
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

1Abstract—The aim of this paper and research was to analyse

the efficiency of the compiler-generated code for the graphics

library and to present results obtained by optimization for the

MIPS (Million Instructions Per Second) architecture. Libpng is

the official Portable Network Graphics reference library for

use in applications that read, create, and manipulate PNG

(Portable Network Graphics) raster image files. Given the data

structure in the PNG files, as well as the capabilities of the

MIPS instruction set, it was expected that significant

improvements could be made. Graphic library libpng is

optimized by using MIPS instruction set extension and tested

on MIPS Malta 74K platform. Test results show, that by using

MIPS optimization test, execution times are substantially

improved. Our libpng optimization have achieved performance

increase of 10 %–78 % depending on optimized routine.

 Index Terms—DSP; Embedded software; Image processing;

MIPS; Optimization; PNG; SIMD.

I. INTRODUCTION

The field of multimedia communications is evolving at a

high speed and is conditioned by the introduction of new

video and audio standards in new multimedia electronic

devices. An important requirement for the end user is that

multimedia electronic devices operate at a satisfactory speed

in real-time. As new technologies require the increasing

processing power of computer architectures, which is to

some extent limited, it is necessary to significantly optimize

software support on a given computer architecture to enable

real-time operation.

Embedded system capabilities are a function of both the

hardware platform and the software implementation strategy

[1], [2]. When there are plenty of hardware resources with

higher processing speeds and power like desktop computers,

achieving real-time performance is not a major issue. Today,

there has been an exponential growth in the use of mobile

embedded systems like cell phones, tablets, video game

console, etc. in the consumer electronics market, which have

a relatively small power consumption and form factor.

Multiple applications like video streaming, smart cameras,

Manuscript received 13 November, 2019; accepted 20 February, 2020.

This work has been partially funded by the Ministry of Education,

Science and Technological Development of the Republic of Serbia under

the grant (No. TR32014).

context-aware computing, and virtual reality are resident on

these devices to meet consumer needs.

The aim of this paper and research is to analyse the

efficiency of the compiler-generated code for the PNG

graphics library and to present results obtained by

optimization for the MIPS (Million Instructions Per Second)

architecture for real-time operation.

Portable Network Graphics (PNG) is an undistorted and

bitmapped image format that employs lossless data

compression. PNG was created to improve upon and replace

GIF (Graphics Interchange Format) as an image-file format

not requiring a patent license [3].

The official graphic library that is used in applications for

PNG image processing is libpng. This library has been

designed to handle multiple sessions at one time, to be easily

modifiable, to be portable to the vast majority of machines

(16-, 32-, and 64-bit) available, and to be easy to use.

This graphic library supports almost all of PNGs features:

 indexed-color,

 grayscale images,

 truecolor images,

 optional alpha channel,

 sample depths range from 1 bit to 16 bits.

This graphic library is dependent on zlib library for data

compression and decompression routines [4].

By analysing the assembler code obtained with the

compiler, we found that it is possible to improve the

performance by writing the assembler manually. Libpng has

significant potential for SIMD (Single Instruction Multiple

Data) acceleration due to the type of data and operations

performed during image processing.

MIPS 74K core is a MIPS high-performance processor

core and includes features that can support applications with

significant signal processing requirements. These processors

can be found in set-top boxes, VoIP SoCs (Voice over IP

System on a Chip), networking equipment, digital TVs,

DVD players and recorders, and in applications that use

signal processing. MIPS 74K core operates at up to

1.11 GHz in a 65 nm process and supports MIPS DSP

(Digital Signal Processing) oriented instruction set called

DSP ASE (Application Specific Extension) Revision 2 that

uses SIMD extensions to obtaining vectorised execution. [5].

