
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

1Abstract—Network programmability is a key feature of fifth

generation (5G) system which, in combination with cloud-based

services, can support many use cases, including mission critical

and healthcare communications. Programmability enables

flexibility in customization of service connectivity. Multi-access

Edge Computing (MEC) services and applications are enablers

for network programmability. In this paper, MEC capabilities

for programmability of multiparty multimedia call control at

the network edge are studied. Multiparty video calls are one of

the key applications of 5G, and are efficient way to exchange

ideas, knowledge, expertise, information, and so on. The paper

presents an approach to design MEC Application

Programming Interfaces (APIs) which enable third party

applications to create multiparty multimedia sessions and

dynamically manage session participations. The API

functionality is described by required information and message

flows. The paper specifies the proposed MEC API with data

model. Feasibility study includes modelling and formal

validation of multiparty session state models supported by the

network and mobile edge application. The latency injected by

the API is evaluated by emulation.

 Index Terms—Next generation networking; Multi-access

edge computing; Network function virtualization; Application

programming interfaces.

I. INTRODUCTION

Fifth generation (5G) system has huge potential to

improve our daily lives in various aspects, including

numerous mission critical and healthcare scenarios. In these

scenarios, multiparty communications are an important

feature, and 5G technologies can add value enabling

enhanced broadband connections, ultra-low latency, and

high reliability. For mission critical multiparty

communications, 5G can reduce end-to-end latency, provide

ultra-high reliability, and improve service coverage, and for

healthcare multiparty communications, 5G can trigger

optimal quality of service enforcement.

Traditionally mission critical multiparty communications

include Push-To-Talk Over Cellular services used by Public

Safety Agencies, such as fire brigade, police, and

ambulance. However, mission critical voice services can

bring advantages and for other industries, such as utilities,

transport, mining, gas, and oil industries, etc. Mission

critical video can enrich voice multiparty communication

Manuscript received 10 April, 2020; accepted 30 August, 2020.

The research was conducted under the Grant No. KP-06-H37/33 of

project funded by Bulgarian National Science Fund, Ministry of Education

and Science.

enabling video sharing among the multiparty members, and

thus improving the perception of the conditions in the

critical situation.

Health multiparty communications can be useful in

diagnosis, treatment or prevention of diseases or other

conditions, including stress, mental disorder, depression or

health endangering environment. Examples of mobile

applications intended for use in health multiparty

communications can be found in [1].

Mission critical and machine type communications usually

exploit dedicated networks where the communications with

telecom operator core network is optional. These

deployments are regarded as distributed core network

functionality and enable more efficient provisioning of

network intelligence, and improvement of customer

experience and network performance [2], [3]. The

distributed core network functions can be built on purpose

using Network Function Virtualization (NFV) and are

typically deployed at the network edge [4], [5].

Further increase of network intelligence at the mobile

edge can be achieved by deployment of Multi-access Edge

Computing (MEC). MEC provides computing environment

for running cloud-based applications. MEC can address

challenges imposed by mission critical and healthcare

communications as it enables building of vertical segments

and service deployment at network edge. Moving the cloud

intelligence in the vicinity of end users reduces latency,

optimizes network resource utilization, and improves

security [6], [7].

In this paper, we study the capabilities for

programmability of multiparty multimedia communication

control using MEC technology. The focus is on Application

Programming Interface (API) that enables mobile edge

applications to create multiparty multimedia sessions to

manage dynamically the participants involved and to control

the media types for each participant. Among the others, the

API supports mission critical communications, including

healthcare scenarios, taking advantages of MEC.

3GPP addresses service requirements, architecture, and

protocols for mission critical Push-to-Talk service in [8],

[9]. Alternative architectures for mission critical

communication are presented in [10]. Feasibility study on

3GPP mission critical multiparty communications is

provided in [11]. The authors present realization of mission

critical Push-to-Talk service and evaluate key performance

indicators of the service. In [12], the authors propose an

Multiparty Call Control at the Network Edge

Ivaylo I. Atanasov, Evelina N. Pencheva*, Denitsa L. Velkova, Ivaylo P. Asenov

Faculty of Telecommunications, Technical University of Sofia,

Kliment Ohridski Blvd. 8, 1000 Sofia, Bulgaria

enp@tu-sofia.bg

http://dx.doi.org/10.5755/j01.eie.26.5.26007

39

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

architecture for distributed mission critical Push-To-Talk

service based on IP Multimedia Subsystem (IMS). In the

proposed architecture, the application server is co-located

with distributed core network functions for user traffic

handling, while the control plane travels through the

operator’s centralized core network. In [13], the key

performance indicators of mission critical Push-to-Talk

service in 5G architecture are studied.

Our proposal for deployment of mission critical

multiparty communication services is based on MEC and

distributed dedicated core network functionality, including

access and mobility management, session management, user

data registry, and user plane functions. The benefit is that the

signalling path does not need to traverse through the

operator’s core network.

The research novelty is in delegating the multiparty call

control to mobile edge applications deployed in the vicinity

of end users. The proposed open access to programmability

of multiparty communications does not require deployment

of IMS, and thus it reduces the costs and provides the

necessary performance and reliability.

The rest of the paper is organized as follows. Next section

describes how the proposed functionality can be deployed in

5G for mission critical and machine type communications.

Section III provides overall description of the new API for

multiparty multimedia communications by typical use cases.

Section IV introduces how the API may be used by MEC

applications and the information that can be exchanged.

Section V illustrates the API feasibility by modelling the

multiparty call state from network and application points of

view. Some performance metrics of the proposed APIs are

discussed in Section VI, where the injected latency is

evaluated by emulation. The conclusion summarizes the

novelty and benefits of the proposed API.

