sapp
3), (sapp

3, tapp
9, sapp

3)  (smec
4, 

tmec
5, smec

5), (smec
5, tmec

4, smec
4). 

6. While the multiparty session is active, the application 

requests multiparty session cancelation, and the MPCC 

service initiates release of all session participants: for 

(sapp
3, tapp

11, sapp
4), (sapp

4, tapp
12, sapp

1)  (smec
4, tmec

8, smec
6), 

(smec
6, tmec

2, smec
6), (smec

6, tmec
6, smec

1). 

7. While the multiparty session is passive, the application 

requests multiparty session cancelation, and the MPCC 

service deletes the object representing the multiparty 

session: for (sapp
2, tapp

11, sapp
4), (sapp

4, tapp
12, sapp

1)  (smec
4, 

tmec
8, smec

6), (smec
6, tmec

2, smec
6), (smec

6, tmec
6, smec

1). 

8. The multiparty session ends in the network and when 

the application queries about its state, the MPCC service 

responds that the session is terminated: for (sapp
3, tapp

10, 

sapp
1)  (smec

4, tmec
6, smec

7), (smec
7, tmec

2, smec
7), (smec

7, tmec
7, 

smec
1). 

9. The application removes the last participant and 

terminates the multiparty multimedia session: for (sapp
3, 

tapp
8, sapp

3), (sapp
3, tapp

11, sapp
4), (sapp

4, tapp
12, sapp

1)  (smec
4, 

tmec
5, smec

5), (smec
5, tmec

9, smec
2), (smec

2, tmec
8, smec

1). 

Therefore, Tapp, and Тmec have a weak bi-simulation 

relationship, i.e., they expose equivalent behaviour. ■ 

The formal model validation is useful in API design 

phase, and during API realization it can be used to prove the 

compliance of realization with its specification.  

VI. ASSESSMENT OF API PERFORMANCE  

One of the Key Performance Indications of MEC is 

latency which should be defined on per service basis [20]. In 

this section, we evaluate theoretically the latency of the 

control plane injected by the proposed API. The latency is 

evaluated for API requests for session creation and for API 

requests for participant managing. 
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Round-Trip-Time (RTT) latency is measured as the time 

taken for an HTTP request generated from a mobile edge 

application to get to the UE to be processed, to be answered, 

and to get back to the destination. In case of MEC co-

location with distributed core network functions, the time for 

communication between the mobile edge application, mobile 

edge service, and core network functions can be regarded as 

negligible. HTTP methods are processed by a mobile edge 

application, mobile edge service, and core network (CN).  

Adding a participant in a multiparty multimedia session 

includes session set-up time which involves the times 

required for processing in CN, Radio Access Network 

(RAN), and UE, as well as the time required for message 

transfer over the interface between CN and RAN and the 

interface between UE and RAN. 

An example HTTP request for multiparty session creation 

that uses the proposed API looks like the following: 

 

POST http://example.com/MPCC/v1/multipartySessions 

HTTP/1.1 

Accept: application/json 

Content-type: application/json 

Content-length: 240 

 

{ 

 "timeStamp": "Mon Jan 20 17:30:50 EET 2020", 

 "sessionDescription": "Meeting", 

 "maxParticipantsNumber": 3, 

 "maxDuration": 360, 

 "appInsID": "93462efb-d072-46a9-9d7b-512842949a47", 

 "requestID": "041f9b0e-2f5b-472f-b473-9a5323e3b0b0" 

} 

 

The respective HTTP response of the request for 

multiparty session creation sent by the proposed MPCC 

service looks like the following: 

 

HTTP/1.1 201 

Location: 

http://example.com/MPCC/v1/multipartySessions/ 

/c853b5c2-e903-40ad-ab67-2639eabaedbb 

Content-type: application/json 

Content-length: 240 

 

{ 

 "timeStamp": "Mon Jan 20 17:30:50 EET 2020", 

 "sessionDescription": "Meeting", 

 "maxParticipantsNumber": 2, 

 "maxDuration": 360, 

 "appInsID": "93462efb-d072-46a9-9d7b-512842949a47", 

 "requestID": "041f9b0e-2f5b-472f-b473-9a5323e3b0b0" 