Graphic Library Optimization for MIPS

Architecture

Teodora Novkovic1, *, Zeljko Lukac1, Petar Jovanovic2, Ivan Kastelan1
1Department of Computing and Control Engineering, Faculty of Technical Sciences,

University of Novi Sad,

Trg Dositeja Obradovica 6, 21000 Novi Sad, Serbia
2RT-RK, Institute for Computer Based Systems,

Narodnog fronta 23a, 21000 Novi Sad, Serbia

teodora.novkovic@rt-rk.uns.ac.rs

http://dx.doi.org/10.5755/j01.eie.26.2.25871

69

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

The purpose of DSP ASE instruction is to speed up

algorithms in areas such as audio and video compression,

image processing, communications, etc.

SIMD extensions to the embedded processors have come

to support the increasing requirements by providing data

parallelism. This extension improves the performance for

multimedia applications, audio and video codecs, image

processing, etc.

The paper is organized as follows. MIPS architecture

overview is presented in Section II. The overview of

MIPS32 instruction set is presented in Section IⅡ. Libpng

optimization is described in Section IV. Finally,

implementation results are given in Section Ⅴ, and

conclusions in Section VI. After these sections, we listed all

references that we used in this paper. To the best of our

knowledge, there are no works on the libpng topic and there

are no works or results of libpng optimization. In the

absence of literature and papers related to the libpng

graphics library, we used references related to embedded

systems, PNG optimizations, MIPS specifications, and

manuals for DSPs and instruction sets.

II. MIPS ARCHITECTURE

The MIPS32 74K core is the first member of family of

synthesizable 32-bit RISC (Reduced Instruction Set

Computing) CPU (Central Processing Unit) cores and offers

the highest performance yet from a synthesizable core. All

74K family cores implement the MIPS32 Release 2

instruction set architecture and supports the DSP ASE

Revision 2 instruction set extensions. This platform has the

following options:

 I and D-Caches: 4-way set associative: 0 Kbytes,

8 Kbytes, 16 Kbytes, 32 Kbytes or 64 Kbytes in size;

 L2 (secondary) cache: 128 Kbytes–1 Mbyte in size;

 Fast multiplier: 1-per-clock repeat rate for 32×32

multiply and multiply/accumulate;

 DSP ASE Revision 2: this instruction set extension adds

many new computational instructions with a fixed-point

math unit crafted to speed up popular signal-processing

algorithms. Some of these functions do two math

operations at once on two 16-bit values held in one 32-bit

register;

 Floating Point Unit (FPU): if fitted, this is a 64-bit unit,

which most often runs at half or two-thirds the clock rate

of the integer unit;

 The “CorExtend” instruction set extension: defines a

hardware interface, which makes it relatively

straightforward to add logic to implement new

computational instructions in your CPU using predefined

instruction encodings.

The MIPS 74K core contains a load/store unit and

separate data path, and can execute up to two instructions in

parallel or up to four instructions - two floating point and

two integers. These units share thirty-two 32-bit GPR and

four 64-bit accumulators. The data path contains a 32-bit

ALU (Arithmetic Logic) and MDU (Multiply/Divide) unit

[6].

Figure 1 shows a block diagram of the MIPS 74K core.

Fig. 1. MIPS32 74K Processor Core Block Diagram.

III. OVERVIEW OF MIPS32 INSTRUCTION SET

The MIPS 74K core supports the baseline MIPS32

instruction set and two instruction set extensions:

 DSP ASE Revision 2;

 MIPS 16e for 16-bit compressed instruction set.

In this paper, we will focus on DSP ASE Revision 2. This

instruction set to the MIPS32 architecture was introduced by

MIPS Technologies to optimize the performance of signal

processing and multimedia applications running on MIPS

core processors. The DSP ASE is a set of new instructions

and new architectural state with computational support for

fractional data types, SIMD, saturation, and other operations

commonly used in DSP applications [7].

The MIPS DSP ASE Revision 2 provides support for a

number of powerful data processing operations. There are

instructions for fractional arithmetic (Q15/Q31) and for

saturating arithmetic. Additionally, for smaller data sizes,

SIMD operations are supported allowing 2 × 16 bit or 4 ×

8 bit operations to occur simultaneously. Many of the DSP

ASE instructions work in SIMD mode and perform certain

operations simultaneously on several data packed into 32-bit

vectors [5]. Instructions operating on vectors can be

recognized because the name includes .ph (paired-half,

usually signed, and often fractional) or .qb (quad-byte,

always unsigned, only occasionally fractional) [8]. These

instructions automatically perform additional operations

such as rounding and saturation, which without them

requires a significant number of processor cycles for

implementation.