II. DEPLOYMENT OF API FOR MULTIPARTY

COMMUNICATION CONTROL AT THE NETWORK EDGE

Distributed core network functionality for mission critical

and machine type communications can be deployed by

virtualization of core network functions and customized to

the specific requirements using the technique of network

slicing [14], [15]. Customized core network functions, such

as Access and mobility Management Function (AMF),

Session Management Function (SMF), User Data Repository

(UDR), User Plane Function (UPF), and Policy Control

Function (PCF), run on an NFV platform. MEC applications

for mission critical and machine type communications,

which are run as virtual machines, as well as the mobile edge

platform, which provides mobile edge services, can share the

same NFV platform.

The deployment scenario for MEC and distributed

virtualized core network functions are shown in Fig. 1.

We propose a new mobile edge service called “Multiparty

Communication Control” (MPCC). The service provides

open access to multiparty call control for MEC applications.

The call control functions are part of the core network and

may be accessed through the Network Exposure Function

(NEF). The NEF securely exposes core network

functionality and information provided by the network to the

MEC platform and applications.

5G core network architecture is centred around services.

The proposed MPCC service must use the NEF

Nnef_AFsessionWithQoS service to create an Application

Function (AF) session with required QoS [16], [19].

Fig. 1. MEC co-location with distributed virtualized core functionality.

The communication approach between core network

services, mobile edge services, and applications follows

REpresentational State Transfer (REST) architectural style.

In RESTful API, each entity is represented as a uniquely

identified resource with associated data, set of methods, and

relationship to other resources. The RESTful communication

follows request/response pattern and the resource methods

correspond to the HTTP methods POST, GET, PUT,

PATCH, and DELETE.

So, following the adopted architectural style, the proposed

MPCC interfaces described in the next section are REST-

based.

III. OVERALL DESCRIPTION OF API FOR MULTIPARTY

COMMUNICATION CONTROL

This section describes the proposed API for multiparty

multimedia call control. To clarify how the respective API

functions can be provided, the corresponding core network

services are also commented.

The 5G specifications provide access to monitoring of call

related events and enable setting of application server

sessions with specific quality of service, but do not provide

functionality for external applications to manage multiparty

calls. The proposed MPCC service enables mobile edge

applications to create multimedia multiparty sessions and to

manage dynamically the session participation. Using the

MPCC interfaces, a mobile edge application may:

 Setup a multiparty call with specified quality of service;

 Add or remove a participant to or from the call;

 Retrieve information about multiparty call and call

participants.

To setup a multiparty communication, a mobile edge

application first creates a multimedia session in specific

context that represents a virtual meeting. A unique session

identifier is assigned and initially no participants are

connected.

The mobile edge application subsequently may add

participants to the multimedia session specifying the media

40

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

types. This results in setup of AF session with required QoS,

PCF-initiated session management policy association and

network triggered service request to the participant User

Equipment (UE) in the network [17], [18], [19]. The

multimedia session becomes active with first participant

connecting. The mobile edge application can check the

status of the session participants.

The mobile edge application may dynamically manage

media streams for a multiparty session participant, e.g.,

adding a video component to a participant using only audio

so far in the multiparty session. On application request for

adding or removing a media stream, the network executes

modification of AF session with QoS.

During the multiparty multimedia session, the mobile

edge application may disconnect a participant from the

session, or it may retrieve information about the multiparty

session status and session participant status.

The end of the multimedia session occurs due to mobile

application-initiated session termination or after all the

participants have left the session. If the mobile edge

application has specified the maximum session duration

during session setup, the session ends on expiry of session

duration. When the multiparty multimedia session maximum

duration expires or the mobile edge application terminates

the session, a removal of AF session with QoS takes place in

the network [19].

The mission critical multiparty communications and

health multiparty communications share a common base of

functionalities which can be depicted by the following use

cases.

A video analytic application detects increased anxiety in

an elderly patient and initiates a multiparty communication

that joins the patient, his or her physician, and a specialist to

assess the patient’s momentary condition and to provide

patient with specific recommendations and counselling.

Another exemplary use case of healthcare communication

is an analytic application which receives data about patient’s

treatment and status from an ambulance team during their

way to the hospital, and meanwhile it makes a multiparty

session with doctor’s group at the emergency department to

provide quick rescue to the patient.

To illustrate the proposed functionality, Fig. 2 shows the

flow of initiation of multiparty multimedia session by a

mobile edge application for the presented use case.

The MPCC service is in a role of AF. The sequence of

steps in creating a multimedia multiparty session is as

follows:

1. The mobile edge application using the MPCC

interfaces requests a multiparty multimedia session

establishment without any participants initially. The

application provides a session description and maximum

number of session participants. Optionally, the maximum

duration of the multiparty session and the address of the

multiparty session owner may also be provided.

2. The MPCC service stores the multiparty session data

and responds to the application. The response includes

the identifier of the created multiparty multimedia

session.

3. The mobile edge application wishes to involve a

participant in the multiparty multimedia session. To do

this, the application sends a request for adding the

participant, including the media types that are allowed

for this participant. The request includes the multiparty

session identifier and participant address.

Fig. 2. A mobile edge application-initiated multiparty session.

4. The MPCC service invokes

Nnef_AFsessionWithQoS_Create service operation

which requests the network to setup an AF session with

required QoS.

5. The NEF authorizes the requests, forwards it in the

network, subscribes for UE reachability events, and

responds to the MPCC service.

6. The MPCC service responds to the application request

for adding a participant to the multiparty session.

7–8. The NEF triggers PCF initiated session management

policy association and network triggered service request

to the UE of the first multiparty session participant. The

NEF is notified about UE reachability events, and in turn

it notifies the MPCC service about the participant. The

mobile edge application can query about multiparty

session participant status.

9. When the mobile edge application wishes to invite the

next participants in the multiparty session, the steps from

3 to 8 are repeated.

IV. DATA MODEL AND API DEFINITION FOR MULTIPARTY

COMMUNICATION CONTROL

As a part of MPCC service specification, we build the

data model and provide interface definition. This section

describes the required information and message flows. It

also provides detailed description on all information

elements used for multiparty call control.

The entities multiparty session and session participants are

all presented as RESTful resources. Figure 3 shows the

MPCC resources organized in a tree structure.

