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1Abstract—The aim of this paper and research was to analyse 

the efficiency of the compiler-generated code for the graphics 

library and to present results obtained by optimization for the 

MIPS (Million Instructions Per Second) architecture. Libpng is 

the official Portable Network Graphics reference library for 

use in applications that read, create, and manipulate PNG 

(Portable Network Graphics) raster image files. Given the data 

structure in the PNG files, as well as the capabilities of the 

MIPS instruction set, it was expected that significant 

improvements could be made. Graphic library libpng is 

optimized by using MIPS instruction set extension and tested 

on MIPS Malta 74K platform. Test results show, that by using 

MIPS optimization test, execution times are substantially 

improved. Our libpng optimization have achieved performance 

increase of 10 %–78 % depending on optimized routine. 

 
 Index Terms—DSP; Embedded software; Image processing; 

MIPS; Optimization; PNG; SIMD. 

I. INTRODUCTION 

The field of multimedia communications is evolving at a 

high speed and is conditioned by the introduction of new 

video and audio standards in new multimedia electronic 

devices. An important requirement for the end user is that 

multimedia electronic devices operate at a satisfactory speed 

in real-time. As new technologies require the increasing 

processing power of computer architectures, which is to 

some extent limited, it is necessary to significantly optimize 

software support on a given computer architecture to enable 

real-time operation. 

Embedded system capabilities are a function of both the 

hardware platform and the software implementation strategy 

[1], [2]. When there are plenty of hardware resources with 

higher processing speeds and power like desktop computers, 

achieving real-time performance is not a major issue. Today, 

there has been an exponential growth in the use of mobile 

embedded systems like cell phones, tablets, video game 

console, etc. in the consumer electronics market, which have 

a relatively small power consumption and form factor. 

Multiple applications like video streaming, smart cameras, 
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context-aware computing, and virtual reality are resident on 

these devices to meet consumer needs. 

The aim of this paper and research is to analyse the 

efficiency of the compiler-generated code for the PNG 

graphics library and to present results obtained by 

optimization for the MIPS (Million Instructions Per Second) 

architecture for real-time operation. 

Portable Network Graphics (PNG) is an undistorted and 

bitmapped image format that employs lossless data 

compression. PNG was created to improve upon and replace 

GIF (Graphics Interchange Format) as an image-file format 

not requiring a patent license [3].  

The official graphic library that is used in applications for 

PNG image processing is libpng. This library has been 

designed to handle multiple sessions at one time, to be easily 

modifiable, to be portable to the vast majority of machines 

(16-, 32-, and 64-bit) available, and to be easy to use.  

This graphic library supports almost all of PNGs features: 

 indexed-color, 

 grayscale images, 

 truecolor images, 

 optional alpha channel, 

 sample depths range from 1 bit to 16 bits. 

This graphic library is dependent on zlib library for data 

compression and decompression routines [4]. 

By analysing the assembler code obtained with the 

compiler, we found that it is possible to improve the 

performance by writing the assembler manually. Libpng has 

significant potential for SIMD (Single Instruction Multiple 

Data) acceleration due to the type of data and operations 

performed during image processing. 

MIPS 74K core is a MIPS high-performance processor 

core and includes features that can support applications with 

significant signal processing requirements. These processors 

can be found in set-top boxes, VoIP SoCs (Voice over IP 

System on a Chip), networking equipment, digital TVs, 

DVD players and recorders, and in applications that use 

signal processing. MIPS 74K core operates at up to 

1.11 GHz in a 65 nm process and supports MIPS DSP 

(Digital Signal Processing) oriented instruction set called 

DSP ASE (Application Specific Extension) Revision 2 that 

uses SIMD extensions to obtaining vectorised execution. [5]. 
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The purpose of DSP ASE instruction is to speed up 

algorithms in areas such as audio and video compression, 

image processing, communications, etc. 

SIMD extensions to the embedded processors have come 

to support the increasing requirements by providing data 

parallelism. This extension improves the performance for 

multimedia applications, audio and video codecs, image 

processing, etc. 