Another feature of the ASE is the inclusion of additional

HI/LO accumulator registers to improve the parallelization

70

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

of independent accumulation routines. All 32-bit operand

arithmetic DSP instructions (except multiply) are executed

in the ALU pipe, while the 64-bit operand arithmetic and

multiply class DSP instructions are executed in the MDU

pipe.

New instructions in DSP ASE Revision 2 help in

minimizing the data packing, unpacking, shuffling, etc. That

is required for SIMD arithmetic. The MIPS32 DSP ASE

instructions can be classified depending on the implemented

function [3]:

 Arithmetic Class - perform basic arithmetic operations,

such as addition and subtraction (ADDQ.PH/QB and

SUB.PH/QB), as well as some more specialized

operations like data packing/unpacking, absolute value

(ABSQ), horizontal sum of the source register data

elements (RADDU), circular buffers (MODSUB), etc.;

 Shift Class - implement logical and arithmetic shift of

the individual SIMD data elements that are packed into

32-bit registers (SHLL/R.QB/PH). The shift amount can

be variable (specified by a register) or fixed. In addition,

there is saturation option in the left shift instruction

(SHLL_S.PH/QB);

 Multiply Class - include instructions for integer and

fractional element-wise multiplication (MULEU_S.PH

and MULQ_RS.PH), dot product accumulate and subtract

(DPAU, DPSU, DPAQ_S, DPSQ_S), and compute the

real and imaginary parts of a complex multiply

(MULSAQ_S.W.PH and DPAQ_S.W.PH) accumulating

the results to a specified accumulator;

 Bit Manipulation Class - include instruction that

reverses the order of the 16 right-most bits in the source

register (BITREV), as well as the data replication

instructions REPL that copy a given scalar value to all the

SIMD elements of the destination register. There is also

the INSV instruction that support variable position and

size values;

 Compare and Pick Class - include instruction that

performs SIMD (element-wise) comparison of the data in

the source registers (CMP.LT.PH), as well as instruction

that selects elements from two registers based on the

result of the comparison (PICK.QB and PICK.PH);

 Accumulator and DSPControl Register Access Class -

contains the EXTR instruction that extract values from the

accumulator after shifting it to the right, as well as the

EXTP instruction extracts a number of bits from a

specified position. Instructions WRDSP and RDDSP

transfer data between the general-purpose registers and

the DSPControl Register;

 Indexed Load Class - add a new addressing mode for

loading integer and fixed-point data in the form of base +

index. The three variants, LBUX, LHX, and LWX, load

unsigned bytes, half-words, and 32-bit words,

respectively.

IV. LIBPNG OPTIMIZATION

One of the problems of embedded system design is how to

make software efficiently run on the used processor.

Generally, software optimization has to be done for optimal

system performance by matching the program code with the

processor [9], [10]. During the process of code optimization,

we have to take the architecture of the target processor,

pipeline, compiler features, and features of instruction set

into account for effective execution on target processor.

First phase in our work was to find the bottlenecks of the

PNG graphic library. This involves analysing of the existing

code, data structure, profiling analysis, and executing all

existing tests before optimizing the code. We used following

steps to do graphic library optimization.

A. Software Analysis

Firstly, we did software module partition and performance

estimation in C. This step can help to understand the

program structure and to find optimization goals in higher-

level language. In this step, we examine the underlying data

types that the program operates. How many bits are there in

a single data element? Can multiple data elements be packed

into a 32-bit register for SIMD data types?

B. Profiling

Performance analysis, better known as profiling, is an

examination of program behavior using information gathered

during program execution itself. This analysis identifies

parts of the program that are suitable for optimization both

of execution speed and memory usage. It is necessary to

know, which parts of the software solution are most often

executed, because there is no point to do optimization of

routines that are rarely executed. Performance analysis

shows the number of processor cycles required for each

function, thus calculating its occupancy.