Fig. 3. Resource structure supported by the MPCC service.

41

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

Each resource is uniquely identified by its Uniform

Resource Identifier (URI), and the common root of service

resource may be published and discovered by service

directory.

A. Multiparty Session Management

The multipartySessions resource represents all multiparty

multimedia sessions created by mobile edge applications.

The resource supports HTTP GET method, which retrieves a

list of all active application-created multiparty sessions, and

HTTP POST method, which creates a new multiparty

multimedia session.

To initiate a new multiparty multimedia session, a mobile

edge application sends a HTTP POST request to the

multipartySessions resource with message body containing

multipartySessionData data structure. The

multipartySessionData data type is a JSON structure, where

the attributes are given in Table I.

TABLE I. ATTRIBUTES OF MULTIPARTYSESSIONDATA DATA

TYPE.

Attribute name Type
Cardina

lity
Meaning

>timeStamp TimeStamp 0…1 TimeStamp

>sessionDescription String 0…1

Textual

description of the

multiparty session

>maxParticipant-

Number
Integer 1

The maximal

number of

participants

allowed

>maxDuration Integer 1
Maximal session

duration

>appInsID String 1

The unique

application

instance identifier

>requestID String 1

The request

identifier allocated

by the application

>chargingInfo String 0…1

The tariff the

session will be

charged

The MPCC service creates a multipartySessionID

resource representing the requested multiparty session and

responds with “201 Created” with message body containing

the multipartySessionData data structure and the allocated

multiparty session identifier.

Figure 4 shows the flow of mobile edge application

requesting creation of a multiparty multimedia session.

Fig. 4. Message flow of application-initiated multiparty multimedia

session.

The multipartySessionID resource represents an existing

multiparty multimedia session created by a mobile edge

application. The resource supports HTTP method GET,

which retrieves information about the multiparty session,

HTTP methods PUT or PATCH, which update the

multiparty multimedia session, and HTTP method DELETE,

which requests termination of the multiparty multimedia

session.

The mobile edge application can request the current status

of a multiparty multimedia session. To do this, the

application sends a HTTP GET request to the resource

representing the respective multiparty multimedia session.

The MPCC service responds with “200 OK” message

containing the multipartySessionInfo data structure. The

multipartySessionInfo data type is a JSON structure, where

the attributes are given in Table II.

TABLE II. ATTRIBUTES OF MULTIPARTYSESSIONINFO DATA

TYPE.

Attribute name Type
Cardi

nality
Meaning

>timeStamp TimeStamp 0…1 TimeStamp

>startTime TimeStamp 1
The time the

session begins

>activeTime TimeStamp 1

The time at

which the

multiparty

session was

active

>sessionOwner String 0…1
The owner of the

session

>participantNumber Integer 1…n

The current

number of

participants

involved in the

session

>maxParticipantNumber Integer 1…n

The maximal

number of

participants

allowed

>appInsID String 1

The unique

application

instance

identifier

>requestID String 1

The request

identifier

allocated by the

application

>sessionDescription String 0…1

Textual

description of

the multiparty

session

Figure 5 shows the flow of retrieving information about

multiparty multimedia session.

Fig. 5. Message flow of application-initiated multiparty multimedia

session.

42

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

The mobile edge application can modify the multiparty

multimedia session data partially (e.g., the maximum number

of participants involved in the multiparty session or

maximum session duration). To do this, the application

sends an HTTP PATCH request to the resource representing

the multiparty multimedia session with message body

containing the modified multipartySessionData structure.

The MPCC service modifies the attributes of the multiparty

session and responds with “200 OK”, including the modified

multiparty session data.

Figure 6 shows the flow of modifying multiparty

multimedia session data.

Fig. 6. Message flow of modifying multiparty multimedia session data.

When the mobile edge application decides to terminate a

multiparty multimedia session, it sends an HTTP DELETE

request to the resource representing the session. On

receiving the request, the MPCC service deletes the

respective resource and responds with “204 No Content”. If

the multiparty session status is active, the MPCC service

invokes Nnef_AFWithQoS_Create service operation of NEF

indicating the release of the AF session with QoS.

Figure 7 shows the flow of terminating a multiparty

multimedia session.

Fig. 7. Message flow of terminating a multiparty multimedia session.

B. Multiparty Session Participant Management

The multipartySessionParticipants resource represents all

participants connected to the multiparty multimedia session.

The resource supports HTTP POST and GET methods. A

mobile edge application uses the GET method to retrieve a

list of all participants involved in the multiparty session. The

MPCC responds with “200 OK” message, including the list

of participants URIs.

The application can add a participant to the multiparty

multimedia session. To do so, the application sends an

HTTP POST requests to the sessionParticipants resource of

the respective multiparty session. The message body

contains participantData data structure which specifies the

participant URI and the information about media streams

used for the initial connection. Each media stream is defined

by its type, QoS Class Identifier, and priority level. The

participantData data type is a JSON structure, where the

attributes are given in Table III.

Upon receiving the request, the MPCC service creates a

sessionParticipant resource representing the participant and

responds with “201 Created” message, including the data of

the participant. The MPCC invokes the

Nnef_AFWithQoS_Create service operation of NEF

requesting the network to set up an AF session with

specified QoS with implicit subscription for bearer level

events. The NEF authorizes the request and forwards it into

the network. When the participant connects to the session,

the NEF invokes Nnef_AFWithQoS_Notify service

operation to notify the MPCC service about the bearer level

event as described in [19].

TABLE III. ATTRIBUTES OF PARTICIPANTDATA DATA TYPE.

Attribute name Type
Cardi

nality
Meaning

>timeStamp TimeStamp 0...1 TimeStamp

>participantInfo Structure 1…n

The initial

information about

the participant

>>participantURI URI 1
The participant

address

>>mediaInfo Structure 1…n
The media

information

>>>media String 1

The media type

(e.g., voice, video,

data, text)

>>>QCI Integer 1

The QoS Class

identifier as defined

by 3GPP

>>>priorityLevel Integer 1

Allocation and

Retention Priority

as defined by 3GPP

>requestID String 1

The request

identifier allocated

by the application

Figure 8 shows the flow of adding a participant to a

multiparty multimedia session.

