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1Abstract—In this paper, a hardware accelerator for sparse 

support vector machines (SVM) is proposed. We believe that 

the proposed accelerator is the first accelerator of this kind. 

The accelerator is designed for use in field programmable gate 

arrays (FPGA) systems. Additionally, a novel algorithm for the 

pruning of SVM models is developed. The pruned SVM model 

has a smaller memory footprint and can be processed faster 

compared to dense SVM models. In the systems with memory 

throughput, compute or power constraints, such as edge 

computing, this can be a big advantage. The experiments on 

several standard datasets are conducted, which aim is to 

compare the efficiency of the proposed architecture and the 

developed algorithm to the existing solutions. The results of the 

experiments reveal that the proposed hardware architecture 

and SVM pruning algorithm has superior characteristics in 

comparison to the previous work in the field. A memory 

reduction from 3 % to 85 % is achieved, with a speed-up in a 

range from 1.17 to 7.92. 

 
 Index Terms—Support vector machines; Hardware 

accelerator architectures; Edge computing.  

I. INTRODUCTION 

Support Vector Machine (SVM) is one kind of machine 

learning algorithms, firstly introduced in [1]. SVMs were 

one of the most popular predicting models until 

Convolutional Neural Networks (CNN) have been proposed. 

Also, there is work on hybrid models of CNN and SVM, 

e.g., in [2], [3]. 

As with other supervised machine learning algorithms, 

SVM contains two phases: a learning phase and a predicting 

phase. The SVM model approximates unknown function U. 

In the learning phase, input to the SVM training algorithm is 

a training set with m instances, each of which has n 

attributes 

 { , }, 1.. , , { 1, 1}.n

i i iTS x y i m x X R y Y         (1) 

The output of the SVM learning phase is a linear 
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classification function L in a form 

 : , ( ) , , .nL X Y L x w x b w R b R       (2) 

The function L approximates the unknown function : X → 

Y. 

Function L, as previously defined, can correctly classify 

only the linearly separable training set. To be able to classify 

instances that belong to non-linearly separable classes, one 

can apply a non-linear mapping φ to input space X to 

transform the original input feature space to a high-

dimensional feature space , .kZ R k n   The same linear 

classification function can be used to separate points in this 

high-dimensional feature space, achieving non-linear 

classification in the original space X. Using the kernel trick, 

the SVM classifier still can work in the original space, so 

the non-linear classification function can be expressed in the 

form 

 ( ) ( ) .F x w x b    (3) 

SVM splits points in the input feature space with a linear 

hyperplane. The hyperplane is located at a maximal distance 

from the training set instances of each class that is closest to 

the hyperplane. In general, this cannot be done without 

errors for all training set instances, so the SVM algorithm 

allows some training set instances to be incorrectly 

classified. The problem of finding an optimal splitting 

hyperplane can be described formally as the constrained 

quadratic programming (CQP) problem: 
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 ( ( ) ) 1 , 0, 0, 1... .i i iy w x b C i m           (5) 

The first part of the minimization function puts the 

hyperplane at the maximal margin, while the second part 

changes the position of the hyperplane in a way that 

minimizes the number of training set instances that will be 

misclassified. These two criteria are contradictory, so the 

parameter C defines a trade-off between them. 

Using a method of Lagrange multipliers, the original CQP 

problem can be transformed into its dual form, which is 

easier to solve (6)–(9): 
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 ( , ),ij i j i jw y y K x x  (7) 

 ( , ) ( ) ( ),i j i jK x x x x   (8) 

 0 , 1, 1... , 0.T

i iC r i m y         (9) 

The m m  matrix W is symmetric positive semidefinite, 

and its elements are .ijw  The function K is called kernel and 

it implicitly defines a non-linear mapping - φ. There are 

several popular kernels in use, some of them are: 

 ( , ) ( 1) : ,d

i j i jK x x x x polynomial    (10) 

 
2

( , ) : radial basis function,i jx x

i jK x x e
 

  (11) 

 ( , ) tanh( ) : .i j i jK x x ax x b sigmoid    (12) 

The parameters of the kernel are d, γ, a, and b. 