The paper is organized as follows. MIPS architecture 

overview is presented in Section II. The overview of 

MIPS32 instruction set is presented in Section IⅡ. Libpng 

optimization is described in Section IV. Finally, 

implementation results are given in Section Ⅴ, and 

conclusions in Section VI. After these sections, we listed all 

references that we used in this paper. To the best of our 

knowledge, there are no works on the libpng topic and there 

are no works or results of libpng optimization. In the 

absence of literature and papers related to the libpng 

graphics library, we used references related to embedded 

systems, PNG optimizations, MIPS specifications, and 

manuals for DSPs and instruction sets. 

II. MIPS ARCHITECTURE 

The MIPS32 74K core is the first member of family of 

synthesizable 32-bit RISC (Reduced Instruction Set 

Computing) CPU (Central Processing Unit) cores and offers 

the highest performance yet from a synthesizable core. All 

74K family cores implement the MIPS32 Release 2 

instruction set architecture and supports the DSP ASE 

Revision 2 instruction set extensions. This platform has the 

following options: 

 I and D-Caches: 4-way set associative: 0 Kbytes, 

8 Kbytes, 16 Kbytes, 32 Kbytes or 64 Kbytes in size; 

 L2 (secondary) cache: 128 Kbytes–1 Mbyte in size; 

 Fast multiplier: 1-per-clock repeat rate for 32×32 

multiply and multiply/accumulate; 

 DSP ASE Revision 2: this instruction set extension adds 

many new computational instructions with a fixed-point 

math unit crafted to speed up popular signal-processing 

algorithms. Some of these functions do two math 

operations at once on two 16-bit values held in one 32-bit 

register; 

 Floating Point Unit (FPU): if fitted, this is a 64-bit unit, 

which most often runs at half or two-thirds the clock rate 

of the integer unit; 

 The “CorExtend” instruction set extension: defines a 

hardware interface, which makes it relatively 

straightforward to add logic to implement new 

computational instructions in your CPU using predefined 

instruction encodings. 

The MIPS 74K core contains a load/store unit and 

separate data path, and can execute up to two instructions in 

parallel or up to four instructions - two floating point and 

two integers. These units share thirty-two 32-bit GPR and 

four 64-bit accumulators. The data path contains a 32-bit 

ALU (Arithmetic Logic) and MDU (Multiply/Divide) unit 

[6]. 

Figure 1 shows a block diagram of the MIPS 74K core. 

 
Fig. 1.  MIPS32 74K Processor Core Block Diagram. 

III. OVERVIEW OF MIPS32 INSTRUCTION SET 

The MIPS 74K core supports the baseline MIPS32 

instruction set and two instruction set extensions:  

 DSP ASE Revision 2; 

 MIPS 16e for 16-bit compressed instruction set. 

In this paper, we will focus on DSP ASE Revision 2. This 

instruction set to the MIPS32 architecture was introduced by 

MIPS Technologies to optimize the performance of signal 

processing and multimedia applications running on MIPS 

core processors. The DSP ASE is a set of new instructions 

and new architectural state with computational support for 

fractional data types, SIMD, saturation, and other operations 

commonly used in DSP applications [7]. 

The MIPS DSP ASE Revision 2 provides support for a 

number of powerful data processing operations. There are 

instructions for fractional arithmetic (Q15/Q31) and for 

saturating arithmetic. Additionally, for smaller data sizes, 

SIMD operations are supported allowing 2 × 16 bit or 4 × 

8 bit operations to occur simultaneously. Many of the DSP 

ASE instructions work in SIMD mode and perform certain 

operations simultaneously on several data packed into 32-bit 

vectors [5]. Instructions operating on vectors can be 

recognized because the name includes .ph (paired-half, 

usually signed, and often fractional) or .qb (quad-byte, 

always unsigned, only occasionally fractional) [8]. These 

instructions automatically perform additional operations 

such as rounding and saturation, which without them 

requires a significant number of processor cycles for 

implementation. 

Another feature of the ASE is the inclusion of additional 

HI/LO accumulator registers to improve the parallelization 
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of independent accumulation routines. All 32-bit operand 

arithmetic DSP instructions (except multiply) are executed 

in the ALU pipe, while the 64-bit operand arithmetic and 

multiply class DSP instructions are executed in the MDU 

pipe. 