We used Oprofile tool for profiling analysis and to find

functions that take the most time across the whole system.

OProfile is an open source project that includes a statistical

profiler for Linux systems capable of profiling all running

code at low overhead. Profile data can be produced on the

function-level or instruction-level detail. Source trees

annotated with profile information can be created. That

enables collection of various low-level data and association

with particular sections of code [11].

Profiling was done for original source code and for all test

cases developed by the authors of the libpng graphics

library. Some of results are presented in Table I, where a list

of routines suitable for the optimization is given. The

number of cycles and the percentage of function share in test

case for original source code of the graphic library follow

the function name. Table I shows functions relevant only to

libpng graphic library.

Profiling results showed that there were three

computationally intensive tasks when reading PNG files:

decoding row filters, expanding interlacing, and combining

interlaced or transparent row data with previous row data.

In addition, we analysed all of routines to determine if

optimization could be done for each one. The results show

that it is not possible to optimize all of libpng routines, so

we opted for partial optimization of problematic routines.

We have selected routines that we will optimize based on

the operations they perform and the types of data. Each

routine, where it was possible to vectorize operations and

pack more data into a single 32-bit register, was chosen to be

optimized.

71

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

TABLE I. PROFILING RESULTS FOR ORIGINAL SOURCE CODE -

LIST OF ROUTINES THAT COULD BE OPTIMIZED WITH NUMBER

OF PROCESSOR CYCLES AND CPU OCCUPANCY.

Libpng graphic library profiling

Routine Samples %

png_write_find_filter 179509 85.39

png_read_filter_row_paeth_multibyte_pixel 150527 74.01

png_do_read_interlace 32169 25.07

png_combine_row 28563 19.82

png_do_chop 2369 9.53

png_read_filter_row_sub 2203 9.11

png_read_filter_row_avg 1756 6.97

png_read_filter_row_up 1637 6.09

png_do_scale_16_to_8 1223 5.66

png_do_gamma 657 2.84

C. Compiler Analysis

A new compiler that enables code translation for that

architecture accompanies the new architecture on the market.

Initially, first compiler versions were not perfect in the sense

that it failed to produce the most optimal code, so assistance

by programmers and hand-coding assembler writing are

required in some parts of the routine. Over time, the

compiler evolves and improves, and with each successive

version, the code that translates is better and more

optimized.

In this work, we used GCC (GNU Compiler Collection)

compiler 4.5.1. [12], on Linux operating system to translate

the libpng graphic library and run on MIPS architecture.

This compiler and GNU Assembler provide options –mdsp

and –mdspr2 that enable the availability of Revision 1 or

Revision 2 MIPS DSP ASE instructions, respectively, for

code generation.

There are few methods [13] of utilizing the MIPS DSP

ASE that are supported by the GCC GNU Assembler (GAS)

[14] for MIPS cores:

 Hand-coding in assembly language;

 Hand-coding in inline assembly;

 ASM-macros;

 Intrinsics;

 Fixed-point data types and operators in C;

 Auto-vectorization.

Hand-coding in assembly language is the most time-

consuming method, but can produce code with the highest

performance.

Firstly, we tried to use auto-vectorization. It is necessary

to activate automatic vectorization using a specific

compilation flags (-mdspr2 -O3 -EL). The advantage of

auto-vectorization is that the compiler can recognize scalar

variables in order to utilize SIMD instructions automatically.

Unfortunately, this method failed to get good results for all

routines, so we decided for handwriting inline assembly.

D. Inline Assembly

Using the inline assembly can reduce the number of

instructions required to be executed by the processor. Also,

it is important because of its ability to operate and make its

output visible on C/C++ variables. With inline assembly, it

is possible to do partial optimization for speed-critical

sections of code.

Before writing the inline assembler, it is necessary to

analyse all original routines that will be optimized. It is

generally necessary to make modifications to the program

structure, data structure, as well as to do loop unrolling [9]

in order to prepare the original code for vectorization and

optimizations. For example, we had to carry out in parallel

on operands packed into a single 32-bit general-purpose

register for SIMD type operations that could be 2x16-bit or

4x8-bit operations.