More details about the theory behind the SVM training 

can be found in [4]. 

After the training procedure completes, some of the 

Lagrange multipliers will be zero, and others will be non-

zero. The training set instances corresponding to the non-

zero multipliers from input data set are called support 

vectors. Let l be the number of support vectors (l ≤ m). 

The SVM training algorithm outputs a non-linear 

approximation function in the following form 

 
1

: , ( ) ( , ),
l

i i i

i

V X Y V x b y K s x


    (13) 

where is  is the support vector and x is the input instance. 

The evaluation of the function V(x) for the unknown input 

instance is called classification. This is the second phase of 

the SVM algorithm. If the value of the function is greater 

than zero, the input instance is classified as a class with 

label +1, otherwise, it is labeled as a class -1. 

The SVM algorithm can be generalized to do a multi-

class classification also. One approach for this 

generalization is given in [5]. 

The efficient algorithm for the training of SVM is a 

Sequential Minimal Optimization (SMO), firstly introduced 

in [6]. Several additional optimizations of the SMO 

algorithm have been proposed, one example being [7]. 

Machine learning algorithms are being used in different 

kinds of applications, ranging from servers to embedded 

systems. Deploying machine learning models to embedded 

systems is especially difficult because of the size of the 

models. Therefore, the compression and reduction of the 

size of the models attracted a lot of research effort [8]. The 

compression of the size of SVM models is presented in [12]. 

The main idea in those papers for the reduction of SVM size 

is in a smart selection of support vectors during the training 

of SVMs. In this paper, we present a complementary idea 

for the size reduction of SVMs: the removal of attributes 

from support vectors. To the best of our knowledge, this 

approach to the reduction of SVM size has not been 

previously reported for SVMs. 

We propose the AST-SVM algorithm for training of 

attribute sparse SVMs, and the ASA-SVM hardware 

accelerator that can take advantage of this kind of sparse 

SVMs. The presented accelerator is aimed for use in 

“FPGA” (Field-Programmable Gate Array) systems, and it 

is especially useful for embedded and edge applications, 

where designers are constrained with severe computational, 

memory throughput, and power limitations. The AST-SVM 

algorithm produces SVMs with an increased number of 

zeroes in model parameters. By operating on these sparse 

support vector representations, the ASA-SVM accelerator 

usually requires less memory for the storage of support 

vectors, and by skipping calculations of zero products 

during classification, it can reach higher performance than 

comparable dense accelerators. 

The hardware acceleration of SVMs has been an 

interesting topic in the research community, resulting in 

several proposed hardware architectures [14]]–[[19]. In 

contrast to the ASA-SVM, all previously proposed 

architectures operate on dense SVMs. As far as we know, 

the ASA-SVM accelerator is the first to operate on sparse 

SVMs. 

The rest of this paper is structured as follows. The 

algorithm for pruning SVMs is given in section II. The 

AST-SVM algorithm sets a predefined number of attributes 

of training instances to zero; therefore, reducing the size of 

the classifier after the training is done. Section III contains a 

description of the ASA-SVM architecture, which is 

designed to take advantage of sparse SVMs, which contains 

a large number of zeroes in each of the support vectors. In 

that way, a higher processing performance can be achieved, 

as well as less memory usage. In section IV, the 

experimental results of the AST-SVM algorithm and ASA-

SVM architecture are presented for various standard 

datasets. Section V contains conclusions. 

II. ATTRIBUTE SPARSE TRAINING SVM (AST-SVM) 

ALGORITHM 

The AST-SVM algorithm uses a simple method for 

choosing which values to eliminate. Although simple, the 

method gives good results. The presented algorithm uses 

standard SVM training as the sub-task. In the AST-SVM 

algorithm, some of the values of attributes from some of the 

input instances of the input training set are set to zero. Then, 

the standard SVM training algorithm is called. After the 

SVM training is completed, the output is the sparse SVM 

model. 