}  

 

According to [21], [22], the time budget for local task 

execution can be calculated as 

 Ti = Di × X/f, (1) 

where Di is the data size (in bits), Xi is the computational 

workload (in mobile edge server’s CPU cycles per bit), and f 

is the frequency of the mobile edge server’s CPU. The data 

size is the number of symbols in the request and response of 

MPCC API. The time budget for processing HTTP requests 

and responses at the mobile edge server depends on mobile 

edge server characteristics and the following values are 

used: the CPU frequency f of MEC server is set to 2.2 GHz 

and the computational workload X is 1200 cycles/bit. The 

data size of a mobile edge application request for multiparty 

session creation is 371 bytes (371×8 bits), and the data size 

of the MEC platform response of the request for multiparty 

session creation is 392 bytes (392×8 bits). 

So, the time required for the example HTTP request for 

multiparty session creation composition at the mobile edge 

application and processing at the MEC platform is given as 

 Treq
Session = Dreq

app × X/f + Dreq
mec × X/f = 1,7808 ms (2) 

The time required for the composition at the MEC 

platform and processing by the mobile edge application of 

the example HTTP response is given as 

 Tres
Session = Dres

app × X/f + Dres
mec × X/f = 1,8816 ms (3) 

The time budget TMPCC
Session for application-initiated 

multiparty multimedia session creation introduced by the 

proposed API is TMPCC
Session = 3,6624 ms. 

An examplary request for adding of a participant to a 

multiparty session, initiated by mobile edge application 

which uses the proposed API, looks like the following: 

 

POST http://example.com/MPCC/v1/multipartySessions/ 

/c853b5c2-e903-40ad-ab67-

2639eabaedbb/sessionParticipants HTTP/1.1 

Accept: application/json 

Content-type: application/json 

Content-length: 359 

 

{ 

 "timeStamp": "Mon Jan 20 17:30:50 EET 2020", 

 "participantInfo": { 

  "participantURI": "111218115@example.com", 

  "mediaInfo": [ 

   {"media": "voice", "QCI": 65, "priorityLevel": 0.7}, 

   {"media": "video", "QCI": 67, "priorityLevel": 1.5} 

  ] 

 }, 

 "appInsID": "93462efb-d072-46a9-9d7b-512842949a47", 

 "requestID": "905ab60e-8e2d-4ab2-a3a4-da698866475f" 

} 

 

The corresponding HTTP response is as follows: 

 

HTTP/1.1 201 

Location: 

http://example.com/MPCC/v1/multipartySessions/ 

/c853b5c2-e903-40ad-ab67-

2639eabaedbb/sessionParticipants/1cdbf952-1dac-48d1-

b668-0f3ee63f8361 

Content-type: application/json 

Content-length: 359 

 

{ 

 "timeStamp": "Mon Jan 20 17:30:50 EET 2020", 

 "participantInfo": { 

  "participantURI": "111218115@example.com", 

  "mediaInfo": [ 

   {"media": "voice", "QCI": 65, "priorityLevel": 0.7}, 
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   {"media": "video", "QCI": 67, "priorityLevel": 1.5} 

  ] 

 }, 

 "appInsID": "93462efb-d072-46a9-9d7b-512842949a47", 

 "requestID": "905ab60e-8e2d-4ab2-a3a4-da698866475f" 

} 

 

The time budget TMPCC
Participant for adding a participant to 

a multiparty multimedia session introduced by the proposed 

API is TMPCC
Participant = 5.3520 ms.  

In addition, to theoretically evaluated latency, an 

experiment for API functionality is conducted. The 

experiment includes pushing a batch of one hundred 

thousand operations (POST requests for multiparty session 

creation and the respective “200 OK” responses). The 

configuration of the experiment includes client and service 

side with 1 GbE between them. The client is run on a host 

equipped with Intel processor of 7th generation, running at 

3.4 GHz, with 8 cores and 8 GB of RAM. The server is 

running on Intel same generation at 2.6 GHz, with 6 cores 

and 16 GB of RAM. The client is implemented in Java and 

the server is implemented using Vert.x, which allows REST-

based interface to be exposed toward the client, and Redis, 

which serves as in-memory store configured to work in 

single node mode, i.e., without any clustering. 