New instructions in DSP ASE Revision 2 help in 

minimizing the data packing, unpacking, shuffling, etc. That 

is required for SIMD arithmetic. The MIPS32 DSP ASE 

instructions can be classified depending on the implemented 

function [3]: 

 Arithmetic Class - perform basic arithmetic operations, 

such as addition and subtraction (ADDQ.PH/QB and 

SUB.PH/QB), as well as some more specialized 

operations like data packing/unpacking, absolute value 

(ABSQ), horizontal sum of the source register data 

elements (RADDU), circular buffers (MODSUB), etc.; 

 Shift Class - implement logical and arithmetic shift of 

the individual SIMD data elements that are packed into 

32-bit registers (SHLL/R.QB/PH). The shift amount can 

be variable (specified by a register) or fixed. In addition, 

there is saturation option in the left shift instruction 

(SHLL_S.PH/QB); 

 Multiply Class - include instructions for integer and 

fractional element-wise multiplication (MULEU_S.PH 

and MULQ_RS.PH), dot product accumulate and subtract 

(DPAU, DPSU, DPAQ_S, DPSQ_S), and compute the 

real and imaginary parts of a complex multiply 

(MULSAQ_S.W.PH and DPAQ_S.W.PH) accumulating 

the results to a specified accumulator; 

 Bit Manipulation Class - include instruction that 

reverses the order of the 16 right-most bits in the source 

register (BITREV), as well as the data replication 

instructions REPL that copy a given scalar value to all the 

SIMD elements of the destination register. There is also 

the INSV instruction that support variable position and 

size values; 

 Compare and Pick Class - include instruction that 

performs SIMD (element-wise) comparison of the data in 

the source registers (CMP.LT.PH), as well as instruction 

that selects elements from two registers based on the 

result of the comparison (PICK.QB and PICK.PH); 

 Accumulator and DSPControl Register Access Class - 

contains the EXTR instruction that extract values from the 

accumulator after shifting it to the right, as well as the 

EXTP instruction extracts a number of bits from a 

specified position. Instructions WRDSP and RDDSP 

transfer data between the general-purpose registers and 

the DSPControl Register; 

 Indexed Load Class - add a new addressing mode for 

loading integer and fixed-point data in the form of base + 

index. The three variants, LBUX, LHX, and LWX, load 

unsigned bytes, half-words, and 32-bit words, 

respectively. 

IV. LIBPNG OPTIMIZATION 

One of the problems of embedded system design is how to 

make software efficiently run on the used processor. 

Generally, software optimization has to be done for optimal 

system performance by matching the program code with the 

processor [9], [10]. During the process of code optimization, 

we have to take the architecture of the target processor, 

pipeline, compiler features, and features of instruction set 

into account for effective execution on target processor. 

First phase in our work was to find the bottlenecks of the 

PNG graphic library. This involves analysing of the existing 

code, data structure, profiling analysis, and executing all 

existing tests before optimizing the code. We used following 

steps to do graphic library optimization. 

A. Software Analysis 

Firstly, we did software module partition and performance 

estimation in C. This step can help to understand the 

program structure and to find optimization goals in higher-

level language. In this step, we examine the underlying data 

types that the program operates. How many bits are there in 

a single data element? Can multiple data elements be packed 

into a 32-bit register for SIMD data types? 

B. Profiling 

Performance analysis, better known as profiling, is an 

examination of program behavior using information gathered 

during program execution itself. This analysis identifies 

parts of the program that are suitable for optimization both 

of execution speed and memory usage. It is necessary to 

know, which parts of the software solution are most often 

executed, because there is no point to do optimization of 

routines that are rarely executed. Performance analysis 

shows the number of processor cycles required for each 

function, thus calculating its occupancy. 

We used Oprofile tool for profiling analysis and to find 

functions that take the most time across the whole system. 

OProfile is an open source project that includes a statistical 

profiler for Linux systems capable of profiling all running 

code at low overhead. Profile data can be produced on the 

function-level or instruction-level detail. Source trees 

annotated with profile information can be created. That 

enables collection of various low-level data and association 

with particular sections of code [11]. 

Profiling was done for original source code and for all test 

cases developed by the authors of the libpng graphics 

library. Some of results are presented in Table I, where a list 

of routines suitable for the optimization is given. The 

number of cycles and the percentage of function share in test 

case for original source code of the graphic library follow 

the function name. Table I shows functions relevant only to 

libpng graphic library. 