Fig. 8. Flow of adding a participant to a multiparty multimedia session.

The sessionParticipantID resource represents an existing

participant involved in a multiparty multimedia session. It

supports HTTP methods GET, PUT, and DELETE.

The mobile edge application can retrieve information

about a multiparty session participant by sending an HTTP

GET request to the respective sessionParticipantID

43

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

resource. The MPCC service responds with “200 OK”

message which transfers the participantStatus data type. The

participantStatus data type is JSON structure, and its

attributes are given in Table IV.

Figure 9 shows the flow of retrieving information about

multiparty session participant.

The mobile edge application can add or remove media for

participant involved in a multiparty multimedia session. To

do this, the application sends an HTTP PATCH request to

the sessionParticipantID resource containing in its body the

updated media information. The MPCC invokes the

Nnef_AFWithQoS_Update service operation of NEF

requesting the network to update some of the properties of

the established AF session with specified QoS.

TABLE IV. ATTRIBUTES OF PARTICIPANTINFO DATA TYPE.

Attribute name Type
Cardin

ality
Meaning

>timeStamp TimeStamp 0…1 TimeStamp

>participantInfo Structure 1…n

The initial

information about

the participant

>>participantURI URI 1
The participant

address

>>mediaInfo Structure 1…n
The media

information

>>>media String 1

The media type

(e.g., voice, video,

data, text)

>>>QCI Integer 1

The QoS Class

identifier as

defined by 3GPP

>>>PriorityLevel Integer 1

Allocation and

Retention Priority

as defined by 3GPP

currentStatus Enumerated 1

The current

participant status: 1

= connected; 2 =

disconnected

Fig. 9. Flow of retrieving information about multiparty session participant.

The NEF authorizes the request and forwards it to the

network. When the established AF session with specified

QoS is updated, the NEF invokes Nnef_AFWithQoS_Notify

service operation to notify the MPCC service about the

bearer level event as described in [19]. The MPCC service

responds to the application with “200 OK” message with

body containing updated participant media information.

Figure 10 shows the flow of information update about

participant connected to a multiparty multimedia session.

When the mobile edge application decides to remove a

participant from a multiparty multimedia session, it sends an

HTTP DELETE request to the sessionParticipantID

resource containing in its body the updated media

information. The MPCC invokes the

Nnef_AFWithQoS_Delete service operation of NEF

requesting the network to remove all properties of the

established AF session with specified QoS. The NEF

authorizes the request and interacts with PCF to terminate

the session. The MPCC service responds to the application

with “204 No Content” message.

Fig. 10. Flow of multiparty session participant information update.

Figure 11 shows the flow of removing a participant from a

multiparty multimedia session.

Fig. 11. Flow of removing a participant from a multiparty multimedia

session.

Table V summarizes the API resources and supported

methods for multiparty communication control.

TABLE V. API RESOURCES AND SUPPORTED METHODS FOR

MULTIPARTY COMMUNICATION CONTROL.

Resource

name
Resource URI

HTTP

method
Meaning

All

multiparty

multimedia

sessions

initiated by

application

/multipartySessions

GET

POST

Retrieves the list

of all multiparty

sessions

Creates a new

multiparty session

An existing

multiparty

multimedia

session

/multipartySessions

/{multipartySessio

nID}

GET

PATCH

DELETE

Retrieves

information about

existing

multiparty session

Modifies existing

multiparty session

Cancels existing

multiparty session

All

participants

of a

multiparty

multimedia

session

/multipartySessions

/{multipartySessio

nID}

/sessionParticipant

s

GET

POST

Retrieves list of

all participants in

a multiparty

session

Adds a new

participant to a

multiparty session

44

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

Resource

name
Resource URI

HTTP

method
Meaning

Existing

participant

of a

multiparty

multimedia

session

/multipartySessions

/{multipartySessio

nID}

/sessionParticipant

s

/{sessionParticipan

tID}

GET

PATCH

DELETE

Retrieves

information about

existing

participant in a

multiparty session

Updates data of a

participant in a

multiparty session

Removes a

participant from a

multiparty session

V. FEASIBILITY STUDY

To assess the feasibility of the proposed API, we model

the visions of the network and mobile edge application on

the state of a multiparty multimedia session. The network

and mobile edge application must have synchronized visions

and the multiparty multimedia session state models must

expose equivalent behaviour.

In this section, models representing the multiparty

multimedia session state are proposed and described

formally using the concept of Labelled Transition Systems

(LTS). A mathematical proof for behavioural equivalence of

the models is provided formally using the concepts of bi-

simulation.

Figure 12 shows a simplified multiparty session state

model supported by application.

Fig. 12. A simplified multiparty session state model supported by

application.

For simplicity sake, the model does not show

application’s queries about multiparty participant status.

The Null state is the initial one, where the multiparty

multimedia session does not exist. In Passive state, the

multiparty multimedia session is created with maximum

duration Δt, and no participants are connected yet. When the

application adds a multiparty participant, the state moves to

Active.

In Active state, the multiparty multimedia session has

participant(s), and the application may request adding or

removing a multiparty participant. When the application

decides to cancel the multiparty session, the state becomes

Terminated state. In each state, the application may query

the MPCC service about the multiparty session status.

An LTS is formal representation of a state model defined

by a set of states, a set of inputs, a set of transitions, and a

set of initial states.

By Tapp, it is denoted an LTS representing the multiparty

session state model supported by a mobile edge application.