The algorithm starts with some training dataset. At every 

iteration, the algorithm keeps all training instances sorted by 

their number of non-zero values. The training instance with 

the biggest number of non-zero values is chosen for attribute 

elimination. Then, the attribute whose absolute value is 

closest to zero is set to zero, i.e., eliminated. This is repeated 

until a predefined percentage of attribute values is 

eliminated from the training set. The output of this 

elimination procedure is the pruned input training dataset. 

After the elimination phase is over, the standard SVM 

training is started with the pruned input dataset. This 

procedure, as a result, outputs the SVM model with sparse 

support vectors. 
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Algorithm 1. Attribute Sparse Training SVM (AST-SVM) Algorithm. 

AST-SVM (DS, target_zv_pct) 

 

DS - Input dataset used for the training of 

SVM. The DS contains training 

instances, which are potential support 

vectors. 

target_zv_pct - Target percentage of zero 

values in DS 

 

Sort DS instances by the number of attributes 

different from zero 

current_zv_pct is the current percentage of 

zeroes in DS 

Determine current_zv_pct 

While current_zv_pct is less then 

target_zv_pct 

do 

{ 

Take the instance with the biggest number of 

non-zero values. 

Determine the attribute value which is not 

zero, but whose absolute value is the 

closest to the zero. 

Set that attribute value to zero. 

Increase current_zv_pct accordingly. 

Keep DS instances sorted. 

} 

 

Run regular training SVM algorithm on modified 

DS and return SVM model as the result. 

 

The listed algorithm uses an ordinary SVM training 

algorithm as one of its steps. We will call a model, which 

the ordinary algorithm outputs on the original, unmodified 

dataset, dense SVM model. The SVM model, which is the 

output of the AST-SVM algorithm, will be called “pruned 

SVM model”. The dense model can contain some zero 

attributes in its support vectors. Please notice that the pruned 

SVM model always contains less non-zero attributes 

compared to the dense SVM model. However, that does not 

mean that the pruned SVM model always contains exactly 

target_zv_pct less non-zero attributes compared to the dense 

SVM model. The reason for this is that modification of the 

training dataset will change, which training instances will 

become support vectors. For example, the dense SVM 

model can have 0 % of zeroes in its support vectors. The 

value of target_zv_pct can be set to 5 %. The modified 

training dataset will have 5 % attribute values of the training 

instances set to zero. Nevertheless, after the ordinary SVM 

training algorithm is run on the modified training dataset, 

the resulting pruned SVM model can contain only 4 % 

fewer attributes compared to the dense SVM model. The 

pruned SVM model can use more support vectors than the 

dense SVM model, but still has less non-zero attributes 

overall. 

III. HARDWARE ACCELERATOR FOR SPARSE SVMS 

The digital architecture, which can take advantage of the 

sparse SVM model, called “ASA-SVM” (Attribute Sparse 

Accelerator - SVM) is the modification of the “RMLC” 

(Reconfigurable Machine Learning Classifier) architecture, 

proposed in [20]. 

In the RMLC architecture, the SVM is implemented by 

splitting the sum calculation to several identical modules, 

each of which calculates only one part of the complete sum 

V(x) as shown in Fig. 1. 

 
Fig. 1.  Implementing SVM using RMLC architecture from [20]. 

In Fig. 1, there are K Computing Blocks (CB). Each CB 

calculates one part of the complete sum V(x). CB 1 

calculates sum up to 1

thl  support vector. The partial sum it 

calculates is then passed to the CB 2 module, alongside with 

the current input instance. The CB 2 module then calculates 

the next part of the complete sum from 1( 1)thl   support 

vector to 2

thl  support vector and so on. The architecture is 

designed to achieve the high instance throughput by using 

pipelining. When the CB 1 module passes the partial sum of 

the first input instance to the CB 2 module, it immediately 

starts to calculate the partial sum using the next input 

instance. In the architecture with K CBs, up to K input 

instances can be processed at the same time. 

The ASA-SVM architecture keeps only the SVM 

functionality part of the RMLC architecture and adds 

hardware support needed for the evaluation of sparse SVMs. 