Profiling results showed that there were three 

computationally intensive tasks when reading PNG files: 

decoding row filters, expanding interlacing, and combining 

interlaced or transparent row data with previous row data. 

In addition, we analysed all of routines to determine if 

optimization could be done for each one. The results show 

that it is not possible to optimize all of libpng routines, so 

we opted for partial optimization of problematic routines. 

We have selected routines that we will optimize based on 

the operations they perform and the types of data. Each 

routine, where it was possible to vectorize operations and 

pack more data into a single 32-bit register, was chosen to be 

optimized. 
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TABLE I. PROFILING RESULTS FOR ORIGINAL SOURCE CODE - 

LIST OF ROUTINES THAT COULD BE OPTIMIZED WITH NUMBER 

OF PROCESSOR CYCLES AND CPU OCCUPANCY. 

Libpng graphic library profiling  

Routine Samples % 

png_write_find_filter 179509 85.39 

png_read_filter_row_paeth_multibyte_pixel 150527 74.01 

png_do_read_interlace 32169 25.07 

png_combine_row 28563 19.82 

png_do_chop 2369 9.53 

png_read_filter_row_sub 2203 9.11 

png_read_filter_row_avg 1756 6.97 

png_read_filter_row_up 1637 6.09 

png_do_scale_16_to_8 1223 5.66 

png_do_gamma 657 2.84 

C. Compiler Analysis 

A new compiler that enables code translation for that 

architecture accompanies the new architecture on the market. 

Initially, first compiler versions were not perfect in the sense 

that it failed to produce the most optimal code, so assistance 

by programmers and hand-coding assembler writing are 

required in some parts of the routine. Over time, the 

compiler evolves and improves, and with each successive 

version, the code that translates is better and more 

optimized. 

In this work, we used GCC (GNU Compiler Collection) 

compiler 4.5.1. [12], on Linux operating system to translate 

the libpng graphic library and run on MIPS architecture. 

This compiler and GNU Assembler provide options –mdsp 

and –mdspr2 that enable the availability of Revision 1 or 

Revision 2 MIPS DSP ASE instructions, respectively, for 

code generation. 

There are few methods [13] of utilizing the MIPS DSP 

ASE that are supported by the GCC GNU Assembler (GAS) 

[14] for MIPS cores: 

 Hand-coding in assembly language; 

 Hand-coding in inline assembly; 

 ASM-macros; 

 Intrinsics; 

 Fixed-point data types and operators in C; 

 Auto-vectorization. 

Hand-coding in assembly language is the most time-

consuming method, but can produce code with the highest 

performance.  

Firstly, we tried to use auto-vectorization. It is necessary 

to activate automatic vectorization using a specific 

compilation flags (-mdspr2 -O3 -EL). The advantage of 

auto-vectorization is that the compiler can recognize scalar 

variables in order to utilize SIMD instructions automatically. 

Unfortunately, this method failed to get good results for all 

routines, so we decided for handwriting inline assembly. 

D. Inline Assembly 

Using the inline assembly can reduce the number of 

instructions required to be executed by the processor. Also, 

it is important because of its ability to operate and make its 

output visible on C/C++ variables. With inline assembly, it 

is possible to do partial optimization for speed-critical 

sections of code. 

Before writing the inline assembler, it is necessary to 

analyse all original routines that will be optimized. It is 

generally necessary to make modifications to the program 

structure, data structure, as well as to do loop unrolling [9] 

in order to prepare the original code for vectorization and 

optimizations. For example, we had to carry out in parallel 

on operands packed into a single 32-bit general-purpose 

register for SIMD type operations that could be 2x16-bit or 

4x8-bit operations. 

E. Assembly Tips & Rules 

In order to do better optimizations of routines, a few 

specific and important tips and rules need to be followed: 

Instruction’s latencies. It is necessary to know the basic 

latencies of instructions as executed by the 74K core, i.e. 

how many cycles later can be issued as a dependent 

instruction. For these purposes, there are four classes of 

instructions [9]: 

 Simple ALU instructions - run in 1 cycle. This includes 

bitwise logical instructions, mov (an alias for addu with 

$0), shifts up to 8 positions down or up, test-and-set 

instructions, and sign-extend instructions; 

 Simple DSP ASE operations – 2 cycle latency. The 

same as most regular MIPS32 arithmetic without multiply 

and saturation; 

 DSP instructions, which feature saturation or rounding - 

three-cycle latency; 

 Special DSP multiply - 6–9 cycle latency. 