Tapp = (Sapp, Inpapp, Transapp, s0
app), where:

Sapp = {Null [sapp
1], Passive[sapp

2], Active[sapp
3],

Terminated [sapp
4];

Inpapp = {createSession [tapp
1], createSessionRes [tapp

2],

getSessionStatus [tapp
3], getSessionStatusRes(passive) [tapp

4],

addParticipant [tapp
5], addParticipantRes [tapp

6],

getSessionStatusRes(active) [tapp
7], removeParticipant [tapp

8],

removeParticipantRes [tapp
9],

getSessionStatusRes(terminated) [tapp
10], cancelSession

[tapp
11], cancelSessionRes [tapp

12]};

Transapp = {(sapp
1, tapp

1, sapp
2), (sapp

2, tapp
2, sapp

2), (sapp
2, tapp

3,

sapp
3), (sapp

2, tapp
4, sapp

2), (sapp
2, tapp

5, sapp
2), (sapp

2, tapp
6, sapp

3),

(sapp
3, tapp

6, sapp
3), (sapp

3, tapp
3, sapp

3), (sapp
3, tapp

7, sapp
3), (sapp

3,

tapp
5, sapp

3), (sapp
3, tapp

8, sapp
3), (sapp

3, tapp
9, sapp

3), (sapp
3, tapp

10,

sapp
1), (sapp

3, tapp
11, sapp

4), (sapp
2, tapp

11, sapp
4), (sapp

4, tapp
12,

sapp
1)};

s0
app = sapp

1.

In the formal model description, short notations of state

and input names are given in brackets.

Figure 13 shows the multiparty state model supported by

the network.

Fig. 13. A simplified multiparty session state model supported by the

network.

In Idle state, there is no multiparty multimedia session.

When the MPCC service receives a request for multiparty

session creation, it creates an object representing the session

with maximal duration Δt, and the session state becomes

NoParticipants. In NoParticipants state, the multiparty

multimedia session is created with no participants.

Upon receiving a request for adding a participant, the

MPCC service initiates a procedure for establishment of AF

session with required QoS to the UE. In

45

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

AFSessionWithQoSCreation state, the MPCC service waits

for notification about UE reachability. The multiparty

session becomes WithParticipants when at list one UE is

connected. In WithParticipants state, a request for adding a

participant may be received. Upon receiving a request for

removing a participant, the MPCC service initiates a

procedure for release of the AF session with the UE. In

AFSessionWithQoSDeletion state, the MPCC service waits

for notification about UE reachability. Upon receiving a

request for the multiparty session termination, the MPCC

service initiates a procedure to terminate the multiparty

session and the multiparty session state becomes

AppTerminated. In AppTerminated state, the MPCC service

waits for notification about session termination. In

NetworkTerminated state, the multiparty session is

terminated by the network, and the MPCC service maintains

the multiparty session state until the maximum session state

expires and moves to Idle state.

In each state, when an application request for multiparty

session state status is received, the MPCC service sends a

response.

By Tmec, it is denoted an LTS representing the multiparty

multimedia session state model supported by the network

Tmec = (Smec, Inpmec, Transmec, s0
mec), where:

Smec = {Idle [smec
1], NoParticipants [smec

2],

AFSessionWithQoSCreation [smec
3], WithParticipants [smec

4],

AFSessionWithQoSDeletion [smec
5], AppTerminated [smec

6],

NetworkTerminated [smec
7]};

Inpmec = {createSessionReq(Δt) ([tmec
1],

getSessionStatusReq [tmec
2], addParticipantReq [tmec

3],

Nnef_AFWithQoS_Notify [tmec
4], removeParticipantReq

[tmec
5], Nnef_AFWithQoS_Notify(all) [tmec

6], Δt [tmec
7],

cancelSessionReq [tmec
8], Nnef_AFWithQoS_Notify(last)

[tmec
4]};

Transmec = {(smec
1, tmec

1, smec
2), (smec

2, tmec
2, smec

2), (smec
2,

tmec
3, smec

3), (smec
3, tmec

4, smec
4), (smec

4, tmec
5, smec

5), (smec
5, tmec

4,

smec
4), (smec

4, tmec
8, smec

6), (smec
4, tmec

2, smec
4), (smec

6, tmec
2,

smec
6), (smec

6, tmec
6, smec

1), (smec
4, tmec

6, smec
7), (smec

7, tmec
2,

smec
7), (smec

7, tmec
7, smec

1), (smec
2, tmec

8, smec
1), (smec

5, tmec
9,

smec
2)};

s0
mec = smec

1.

Both models may be regarded as concurrent processes

which external actions are identical, i.e., visible process

behaviours are equivalent. To prove that the LTS behaviours

are equal, we use bi-simulation concept. The bi-simulation

concept enables to study the behavioural features of the

processes and to abstract from their details. Bi-simulation is

considered as one of the most important mathematical tools

in concurrency theory of computer science.

The formal model validation enables to prove that both

LTSs behave the same way, i.e., the network view on

multiparty multimedia session state is synchronized with the

mobile edge application’s view on the multiparty multimedia

session state. In strong bi-simulation, there must be a strong

relationship between each transition in the one LTS and the

respective transition in the other LTS, i.e., both LTSs need

to display the same result. In weak bi-simulation, there may

exist internal transitions that can be discarded.

Proposition: Both LTSs Tapp and Tmec have a weak bi-

simulation relationship.

Proof: The weak bi-simulation relationship requires

identification of pairs of LTSs states that match each other’s

transitions. Let Rapp&mec = {(sapp
1, smec

1), (sapp
2, smec

2), (sapp
3,

smec
4)}. Then, the following functional mapping between the

transitions in Tapp and Tmec exists:

1. The mobile edge application requests a multiparty

multimedia session creation and the MPCC creates an

object representing the session: for (sapp
1, tapp

1, sapp
2),

(sapp
2, tapp

2, sapp
2)  (smec

1, tmec
1, smec

2).

2. While the multiparty session is passive with no

participants connected, the application queries about the

multiparty session state: for (sapp
2, tapp

3, sapp
3), (sapp

2, tapp
4,

sapp
2)  (smec

2, tmec
2, smec

2).

3. The mobile edge application invites the first session

participant and the MPCC service initiates an

establishment of a session with his/her UE, and the

multiparty session becomes active: for (sapp
2, tapp

5, sapp
2),

(sapp
2, tapp

6, sapp
3)  (smec

2, tmec
3, smec

3), (smec
3, tmec

4, smec
4).