The top-level block diagram of the ASA-SVM accelerator is 

shown in Fig. 2. The CBs are arranged in an array of 

identical pipeline stages. A configuration module (CM) 

reads the SVM configuration data from the main memory 

through the mm_rd interface and sends the data to a 

particular CB. The configuration for each CB module 

consists of three parts. The first part is stored inside the 

support vector memory (SV_M) and it contains support 

vectors and Lagrange multipliers for the part of the complete 

sum, which that CB calculates. The second part contains 

increments stored in INC_M memory, which determine 

which attributes of the support vectors and the input instance 

should be processed. This enables skipping all 

multiplications that use zero attributes from the support 

vectors. The third part of the configuration is the samples of 

the specified non-linear function needed for the evaluation 

of the selected kernel function. 

 
Fig. 2.  Top-level block diagram of ASA-SVM accelerator. 

In section II, the algorithm for the training of sparse 

SVMs was presented. The sparse SVMs have an advantage 

over ordinary SVM models since they contain fewer 

attributes with non-zero values. Let frac be the percentage 

of attributes, which are not zero. If the classification speed 

of the input instance is critical, then the sparse SVM models 

could be processed 1/frac times faster than the dense SVM 

models by skipping all product terms that use a zero-valued 
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attribute. The hardware architecture needs to be designed to 

take advantage of this opportunity, and the ASA-SVM is the 

first SVM accelerator with this capability. 

In Fig. 3, the skipping of product terms with zero-valued 

support vector attributes during kernel calculation is 

illustrated. Instead of storing the whole support vector in the 

memory, only non-zero values (NZV) are stored in the 

SV_M memory. Every NZV value corresponds to one 

increment value, which is stored in separate, INC_M 

memory. During the kernel calculation, for every NZV of 

the support vector, the corresponding value from the input 

instance is taken. All zero-valued attributes in the support 

vector are skipped during the kernel calculation evaluating 

the kernel faster. The second benefit of this technique is that 

usually less memory is needed for storing support vectors. 

Only the NZVs are stored with their corresponding 

increments. The increments can be coded with fewer bits. In 

the example, from Fig. 3, only 4 terms of the kernel 

calculation will be used instead of 12. Also, only 4 NZV 

will be stored, alongside with 4 increments. 

 
Fig. 3.  Skipping in kernel calculation. 

Each CB module is also pipelined. Figure 4 shows the 

architecture of the CB. A control unit reads the values from 

the increment memory and calculates the effective address 

of the attributes. The effective address is used to read the 

current attribute from the input memory. In the SV memory, 

NZV values of support vectors are stored. The NZVs are 

read sequentially. The data read from the input memory and 

SV memory are sent for further processing to the 

appropriate functional unit.  

 
Fig. 4.  The detailed architecture of the CB. 

The control unit also controls the data selection 

multiplexers and enables signals of registers to configure 

pipelined data path required to implement the selected type 

of kernel needed for the classification. To perform the 

necessary computations, only one multiplier and adder are 

needed. After the vector calculation is finished, the final 

value is sent as an address to the non-lin memory. The value 

read from the non-lin memory is the kernel value for the 

current support vector and it is accumulated to the running 

sum after multiplication with the corresponding Lagrange 

multiplier stored in the SV memory. This process is then 

repeated for all support vectors stored in CB. 

The RMLC architecture from [22] has a processing time 

of “RB” (Reconfigurable Block) – 
RMLCT  

 ( ) ,RMLC sv attr clkT N N d T   (14) 

where 
svN  is the number of SVs in a block, 

attrN  is the 

number of attributes in the SV, the value d is 4, depending 

on the type of kernel used in the SVM module, and 
clkT  is a 

period, on which the architecture works. The ASA-SVM 

architecture proposed in this paper has the processing time 

of one CB block - 
ASA SVMT 

 

 
1

( ) ,
svN

i

ASA SVM nzv clk

i

T N d T



   (15) 

where i

nzvN  is the number of NZVs in the ith SV of the CB. 