E. Assembly Tips & Rules

In order to do better optimizations of routines, a few

specific and important tips and rules need to be followed:

Instruction’s latencies. It is necessary to know the basic

latencies of instructions as executed by the 74K core, i.e.

how many cycles later can be issued as a dependent

instruction. For these purposes, there are four classes of

instructions [9]:

 Simple ALU instructions - run in 1 cycle. This includes

bitwise logical instructions, mov (an alias for addu with

$0), shifts up to 8 positions down or up, test-and-set

instructions, and sign-extend instructions;

 Simple DSP ASE operations – 2 cycle latency. The

same as most regular MIPS32 arithmetic without multiply

and saturation;

 DSP instructions, which feature saturation or rounding -

three-cycle latency;

 Special DSP multiply - 6–9 cycle latency.

Out-of-order execution. The 74K core supports out-of-

order instruction execution, which can automatically reorder

instructions to more efficiently pair up instructions for

parallel execution and help hide instruction and cache

latencies [10].

Loads and load-to-use delay - MIPS CPUs cannot deliver

loaded data to the immediately following instruction without

a delay. Typically, data is delivered one clock later, so we

can try to put some useful and non-dependent instruction

between the load and its first use.

Branch delay slot instruction. The MIPS architecture

defines that the instruction following a branch (the “branch

delay slot” instruction) is always executed. Also, there are

special forms of branches called “branch likely”, which

execute the branch delay slot instruction only when the

branch is taken.

All of these tips and rules were used to reduce program

and data space and to rearrange data space by manually

modification of the assembly code.

F. Optimization

Our goal was to reduce the number of memory accesses

and to do as many operations as possible in parallel to get

the best results. A reduced number of accesses to memory is

derived by taking 32-bit value from memory instead of

taking 8-bit or 16-bit values, which are then computed

within a 32-bit value. Compared to the original software

solution, they avoid unnecessary memory access up to eight

times within a single loop pass.

We analysed the original source code with an Objdump

72

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

tool [14] that generates assembler code from the source C

code. Objdump display information from object files. In this

step, we identified where the delays occur in executing the

instructions. These delays are most often caused by the

interdependence between two consecutive instructions.

Namely, if the execution time of an instruction is more than

one cycle (for example, multiplication operations) and the

result is used in the next instruction, the flow structure is

stopped until the result of the first instruction becomes

available. Such problems are solved by simply rearranging

the order of execution of instructions, i.e. by inserting some

independent instructions into the flow structure.

In addition, instructions with the greatest delay were

placed at the beginning of the assembler block, and after

these instructions, we set other instructions that could be

executed in parallel.

The loading of coefficients and constants is done outside

the loop avoiding additional memory access, which occurs in

the original software solution.

The processing of most routines is based on computing

with 8-bit data. Due to out of range, it is not possible to use

DSP ASE instructions over 8-bit data sets. That is why 8-bit

data are placed within each 16-bit data of one 32-bit registry.

DSP ASE instructions were used over this data, which made

parallelization possible. In particular, the PRECEU.PH.QBR

instruction was used for these situations.

In digital signal processing, processing is generally

performed on larger data sets cyclically. There are a number

of iterations of the same operations, where only the input

data is changed. In this kind of processing, it is possible to

parallelize the processing of several iterations

simultaneously. This method is called “loop unrolling”, and

thus avoids the delay caused by memory access. The

unrolled loop assumes that the number of iterations of the

original loop is multiple of the unroll factor. For example, if

a loop is unrolled four times (4x), the number of iterations in

the original loop has to be a multiple of four. This is usually

not worrisome and the code can be written to work correctly

for any number of iterations. Sometimes, it is easiest to just

produce a few extra don’t care values at the tail-end of the

unrolled loop; just to ensure that the data buffers are large

enough to hold all the output values from the unrolled loop

[15].

In the following example, in Fig. 2 and Fig. 3, we present

loop unrolling and some optimization details for routine

png_read_filter_row_paeth_multibyte_pixel.