4. While the multiparty session is active, the application

queries about multiparty session state: for (sapp
3, tapp

3,

sapp
3), (sapp

3, tapp
7, sapp

3)  (smec
4, tmec

2, smec
4).

5. The mobile edge application removes a participant

(not the last one) from the multiparty session, and the

MPCC service initiates a deletion of the AF session with

his/her UE, and the multiparty session states remains

active: for (sapp
3, tapp

8, sapp
3), (sapp

3, tapp
9, sapp

3)  (smec
4,

tmec
5, smec

5), (smec
5, tmec

4, smec
4).

6. While the multiparty session is active, the application

requests multiparty session cancelation, and the MPCC

service initiates release of all session participants: for

(sapp
3, tapp

11, sapp
4), (sapp

4, tapp
12, sapp

1)  (smec
4, tmec

8, smec
6),

(smec
6, tmec

2, smec
6), (smec

6, tmec
6, smec

1).

7. While the multiparty session is passive, the application

requests multiparty session cancelation, and the MPCC

service deletes the object representing the multiparty

session: for (sapp
2, tapp

11, sapp
4), (sapp

4, tapp
12, sapp

1)  (smec
4,

tmec
8, smec

6), (smec
6, tmec

2, smec
6), (smec

6, tmec
6, smec

1).

8. The multiparty session ends in the network and when

the application queries about its state, the MPCC service

responds that the session is terminated: for (sapp
3, tapp

10,

sapp
1)  (smec

4, tmec
6, smec

7), (smec
7, tmec

2, smec
7), (smec

7, tmec
7,

smec
1).

9. The application removes the last participant and

terminates the multiparty multimedia session: for (sapp
3,

tapp
8, sapp

3), (sapp
3, tapp

11, sapp
4), (sapp

4, tapp
12, sapp

1)  (smec
4,

tmec
5, smec

5), (smec
5, tmec

9, smec
2), (smec

2, tmec
8, smec

1).

Therefore, Tapp, and Тmec have a weak bi-simulation

relationship, i.e., they expose equivalent behaviour. ■

The formal model validation is useful in API design

phase, and during API realization it can be used to prove the

compliance of realization with its specification.

VI. ASSESSMENT OF API PERFORMANCE

One of the Key Performance Indications of MEC is

latency which should be defined on per service basis [20]. In

this section, we evaluate theoretically the latency of the

control plane injected by the proposed API. The latency is

evaluated for API requests for session creation and for API

requests for participant managing.

46

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

Round-Trip-Time (RTT) latency is measured as the time

taken for an HTTP request generated from a mobile edge

application to get to the UE to be processed, to be answered,

and to get back to the destination. In case of MEC co-

location with distributed core network functions, the time for

communication between the mobile edge application, mobile

edge service, and core network functions can be regarded as

negligible. HTTP methods are processed by a mobile edge

application, mobile edge service, and core network (CN).

Adding a participant in a multiparty multimedia session

includes session set-up time which involves the times

required for processing in CN, Radio Access Network

(RAN), and UE, as well as the time required for message

transfer over the interface between CN and RAN and the

interface between UE and RAN.

An example HTTP request for multiparty session creation

that uses the proposed API looks like the following:

POST http://example.com/MPCC/v1/multipartySessions

HTTP/1.1

Accept: application/json

Content-type: application/json

Content-length: 240

{

 "timeStamp": "Mon Jan 20 17:30:50 EET 2020",

 "sessionDescription": "Meeting",

 "maxParticipantsNumber": 3,

 "maxDuration": 360,

 "appInsID": "93462efb-d072-46a9-9d7b-512842949a47",

 "requestID": "041f9b0e-2f5b-472f-b473-9a5323e3b0b0"

}

The respective HTTP response of the request for

multiparty session creation sent by the proposed MPCC

service looks like the following:

HTTP/1.1 201

Location:

http://example.com/MPCC/v1/multipartySessions/

/c853b5c2-e903-40ad-ab67-2639eabaedbb

Content-type: application/json

Content-length: 240

{

 "timeStamp": "Mon Jan 20 17:30:50 EET 2020",

 "sessionDescription": "Meeting",

 "maxParticipantsNumber": 2,

 "maxDuration": 360,

 "appInsID": "93462efb-d072-46a9-9d7b-512842949a47",

 "requestID": "041f9b0e-2f5b-472f-b473-9a5323e3b0b0"

}

According to [21], [22], the time budget for local task

execution can be calculated as

 Ti = Di × X/f, (1)

where Di is the data size (in bits), Xi is the computational

workload (in mobile edge server’s CPU cycles per bit), and f

is the frequency of the mobile edge server’s CPU. The data

size is the number of symbols in the request and response of

MPCC API. The time budget for processing HTTP requests

and responses at the mobile edge server depends on mobile

edge server characteristics and the following values are

used: the CPU frequency f of MEC server is set to 2.2 GHz

and the computational workload X is 1200 cycles/bit. The

data size of a mobile edge application request for multiparty

session creation is 371 bytes (371×8 bits), and the data size

of the MEC platform response of the request for multiparty

session creation is 392 bytes (392×8 bits).

So, the time required for the example HTTP request for

multiparty session creation composition at the mobile edge

application and processing at the MEC platform is given as

 Treq
Session = Dreq

app × X/f + Dreq
mec × X/f = 1,7808 ms (2)

The time required for the composition at the MEC

platform and processing by the mobile edge application of

the example HTTP response is given as

 Tres
Session = Dres

app × X/f + Dres
mec × X/f = 1,8816 ms (3)

The time budget TMPCC
Session for application-initiated

multiparty multimedia session creation introduced by the

proposed API is TMPCC
Session = 3,6624 ms.