The value of i

nzvN  is always smaller than ,attrN  so the 

processing speed of ASA-SVM is always greater than 

RMLC’s. 

The AST-SVM algorithm is designed to keep the number 

of NZVs evenly distributed along all support vectors. For 

every dataset, there is a threshold, when the maximum 

difference between 
i

nzvN  values will be 1. Let 
nzvN  be 

max( ).i

nzvN  Processing time of ASA-SVM architecture 

always satisfies the following condition 

 ( ) .ASA SVM sv nzv clkT N N d T    (16) 

The speed-up S of the ASA-SVM architecture, compared 

to RMLC, can be calculated as 

 .RMLC attr

ASA SVM nzv

T N d
S

T N d


 


 (17) 

For large datasets, where 
attrN d  and ,nzvN d  the 

speed-up equation can be approximated as 

 
1

.attr

nzv

N
S

N frac
   (18) 

From the approximate equation for speed-up, it is clear 

that the efficiency of the ASA-SVM is directly proportional 

to the amount of pruning achieved during the training of the 

sparse SVM model. 

IV. EXPERIMENTAL RESULTS 

Xilinx Vivado Design Suite is used for the development 

of the ASA-SVM architecture. The default values for 

synthesis and implementation settings were set. Zynq 

Ultrascale+ MPSoC ZCU102 Evaluation Board [21] was a 
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test platform, on which experiments were done. 

The training of SVM models after pruning of the datasets 

was done using the LIBSVM library [22]. All standard 

procedures from the library were used with default 

parameters. 

The ability of the AST-SVM algorithm to compress SVM 

classifiers was tested on several datasets from the LIBSVM 

dataset page [23]. The datasets of various sizes and 

characteristics were selected. 

For every dataset, 19 pruning factors were used as inputs 

for the AST-SVM algorithm. The targeted pruning factors 

ranged from 5 % to 95 % with steps of 5 %. For every 

pruning factor, the dataset was pruned, and then the 

LIBSVM training procedure was called to create sparse 

SVM. The accuracy of the resulting sparse SVM model and 

its size was then determined. In all cases, if the dataset was 

split into training and validation sets, the training set was 

used for training, and the accuracy was measured on the 

validation dataset. In case when the dataset has not been 

split, the whole dataset was used for training, and also for 

the accuracy measurement. Table I presents the major 

characteristics of the datasets that were used in the 

experiments. 

TABLE I. DATASETS’ CHARACTERISTICS. 

Dataset name Short name Attributes Instances 

Wisconsin Breast Cancer  bcancer 10 683 

Pima Indians Diabetes diabetes 8 768 

Glass Identification glass 9 214 

Heart Disease heart 13 270 

Wine Recognition wine 13 178 

Mushrooms mush 112 8124 

USPS usps 256 7291 

Poker Hand poker 10 25010 

MNIST mnist 780 60000 

CIFAR10 cifar 3072 50000 

SVHN svhn 3072 73257 

 

In the following Table II–Table XII and Fig. 5–Fig. 15, 

the results of the experiments are shown. The tables show 

how much it is possible to prune the SVM model trained 

using the AST-SVM algorithm on the given dataset. Also, 

real size reductions are shown. 

TABLE II. BENCHMARKING RESULTS - BCANCER. 