Out-of-order execution. The 74K core supports out-of-

order instruction execution, which can automatically reorder 

instructions to more efficiently pair up instructions for 

parallel execution and help hide instruction and cache 

latencies [10]. 

Loads and load-to-use delay - MIPS CPUs cannot deliver 

loaded data to the immediately following instruction without 

a delay. Typically, data is delivered one clock later, so we 

can try to put some useful and non-dependent instruction 

between the load and its first use. 

Branch delay slot instruction. The MIPS architecture 

defines that the instruction following a branch (the “branch 

delay slot” instruction) is always executed. Also, there are 

special forms of branches called “branch likely”, which 

execute the branch delay slot instruction only when the 

branch is taken. 

All of these tips and rules were used to reduce program 

and data space and to rearrange data space by manually 

modification of the assembly code. 

F. Optimization 

Our goal was to reduce the number of memory accesses 

and to do as many operations as possible in parallel to get 

the best results. A reduced number of accesses to memory is 

derived by taking 32-bit value from memory instead of 

taking 8-bit or 16-bit values, which are then computed 

within a 32-bit value. Compared to the original software 

solution, they avoid unnecessary memory access up to eight 

times within a single loop pass. 

We analysed the original source code with an Objdump 
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tool [14] that generates assembler code from the source C 

code. Objdump display information from object files. In this 

step, we identified where the delays occur in executing the 

instructions. These delays are most often caused by the 

interdependence between two consecutive instructions. 

Namely, if the execution time of an instruction is more than 

one cycle (for example, multiplication operations) and the 

result is used in the next instruction, the flow structure is 

stopped until the result of the first instruction becomes 

available. Such problems are solved by simply rearranging 

the order of execution of instructions, i.e. by inserting some 

independent instructions into the flow structure. 

In addition, instructions with the greatest delay were 

placed at the beginning of the assembler block, and after 

these instructions, we set other instructions that could be 

executed in parallel. 

The loading of coefficients and constants is done outside 

the loop avoiding additional memory access, which occurs in 

the original software solution. 

The processing of most routines is based on computing 

with 8-bit data. Due to out of range, it is not possible to use 

DSP ASE instructions over 8-bit data sets. That is why 8-bit 

data are placed within each 16-bit data of one 32-bit registry. 

DSP ASE instructions were used over this data, which made 

parallelization possible. In particular, the PRECEU.PH.QBR 

instruction was used for these situations. 

In digital signal processing, processing is generally 

performed on larger data sets cyclically. There are a number 

of iterations of the same operations, where only the input 

data is changed. In this kind of processing, it is possible to 

parallelize the processing of several iterations 

simultaneously. This method is called “loop unrolling”, and 

thus avoids the delay caused by memory access. The 

unrolled loop assumes that the number of iterations of the 

original loop is multiple of the unroll factor. For example, if 

a loop is unrolled four times (4x), the number of iterations in 

the original loop has to be a multiple of four. This is usually 

not worrisome and the code can be written to work correctly 

for any number of iterations. Sometimes, it is easiest to just 

produce a few extra don’t care values at the tail-end of the 

unrolled loop; just to ensure that the data buffers are large 

enough to hold all the output values from the unrolled loop 

[15]. 

In the following example, in Fig. 2 and Fig. 3, we present 

loop unrolling and some optimization details for routine 

png_read_filter_row_paeth_multibyte_pixel. 

 
Fig. 2.  Original C code for png_read_filter_row_paeth_multibyte_pixel routine. 

Figure 2 shows original C code for 

png_read_filter_row_paeth_multibyte_pixel routine. There 

are two while loops in original code: first for reading each 

row data and second for data processing. Reading of each 

row data was done by taking 8-bit values from memory (Fig. 

2 - Line 6). So, there are too many accesses to memory. We 

reduced number of accesses to memory by taking 32-bit 

value from memory (Fig. 3 - Line 9). 

Original code uses bpp variable to calculate the end of 

row. This value is the number of bytes per pixel and could 

have only the value of? 3 or 4. We certainly do 4 pixel 

processing, so we avoided this calculation by using 

parallelization. 