Fig. 2. Original C code for png_read_filter_row_paeth_multibyte_pixel routine.

Figure 2 shows original C code for

png_read_filter_row_paeth_multibyte_pixel routine. There

are two while loops in original code: first for reading each

row data and second for data processing. Reading of each

row data was done by taking 8-bit values from memory (Fig.

2 - Line 6). So, there are too many accesses to memory. We

reduced number of accesses to memory by taking 32-bit

value from memory (Fig. 3 - Line 9).

Original code uses bpp variable to calculate the end of

row. This value is the number of bytes per pixel and could

have only the value of? 3 or 4. We certainly do 4 pixel

processing, so we avoided this calculation by using

parallelization.

Also, the data processing in the second while loop worked

with 8-bit values in original code. In our optimization, we

used SIMD instructions to process 4 bytes in parallel,

whenever it was possible. All MIPS DSP ASE instructions

with .qb in names (Figure 3 - Lines 6, 14–17, etc.) use 4

bytes processing in parallel. Due to out of range for some

processing, we had to place 8-bit data within each 16-bit

data of one 32-bit registry. As we already mentioned, we

used instruction PRECEU.PH.QBR for this purpose.

After this data packing, we had to use instructions that

process 2 bytes in parallel. These instructions have .ph in

73

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

names (Figure 3 - Lines 23–44, etc.). Also, whenever it was

possible, we set other instructions after the instruction with

greatest delay.

After optimization, the number of instructions in the

original and optimized code was compared. Almost all

routines are optimized to handle 4 pixels in one pass, so the

number of instructions of optimized code compared to the

original code is greatly reduced.

Fig. 3. MIPS DSP ASE optimization for png_read_filter_row_paeth_multibyte_pixel routine.

V. EXPERIMENTAL RESULTS

The results of the optimizations were obtained by

measuring the performance of the graphics library using test

programs developed by the authors of the libpng graphics

library. The testing was performed on the MIPS 74K Malta

development platform with an integrated Linux operating

system.

Tests generally do conversions between PNG and other

image formats. To run existing tests, it is advisable to use

images required by the authors of the libpng graphics

library, which can be found on the libpng official website.

These existing tests check output’s bit-exactness after

images processing and have time execution measurement.

Time measurement is done in terms of second (s).

Before using existing libpng tests, we created our

standalone tests to verify bit-exactness and acceleration for

all routines. These tests have shown that optimized routines

give bit-exactness outputs for same inputs and acceleration

of about from 35 % to 80 % depending on the optimized

routine. It was expected that these standalone tests would

perform better results than the existing tests, because these

74

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

tests measure time and number of cycles for each one

optimized routine separately. These tests use the same input

data from the existing tests. Each optimized routine has a

separate test, in which we first check bit-exactness of the

output relative to the reference code, and then the processing

time is measured in milliseconds (ms). By comparing results,

we can see a significant improvement for each optimized

routine as shown in Table II.

TABLE II. STANDALONE TEST RESULTS.

Standalone test for each routine

Optimized routine
ref

[ms]

opt

[ms]

gain

[%]

png_read_filter_row_sub 1604 645 59.79

png_read_filter_row_avg 2177 783 64.03

png_read_filter_row_up 1587 782 50.72

png_read_filter_row_paeth_multibyte_pixel 2135 893 58.17

png_do_gamma 1785 645 63.87

png_do_scale_16_to_8 1169 756 35.33

png_do_read_interlace 2258 786 65.19

png_combine_row 1763 961 45.49

png_do_chop 2581 511 80.20

png_write_find_filter 1884 1024 45.65

Names of optimized routines are given in the first column

followed by the results for original source code (ref) and for

optimized routines (opt) that were measured in milliseconds.

The last column presents gain in percent.

After these standalone measurements, we have done

profiling measurements with Oprofile tool for all libpng

tests, with and without optimized routines. Table III shows

results of reducing the cycle consumption of each function

separately for both original and optimized routines. First

column presents names of optimized routines followed by

the test that is executed. After that, we presented results for

original source code (ref) and for optimized routines (opt).