Target ACC NZV ZV Reduction Speed-up Memory 

0 97.2182 814 0 1.00 1.00 1.25 

0.05 97.0717 821 26 1.01 0.99 1.26 

0.1 97.2182 750 75 0.92 1.06 1.15 

0.15 97.0717 741 106 0.91 1.07 1.14 

0.2 96.6325 710 159 0.87 1.10 1.09 

0.25 96.3397 720 204 0.88 1.09 1.11 

0.3 96.4861 648 243 0.80 1.17 1.00 

0.35 96.3397 668 300 0.82 1.15 1.03 

0.4 96.0469 623 356 0.77 1.20 0.96 

0.45 96.1933 628 417 0.77 1.20 0.96 

0.5 95.754 570 475 0.70 1.27 0.88 

0.55 95.6076 561 539 0.69 1.29 0.86 

0.6 95.4612 495 594 0.61 1.39 0.76 

0.65 95.022 518 736 0.64 1.35 0.80 

0.7 94.7291 495 869 0.61 1.39 0.76 

0.75 94.2899 547 1213 0.67 1.31 0.84 

0.8 94.7291 527 1409 0.65 1.34 0.81 

0.85 91.9473 756 2797 0.93 1.05 1.16 

0.9 76.2811 665 2998 0.82 1.15 1.02 

0.95 89.1654 718 4551 0.88 1.09 1.10 
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Fig. 5.  Pruning-accuracy graph for bcancer. 

 

 
Fig. 6.  Pruning-accuracy graph for diabetes. 
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TABLE III. BENCHMARKING RESULTS - DIABETES. 

Target ACC NZV ZV Reduction Speed-up Memory 

0 77.9948 4232 7 1.00 1.00 1.25 

0.05 78.125 4040 190 0.95 1.03 1.19 

0.1 77.474 3872 376 0.91 1.06 1.14 

0.15 77.2135 3703 563 0.88 1.09 1.09 

0.2 76.6927 3502 746 0.83 1.13 1.03 

0.25 76.8229 3299 949 0.78 1.17 0.97 

0.3 75.5208 3074 1111 0.73 1.22 0.91 

0.35 75.2604 2892 1302 0.68 1.27 0.85 

0.4 74.8698 2752 1541 0.65 1.31 0.81 

0.45 75.2604 2584 1736 0.61 1.35 0.76 

0.5 75.3906 2340 1881 0.55 1.43 0.69 

0.55 75.5208 2144 2131 0.51 1.49 0.63 

0.6 75.3906 1965 2274 0.46 1.56 0.58 

0.65 74.6094 1826 2602 0.43 1.61 0.54 

0.7 75 1700 2935 0.40 1.66 0.50 

0.75 68.099 1540 3086 0.36 1.74 0.45 

0.8 74.7396 1341 3483 0.32 1.84 0.40 

0.85 73.1771 1167 3702 0.28 1.93 0.34 

0.9 68.6198 949 3893 0.22 2.07 0.28 

0.95 65.1042 751 4091 0.18 2.22 0.22 

TABLE IV. BENCHMARKING RESULTS - GLASS. 

Target ACC NZV ZV Reduction Speed-up Memory 

0 59.3458 2334 536 1.00 1.15 1.02 

0.05 56.0748 2234 608 0.96 1.18 0.97 

0.1 58.8785 2139 703 0.92 1.21 0.93 

0.15 60.2804 2059 797 0.88 1.24 0.90 

0.2 56.5421 1973 883 0.85 1.28 0.86 

0.25 61.6822 1885 985 0.81 1.31 0.82 

0.3 52.8037 1799 1071 0.77 1.35 0.78 

0.35 58.8785 1692 1164 0.72 1.40 0.74 

0.4 60.2804 1629 1255 0.70 1.43 0.71 

0.45 63.0841 1528 1342 0.65 1.48 0.67 

0.5 53.7383 1432 1424 0.61 1.53 0.62 

0.55 54.2056 1362 1550 0.58 1.57 0.59 

0.6 50.9346 1259 1639 0.54 1.64 0.55 

0.65 47.1963 1178 1720 0.50 1.69 0.51 

0.7 43.9252 1072 1840 0.46 1.77 0.47 

0.75 45.7944 1017 1909 0.44 1.81 0.44 

0.8 45.3271 940 2056 0.40 1.87 0.41 

0.85 35.514 852 2116 0.37 1.95 0.37 

0.9 35.9813 751 2175 0.32 2.05 0.33 

0.95 33.6449 645 2211 0.28 2.16 0.28 
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Fig. 7.  Pruning-accuracy graph for glass. 
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Fig. 8.  Pruning-accuracy graph for heart. 
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TABLE V. BENCHMARKING RESULTS - HEART. 