An examplary request for adding of a participant to a

multiparty session, initiated by mobile edge application

which uses the proposed API, looks like the following:

POST http://example.com/MPCC/v1/multipartySessions/

/c853b5c2-e903-40ad-ab67-

2639eabaedbb/sessionParticipants HTTP/1.1

Accept: application/json

Content-type: application/json

Content-length: 359

{

 "timeStamp": "Mon Jan 20 17:30:50 EET 2020",

 "participantInfo": {

 "participantURI": "111218115@example.com",

 "mediaInfo": [

 {"media": "voice", "QCI": 65, "priorityLevel": 0.7},

 {"media": "video", "QCI": 67, "priorityLevel": 1.5}

]

 },

 "appInsID": "93462efb-d072-46a9-9d7b-512842949a47",

 "requestID": "905ab60e-8e2d-4ab2-a3a4-da698866475f"

}

The corresponding HTTP response is as follows:

HTTP/1.1 201

Location:

http://example.com/MPCC/v1/multipartySessions/

/c853b5c2-e903-40ad-ab67-

2639eabaedbb/sessionParticipants/1cdbf952-1dac-48d1-

b668-0f3ee63f8361

Content-type: application/json

Content-length: 359

{

 "timeStamp": "Mon Jan 20 17:30:50 EET 2020",

 "participantInfo": {

 "participantURI": "111218115@example.com",

 "mediaInfo": [

 {"media": "voice", "QCI": 65, "priorityLevel": 0.7},

47

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

 {"media": "video", "QCI": 67, "priorityLevel": 1.5}

]

 },

 "appInsID": "93462efb-d072-46a9-9d7b-512842949a47",

 "requestID": "905ab60e-8e2d-4ab2-a3a4-da698866475f"

}

The time budget TMPCC
Participant for adding a participant to

a multiparty multimedia session introduced by the proposed

API is TMPCC
Participant = 5.3520 ms.

In addition, to theoretically evaluated latency, an

experiment for API functionality is conducted. The

experiment includes pushing a batch of one hundred

thousand operations (POST requests for multiparty session

creation and the respective “200 OK” responses). The

configuration of the experiment includes client and service

side with 1 GbE between them. The client is run on a host

equipped with Intel processor of 7th generation, running at

3.4 GHz, with 8 cores and 8 GB of RAM. The server is

running on Intel same generation at 2.6 GHz, with 6 cores

and 16 GB of RAM. The client is implemented in Java and

the server is implemented using Vert.x, which allows REST-

based interface to be exposed toward the client, and Redis,

which serves as in-memory store configured to work in

single node mode, i.e., without any clustering.

In Fig. 14, it is depicted a decimated portion of operations

latencies where the initial part is clearly different with

respect of the following, and the effect is based on the so-

called “warm-up phase”. Should this effect have to be taken

into consideration when a Service Level Agreement (SLA) is

prepared, then it must be described separately, but the rest of

the results presented are about the part of so called “steady

state”.

Fig. 14. Record of latencies for a sequence of 105 operations with service

“warm-up phase” and “steady state” service phase.

In Fig. 15, it is depicted the “steady state” of latency as an

ingredient of a SLA and the focus is set on the worst-case

part as a limiting factor for the latency “budget” of the

service. About 99.5 % of all requests have under millisecond

latency, but part of the rest may hit even 30 ms. This is

specific for both cases of the experiment - with a single

serving instance at the endpoint and with 4 instances.

In Fig. 16, it is depicted the half-millisecond part of the

latency “population” in steady state as it constitutes over

95 % of all recorded POST trials. By increasing the number

of instances from 1 to 4, it becomes clear, that while keeping

almost the same shape, the probability density function of

latency moves to lower values as whole.

Fig. 15. SLA perspective of latencies as KPI (“steady state” case): c = 1 -

single instance of serving RESTful endpoint; c = 4 - four instances.

Fig. 16. Probability density functions as profile for the service latency in

“steady state” phase (legend as previous).

In Fig. 17, it is depicted the Gaussian Mixture Model

(GMM) of the “steady state” latency in the case of 4 serving

instances. Here, the aim of the modelling part has at least

three purposes: 1) to reduce the amount of data stored for

simulation and development purposes, i.e., it is much more

practical to generate expected latency from a 5-component

model rather than keeping in cash 100000 samples; 2) to

help in SLA formulation for the latency as KPI; 3) to help

KPI monitoring for eventual slow shifts toward higher

values of latency. The GMM parameters are given in Table

VI.

Fig. 17. 5-component GMM of four-instances service latency profile

compared to raw data density in “steady state” phase.

TABLE VI. LATENCY GMM PARAMETERS.

Probability Mean Variance

0.131867179 163.2278 90.18257

0.281793207 208.3387 126.5642

0.323640009 251.4111 223.7910

0.155606968 289.7284 4445.668

0.007083637 1646.5074 11803980.7

48

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 5, 2020

The evaluated latency of the proposed mobile edge API

for multiparty communication control shows that the

network programmability at the network edge might enable

low latency applications.

VII. CONCLUSIONS

The open access to multiparty call control at the network

edge may be beneficial for mission critical scenarios and IoT

healthcare use cases. It enables creation, modification, and

termination of a multiparty multimedia session by

applications adding and removing multiparty session

participants dynamically, as well as management of media

streams used. The open access to multiparty call control may

be provided using MEC technology. In such deployments,

MEC platform, which provides mobile edge services and

applications, is co-located with distributed core functions.

The main paper contribution is the specification of API

which enables applications to create and control sessions

with specific QoS. The proposed API provides high level of

abstraction hiding telecommunication details. The proposed

functionality is illustrated by typical use cases. The API

design includes specification of message flows and the

required information. As the API design follows the REST

architectural style, the service-relevant objects are

represented as uniquely identified resources organized in a

tree structure. The API defines the methods supported by the

resources. As the mobile edge platform and the application

must be synchronized in the service context, the feasibility

study of the proposed API is illustrated by models

representing the MEC platform’s and application’s views on

the multiparty multimedia session state. The models are

formally described and validated using the concept of bi-

simulation. The latency introduced by the proposed API is

assessed theoretically and by emulation.