Finally, the last column shows gain in percent. All optimized

routines have achieved performance increase as we expected

Table III).

Results in Table III show that the percentage of functions

in the graphics library has changed significantly.

Routines png_read_filter_row_paeth_multibyte_pixel and

png_write_find_filter had the highest CPU time and their

acceleration increased by 25%–50 % and about 15 %,

respectively, depending on the test case.

Also, routines png_do_chop (acceleration about 75 %)

and png_do_read_interlace (acceleration about 65 %) have

the greatest acceleration, probably because of the large

number of constants, additions and shifts used in their

original processing that we have been able to improve using

all of the above techniques.

Last step was to measure execution time for all tests with

and without optimized routines. These tests showed

satisfactory results also Table IV).

Results in Table IV show the total gain of all graphics

library optimizations. Results depend on the input images

and the processing performed in the tests. The best results

are shown by the pngtopng test (acceleration about 25 %),

because this test uses almost all optimized routines.

TABLE III. PROFILING RESULTS.

Existing libpng tests - profiling results for all optimized routines

Optimized routine Test
ref

[%]

opt

[%]

gain

[%]

png_read_filter_row_sub

testpng 2.31 1.21 47.62

pngtopng 1.85 0.86 53.21

rpng2-x 6.53 3.25 50.23

pngm2pnm 9.11 5.02 44.90

png_read_filter_row_avg

testpng 1.94 0.82 57.73

pngtopng 1.38 0.65 52.90

rpng2-x 5.53 2.23 59.57

pngm2pnm 6.96 2.37 65.95

png_read_filter_row_up

testpng 0.27 0.22 19.63

pngtopng 0.23 0.13 42.17

rpng2-x 0.86 0.24 72.44

pngm2pnm 0.63 0.41 34.12

png_read_filter_row_

paeth_multibyte_pixel

pngtopng 12.33 5.80 52.96

rpng2-x 74.01 56.68 23.42

pngm2pnm 76.22 56.48 25.89

png_do_gamma pngtopng 2.83 1.51 46.64

png_do_scale_16_to_8 pngtopng 5.66 3.06 45.64

png_do_read_interlace

testpng 5.47 1.50 72.63

pngtopng 5.80 4.74 18.34

rpng2-x 25.07 8.45 66.28

pngm2pnm 28.05 10.90 61.15

png_combine_row

testpng 1.56 1.29 17.03

pngtopng 1.67 1.50 10.36

rpng2-x 19.82 16.49 16.79

pngm2pnm 9.29 7.40 20.38

png_do_chop
rpng2-x 8.43 2.16 74.34

pngm2pnm 9.53 2.08 78.16

png_write_find_filter
testpng 85.40 71.67 16.08

pngtopng 95.33 82.45 13.51

TABLE IV. TIME MEASUREMENT - OVERALL.

Existing libpng tests - overall gain

Image Test ref[s] opt[s]
gain

[%]

BumbleBee_HedKase.png

testpng x x x

pngtopng 15.12 11.2 25.93

pngm2pnm 14.52 13.61 6.28

iTunes.png

testpng x x x

pngtopng 2.16 1.95 9.72

pngm2pnm 0.97 0.84 13.22

png4.png

testpng 6.78 5.41 20.28

pngtopng 1.55 1.21 21.94

pngm2pnm 6.88 6.87 0.15

lena_16g_lin.png

testpng 0.41 0.38 8.74

pngtopng 0.27 0.26 4.07

pngm2pnm 0.14 0.12 14.18

pnglogo-grr.png

testpng 8.26 7.61 7.88

pngtopng 4.05 3.8 6.17

pngm2pnm 0.88 0.71 18.68

The overall gain is lower than the gain of individual

functions and profiling results due to compression and

decompression routines from the zlib library that consume

most of the CPU time and CPU cycles in the existing tests.

75

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

VI. CONCLUSIONS

In this paper, we have proposed embedded software code

optimization of the graphic PNG library libpng on MIPS32

platform.

The libpng library optimizations for the MIPS

architecture described in this paper show satisfactory results.