In Fig. 14, it is depicted a decimated portion of operations 

latencies where the initial part is clearly different with 

respect of the following, and the effect is based on the so-

called “warm-up phase”. Should this effect have to be taken 

into consideration when a Service Level Agreement (SLA) is 

prepared, then it must be described separately, but the rest of 

the results presented are about the part of so called “steady 

state”. 

 
Fig. 14.  Record of latencies for a sequence of 105 operations with service 

“warm-up phase” and “steady state” service phase. 

In Fig. 15, it is depicted the “steady state” of latency as an 

ingredient of a SLA and the focus is set on the worst-case 

part as a limiting factor for the latency “budget” of the 

service. About 99.5 % of all requests have under millisecond 

latency, but part of the rest may hit even 30 ms. This is 

specific for both cases of the experiment - with a single 

serving instance at the endpoint and with 4 instances. 

In Fig. 16, it is depicted the half-millisecond part of the 

latency “population” in steady state as it constitutes over 

95 % of all recorded POST trials. By increasing the number 

of instances from 1 to 4, it becomes clear, that while keeping 

almost the same shape, the probability density function of 

latency moves to lower values as whole. 

 
Fig. 15.  SLA perspective of latencies as KPI (“steady state” case): c = 1 - 

single instance of serving RESTful endpoint; c = 4 - four instances. 

 
Fig. 16.  Probability density functions as profile for the service latency in 

“steady state” phase (legend as previous). 

In Fig. 17, it is depicted the Gaussian Mixture Model 

(GMM) of the “steady state” latency in the case of 4 serving 

instances. Here, the aim of the modelling part has at least 

three purposes: 1) to reduce the amount of data stored for 

simulation and development purposes, i.e., it is much more 

practical to generate expected latency from a 5-component 

model rather than keeping in cash 100000 samples; 2) to 

help in SLA formulation for the latency as KPI; 3) to help 

KPI monitoring for eventual slow shifts toward higher 

values of latency. The GMM parameters are given in Table 

VI. 

 
Fig. 17.  5-component GMM of four-instances service latency profile 

compared to raw data density in “steady state” phase. 

TABLE VI. LATENCY GMM PARAMETERS. 

Probability Mean Variance 

0.131867179 163.2278 90.18257 

0.281793207 208.3387 126.5642 

0.323640009 251.4111 223.7910 

0.155606968 289.7284 4445.668 

0.007083637 1646.5074 11803980.7 
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The evaluated latency of the proposed mobile edge API 

for multiparty communication control shows that the 

network programmability at the network edge might enable 

low latency applications.  

VII. CONCLUSIONS 

The open access to multiparty call control at the network 

edge may be beneficial for mission critical scenarios and IoT 

healthcare use cases. It enables creation, modification, and 

termination of a multiparty multimedia session by 

applications adding and removing multiparty session 

participants dynamically, as well as management of media 

streams used. The open access to multiparty call control may 

be provided using MEC technology. In such deployments, 

MEC platform, which provides mobile edge services and 

applications, is co-located with distributed core functions. 

The main paper contribution is the specification of API 

which enables applications to create and control sessions 

with specific QoS. The proposed API provides high level of 

abstraction hiding telecommunication details. The proposed 

functionality is illustrated by typical use cases. The API 

design includes specification of message flows and the 

required information. As the API design follows the REST 

architectural style, the service-relevant objects are 

represented as uniquely identified resources organized in a 

tree structure. The API defines the methods supported by the 

resources. As the mobile edge platform and the application 

must be synchronized in the service context, the feasibility 

study of the proposed API is illustrated by models 

representing the MEC platform’s and application’s views on 

the multiparty multimedia session state. The models are 

formally described and validated using the concept of bi-

simulation. The latency introduced by the proposed API is 

assessed theoretically and by emulation. 

The proposed API for multiparty call control enables 

dedicated third-party applications to react promptly on 

situations requiring management of multiparty sessions with 

specific QoS and saves the backhaul network resources.  
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