Also, the data processing in the second while loop worked 

with 8-bit values in original code. In our optimization, we 

used SIMD instructions to process 4 bytes in parallel, 

whenever it was possible. All MIPS DSP ASE instructions 

with .qb in names (Figure 3 - Lines 6, 14–17, etc.) use 4 

bytes processing in parallel. Due to out of range for some 

processing, we had to place 8-bit data within each 16-bit 

data of one 32-bit registry. As we already mentioned, we 

used instruction PRECEU.PH.QBR for this purpose. 

After this data packing, we had to use instructions that 

process 2 bytes in parallel. These instructions have .ph in 
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names (Figure 3 - Lines 23–44, etc.). Also, whenever it was 

possible, we set other instructions after the instruction with 

greatest delay. 

After optimization, the number of instructions in the 

original and optimized code was compared. Almost all 

routines are optimized to handle 4 pixels in one pass, so the 

number of instructions of optimized code compared to the 

original code is greatly reduced. 

 
Fig. 3.  MIPS DSP ASE optimization for png_read_filter_row_paeth_multibyte_pixel routine. 

V. EXPERIMENTAL RESULTS 

The results of the optimizations were obtained by 

measuring the performance of the graphics library using test 

programs developed by the authors of the libpng graphics 

library. The testing was performed on the MIPS 74K Malta 

development platform with an integrated Linux operating 

system. 

Tests generally do conversions between PNG and other 

image formats. To run existing tests, it is advisable to use 

images required by the authors of the libpng graphics 

library, which can be found on the libpng official website. 

These existing tests check output’s bit-exactness after 

images processing and have time execution measurement. 

Time measurement is done in terms of second (s).  

Before using existing libpng tests, we created our 

standalone tests to verify bit-exactness and acceleration for 

all routines. These tests have shown that optimized routines 

give bit-exactness outputs for same inputs and acceleration 

of about from 35 % to 80 % depending on the optimized 

routine. It was expected that these standalone tests would 

perform better results than the existing tests, because these 
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tests measure time and number of cycles for each one 

optimized routine separately. These tests use the same input 

data from the existing tests. Each optimized routine has a 

separate test, in which we first check bit-exactness of the 

output relative to the reference code, and then the processing 

time is measured in milliseconds (ms). By comparing results, 

we can see a significant improvement for each optimized 

routine as shown in Table II. 

TABLE II. STANDALONE TEST RESULTS. 

Standalone test for each routine 

Optimized routine 
ref 

[ms] 

opt 

[ms] 

gain 

[%] 

png_read_filter_row_sub 1604 645 59.79 

png_read_filter_row_avg 2177 783 64.03 

png_read_filter_row_up 1587 782 50.72 

png_read_filter_row_paeth_multibyte_pixel 2135 893 58.17 

png_do_gamma 1785 645 63.87 

png_do_scale_16_to_8 1169 756 35.33 

png_do_read_interlace 2258 786 65.19 

png_combine_row 1763 961 45.49 

png_do_chop 2581 511 80.20 

png_write_find_filter 1884 1024 45.65 

 

Names of optimized routines are given in the first column 

followed by the results for original source code (ref) and for 

optimized routines (opt) that were measured in milliseconds. 

The last column presents gain in percent. 

After these standalone measurements, we have done 

profiling measurements with Oprofile tool for all libpng 

tests, with and without optimized routines. Table III shows 

results of reducing the cycle consumption of each function 

separately for both original and optimized routines. First 

column presents names of optimized routines followed by 

the test that is executed. After that, we presented results for 

original source code (ref) and for optimized routines (opt). 

Finally, the last column shows gain in percent. All optimized 

routines have achieved performance increase as we expected 

Table III).  

Results in Table III show that the percentage of functions 

in the graphics library has changed significantly. 

Routines png_read_filter_row_paeth_multibyte_pixel and 

png_write_find_filter had the highest CPU time and their 

acceleration increased by 25%–50 % and about 15 %, 

respectively, depending on the test case. 

Also, routines png_do_chop (acceleration about 75 %) 

and png_do_read_interlace (acceleration about 65 %) have 

the greatest acceleration, probably because of the large 

number of constants, additions and shifts used in their 

original processing that we have been able to improve using 

all of the above techniques. 