Further enhancement of the execution speed of the PNG

image processing algorithm on the MIPS platform can be

achieved by introducing support for the MSA (MIPS SIMD

Architecture) extension of the MIPS instruction set. MIPS

MSA implements 128-bit wide vector registers that

significantly increases the possibility of parallelization. In

the meantime, we worked on optimization for the zlib

library, but did not get satisfactory results for the MIPS DSP

ASE instruction set. It is possible that the MSA instruction

set would produce much better optimization results for the

zlib library, and therefore the libpng graphic library that

relies directly on zlib.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] W. Wolf, “A decade of hardware/software co-design”, IEEE

Computer, vol. 36, no.4, pp. 38–43, Apr. 2003. DOI:

10.1109/MC.2003.1193227.

[2] G. Berry, “Synchronous methodology for designing hardware,

software and mixed embedded systems”, in Proc. of 17th

International Conference on VLSI Design, Mumbai, India, Jan. 2004,

pp. 24–25. DOI: 10.1109/ICVD.2004.1260897.

[3] H. Mao, Z. Hu, L. Zhu, and H. Qin, “PNG file decoding optimization

based embedded system”, in Proc. of 2012 8th IEEE International

Conference on Wireless Communications, Networking and Mobile

Computing, Shanghai, China, Sept. 2012. DOI:

10.1109/WiCOM.2012.6478619.

[4] G. Randers-Pehrson, “A description on how to use and modify

libpng”, Oct. 2002. [Online]. Available:

http://www.libpng.org/pub/png/libpng-1.0.3-manual.html

[5] Effective DSP Programming using MIPS® DSP Application Specific

Extensions, Document no. MD00475, Jun. 2008. [Online]. Available:

https://s3-eu-west-1.amazonaws.com/downloads-mips/mips-

documentation/login-

required/eEffective_programming_of_the_24ke_and_the_34k_core_f

amilies_for_dsp_code.pdf

[6] D. Sweetman, See MIPS run Linux, 2nd ed. Morgan Kaufmann

publishers, 2007.

[7] Efficient DSP ASE Programming in C: Tips and Tricks, Document

no. MD00485, Jun. 2011. [Online]. Available: https://s3-eu-west-

1.amazonaws.com/downloads-mips/mips-documentation/login-

required/efficient_dsp_ase_programming_in_c-tips_and_tricks.pdf

[8] MIPS® Architecture for Programmers Volume IV-e: MIPS® DSP

Module for MIPS32™ Architecture, Document no. MD00374, Dec.

2014. [Online]. Available: https://s3-eu-west-

1.amazonaws.com/downloads-mips/documents/MD00374-2B-

MIPS32DSP-AFP-03.01.pdf

[9] Programming the MIPS32® 74K™ Core, Revision 02.13, June

04,2010, MIPS Technologies, Inc. 955 East Arques Avenue,

Sunnyvale, CA 94085-4521.

[10] An Independent Analysis of the MIPS Technologies MIPS32 74K

Licensable Processor Core, Berkeley Design Technology, Inc,, 2007.

[11] J. Levon, “OProfile Manual”, Victoria University of Manchester,

2004. [Online]. Available: https://oprofile.sourceforge.io/doc/

[12] GCC 4.5.1. Manual, 2008 Free Software Foundation, Inc.

[13] Five Methods of Utilizing the MIPS DSP ASE, Document no.

MD00783, Jun. 2011. [Online]. Available: https://s3-eu-west-

1.amazonaws.com/downloads-mips/mips-documentation/login-

required/five_methods_of_utilizing_the_mips_dsp_ase.pdf

[14] Objdump - Linux Manual Page. [Online]. Available:

http://man7.org/linux/man-pages/man1/objdump.1.html

[15] J. C. Huang and T. Leng, “Generalized loop-unrolling: A method for

program speedup”, in Proc. of 1999 IEEE Symposium on

Application-Specific Systems and Software Engineering and

Technology, ASSET’99, Richardson, TX, USA, 1999. DOI:

10.1109/ASSET.1999.756775.

76

http://man7.org/linux/man-pages/man1/objdump.1.html