The proposed API for multiparty call control enables

dedicated third-party applications to react promptly on

situations requiring management of multiparty sessions with

specific QoS and saves the backhaul network resources.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] Examples of software functions for which the FDA will exercise

enforcement discretion, US Food and Drug Administration, Sept.

2019. [Online]. Available: https://www.fda.gov/medical-

devices/device-software-functions-including-mobile-medical-

applications/examples-software-functions-which-fda-will-exercise-

enforcement-discretion

[2] N. A. Mohammed, A. M. Mansoor, and R. B. Ahmad, “Mission-

critical machine-type communication: An overview and perspectives

towards 5G”, IEEE Access, vol. 7, pp. 127198–127216, 2019. DOI:

10.1109/ACCESS.2019.2894263.

[3] O. Balakci et al., “A Flexible network architecture for 5G systems,

wireless communications and mobile computing, Wireless

Communications and Mobile Computing, vol. 2019, article ID

5264012, 2019. DOI: 10.1155/2019/ 5264012.

[4] N. Al-Quzweeni, A. Q. Lawey, T. E. H. Elgorashi, and J. M. H.

Elmirghani, “Optimized energy aware 5G network function

virtualization”, IEEE Access, vol. 7, pp. 44939–44958, 2019. DOI:

10.1109/ACCESS.2019.2907798.

[5] T. Lin and Z. Zhou, “NFV-enabled network slicing”, in Proc. of

IEEE International Conference on Communications Workshops (ICC

Workshops), Kansas City, MO, 2018, pp. 1–6. DOI:

10.1109/ICCW.2018.8403497.

[6] E. Pencheva, I. Atanasov, and V. Vladislavov, “Mission critical

messaging using multi-access edge computing”, Cybernetics and

Information Technology, vol. 19, no. 4, pp. 73–89, 2019. DOI:

10.2478/cait-2019-0037.

[7] Q.-V. Pham et al., “A survey of multi-access edge computing in 5G

and beyond: Fundamentals, technology integration, and state-of-the-

art”, IEEE Access, vol. 8, pp. 116974–117017, 2020. DOI:

10.1109/ACCESS.2020.3001277.

[8] 3GPP TS 22.179 Technical Specification Group Services and System

Aspects, Mission Critical Push-to-Talk (MCPTT), Stage 1, Release

17, v17.0.0, 2019.

[9] 3GPP TS 23.179 Technical Specification Group Services and System

Aspects, Functional architecture and information flows to support

mission critical communication services, Stage 2, Release 13,

v13.5.0, 2017.

[10] “Network 2020: Mission Critical Communications”, White Paper,

GSMA, 2020. [Online]. Available:

https://www.gsma.com/futurenetworks/resources/network-2020-

mission-critical-communications/

[11] S. W. Choi, Y. Song, W. Shin, and J. Kim, “A feasibility study on

mission-critical push-to-talk: Standards and implementation

perspectives”, IEEE Communications Magazine, vol. 57, no. 2, pp.

81–87, Feb. 2019. DOI: 10.1109/MCOM.2018.1700886.

[12] R. Solozabal, A. Sanchoyerto, E. Atxutegi, B. Blanco, J. O. Fajardo,

and F. Liberal, “Exploitation of mobile edge computing in 5G

distributed mission-critical push-to-talk service deployment”, IEEE

Access, vol. 6, pp. 37665–37675, 2018. DOI:

10.1109/ACCESS.2018. 2849200.

[13] A. Sanchoyerto, R. Solozabal, B. Blanco, and F. Liberal, “Analysis of

the impact of the evolution toward 5G architectures on mission

critical push-to-talk services”, IEEE Access, vol. 7, pp. 115052–

115061, 2019. DOI: 10.1109/ACCESS.2019.2930936.

[14] S. Kekki et al., “MEC in 5G Networks”, ETSI White Paper, no. 28,

2018. [Online]. Available:

https://www.etsi.org/images/files/ETSIWhitePapers/etsi_wp28_mec_i

n_5G_FINAL.pdf

[15] N. Raveendran, Y. Zha, Y. Zhang, X. Liu, and Z. Han, “Virtual core

network resource allocation in 5G systems using three-sided

matching”, in Proc. of ICC 2019 - 2019 IEEE International

Conference on Communications (ICC), Shanghai, China, 2019, pp.

1–6. DOI: 10.1109/ICC.2019.8762095.

[16] 3GPP TS 29.513 Technical Specification Group Core Network and

Terminals, System Architecture for the 5G System (5GS), Stage 2,

Release 16, v16.3.0, 2019.

[17] 3GPP TS 23.502 Technical Specification Group Services and System

Aspects, Procedures for the 5G System (5GS), Stage 2, Release 16,

v16.2.0, 2019.

[18] 3GPP TS 29.522 Technical Specification Group Core Network and

Terminals, 5G System, Network Exposure Function Northbound

APIs, Stage 3, Release 15, v15.2.0, 2018.

[19] 3GPP TS 29.122 Technical Specification Group Core Network and

Terminals, T8 reference point for Northbound APIs, Release 16,

v16.3.0, 2019.

[20] ETSI GS MEC-IEG 006 Mobile Edge Computing, Market

Acceleration, MEC Metrics Best Practice and Guidelines, v1.1.1,

2017.

[21] K. Cheng, Y. Teng, W. Sun, A. Liu, and X. Wang, “Energy-efficient

joint offloading and wireless resource allocation strategy in multi-

MEC server systems”, in Proc. of IEEE International Conference on

Communications (ICC), Kansas City, MO, 2018, pp. 1–6. DOI:

10.1109/ICC.2018.8422877.

[22] F. Wang, J. Xu, X. Wang, and S. Cui, “Joint offloading and

computing optimization in wireless powered mobile-edge computing

system”, in Proc. of IEEE International Conference on

Communications (ICC), 2017, pp. 1–14. DOI:

10.1109/ICC.2017.7997477.

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution 4.0

(CC BY 4.0) license (http://creativecommons.org/licenses/by/4.0/).

49