Last step was to measure execution time for all tests with 

and without optimized routines. These tests showed 

satisfactory results also Table IV). 

Results in Table IV show the total gain of all graphics 

library optimizations. Results depend on the input images 

and the processing performed in the tests. The best results 

are shown by the pngtopng test (acceleration about 25 %), 

because this test uses almost all optimized routines. 

TABLE III. PROFILING RESULTS. 

Existing libpng tests - profiling results for all optimized routines 

Optimized routine Test 
ref 

[%] 

opt 

[%] 

gain 

[%] 

png_read_filter_row_sub 

testpng 2.31 1.21 47.62 

pngtopng 1.85 0.86 53.21 

rpng2-x 6.53 3.25 50.23 

pngm2pnm 9.11 5.02 44.90 

png_read_filter_row_avg 

testpng 1.94 0.82 57.73 

pngtopng 1.38 0.65 52.90 

rpng2-x 5.53 2.23 59.57 

pngm2pnm 6.96 2.37 65.95 

png_read_filter_row_up 

testpng 0.27 0.22 19.63 

pngtopng 0.23 0.13 42.17 

rpng2-x 0.86 0.24 72.44 

pngm2pnm 0.63 0.41 34.12 

png_read_filter_row_ 

paeth_multibyte_pixel 

pngtopng 12.33 5.80 52.96 

rpng2-x 74.01 56.68 23.42 

pngm2pnm 76.22 56.48 25.89 

png_do_gamma pngtopng 2.83 1.51 46.64 

png_do_scale_16_to_8 pngtopng 5.66 3.06 45.64 

png_do_read_interlace 

testpng 5.47 1.50 72.63 

pngtopng 5.80 4.74 18.34 

rpng2-x 25.07 8.45 66.28 

pngm2pnm 28.05 10.90 61.15 

png_combine_row 

testpng 1.56 1.29 17.03 

pngtopng 1.67 1.50 10.36 

rpng2-x 19.82 16.49 16.79 

pngm2pnm 9.29 7.40 20.38 

png_do_chop 
rpng2-x 8.43 2.16 74.34 

pngm2pnm 9.53 2.08 78.16 

png_write_find_filter 
testpng 85.40 71.67 16.08 

pngtopng 95.33 82.45 13.51 

TABLE IV. TIME MEASUREMENT - OVERALL. 

Existing libpng tests - overall gain 

Image Test ref[s] opt[s] 
gain 

[%] 

BumbleBee_HedKase.png 

testpng x x x 

pngtopng 15.12 11.2 25.93 

pngm2pnm 14.52 13.61 6.28 

iTunes.png 

testpng x x x 

pngtopng 2.16 1.95 9.72 

pngm2pnm 0.97 0.84 13.22 

png4.png 

testpng 6.78 5.41 20.28 

pngtopng 1.55 1.21 21.94 

pngm2pnm 6.88 6.87 0.15 

lena_16g_lin.png 

testpng 0.41 0.38 8.74 

pngtopng 0.27 0.26 4.07 

pngm2pnm 0.14 0.12 14.18 

pnglogo-grr.png 

testpng 8.26 7.61 7.88 

pngtopng 4.05 3.8 6.17 

pngm2pnm 0.88 0.71 18.68 

 
The overall gain is lower than the gain of individual 

functions and profiling results due to compression and 

decompression routines from the zlib library that consume 

most of the CPU time and CPU cycles in the existing tests. 
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VI. CONCLUSIONS 

In this paper, we have proposed embedded software code 

optimization of the graphic PNG library libpng on MIPS32 

platform.  

The libpng library optimizations for the MIPS 

architecture described in this paper show satisfactory results. 

Further enhancement of the execution speed of the PNG 

image processing algorithm on the MIPS platform can be 

achieved by introducing support for the MSA (MIPS SIMD 

Architecture) extension of the MIPS instruction set. MIPS 

MSA implements 128-bit wide vector registers that 

significantly increases the possibility of parallelization. In 

the meantime, we worked on optimization for the zlib 

library, but did not get satisfactory results for the MIPS DSP 

ASE instruction set. It is possible that the MSA instruction 

set would produce much better optimization results for the 

zlib library, and therefore the libpng graphic library that 

relies directly on zlib. 
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