Target ACC NZV ZV Reduction Speed-up Memory 

0 85.1852 1668 68 1.00 1.03 1.20 

0.05 83.7037 1576 132 0.94 1.08 1.13 

0.1 84.8148 1501 207 0.90 1.12 1.08 

0.15 84.4444 1426 282 0.85 1.16 1.03 

0.2 85.5556 1343 365 0.81 1.21 0.97 

0.25 85.1852 1263 431 0.76 1.26 0.91 

0.3 84.8148 1214 522 0.73 1.30 0.87 

0.35 84.4444 1104 590 0.66 1.39 0.79 

0.4 82.5926 1032 662 0.62 1.45 0.74 

0.45 82.5926 978 758 0.59 1.50 0.70 

0.5 82.2222 924 854 0.55 1.56 0.67 

0.55 83.7037 870 964 0.52 1.62 0.63 

0.6 81.8519 804 1072 0.48 1.70 0.58 

0.65 81.4815 725 1151 0.43 1.80 0.52 

0.7 82.963 643 1247 0.39 1.93 0.46 

0.75 84.4444 562 1342 0.34 2.07 0.40 

0.8 80.7407 485 1489 0.29 2.23 0.35 

0.85 76.2963 415 1643 0.25 2.39 0.30 

0.9 76.2963 314 1702 0.19 2.68 0.23 

0.95 76.2963 302 2526 0.18 2.71 0.22 

TABLE VI. BENCHMARKING RESULTS - WINE. 

Target ACC NZV ZV Reduction Speed-up Memory 

0 98.3146 1351 74 1.00 1.04 1.19 

0.05 98.3146 1287 138 0.95 1.08 1.13 

0.1 98.8764 1241 199 0.92 1.11 1.09 

0.15 98.3146 1183 257 0.88 1.15 1.04 

0.2 99.4382 1138 332 0.84 1.18 1.00 

0.25 98.8764 1056 384 0.78 1.25 0.93 

0.3 98.8764 1003 452 0.74 1.29 0.88 

0.35 98.8764 939 501 0.70 1.35 0.82 

0.4 97.7528 876 564 0.65 1.42 0.77 

0.45 97.7528 824 646 0.61 1.48 0.72 

0.5 97.7528 799 731 0.59 1.51 0.70 

0.55 96.6292 750 825 0.56 1.57 0.66 

0.6 96.0674 695 895 0.51 1.64 0.61 

0.65 96.0674 629 946 0.47 1.75 0.55 

0.7 94.9438 601 1079 0.44 1.79 0.53 

0.75 96.0674 545 1165 0.40 1.89 0.48 

0.8 93.2584 548 1462 0.41 1.89 0.48 

0.85 92.1348 517 1673 0.38 1.95 0.45 

0.9 94.382 502 1958 0.37 1.98 0.44 

0.95 70.2247 424 2141 0.31 2.16 0.37 
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Fig. 9.  Pruning-accuracy graph for wine. 
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Fig. 10.  Pruning-accuracy/size graph for mush. 
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TABLE VII. BENCHMARKING RESULTS – MUSH. 

Target ACC NZV ZV Reduction Speed-up Memory 

0 99.2122 17766 77832 1.00 4.67 0.23 

0.05 99.2614 17120 79608 0.96 4.82 0.22 

0.1 99.5076 16701 82626 0.94 4.92 0.22 

0.15 99.0153 15732 83030 0.89 5.17 0.21 

0.2 99.0153 14908 84193 0.84 5.40 0.19 

0.25 96.8488 22336 135412 1.26 3.85 0.29 

0.3 96.8488 21000 137200 1.18 4.06 0.27 

0.35 96.4549 20551 145333 1.16 4.13 0.27 

0.4 93.4023 23660 182000 1.33 3.66 0.31 

0.45 92.6145 24023 202203 1.35 3.61 0.31 

0.5 92.4175 22055 204510 1.24 3.89 0.29 

0.55 92.4175 20129 207340 1.13 4.21 0.26 

0.6 92.4175 18098 209145 1.02 4.60 0.24 

0.65 92.4175 16184 212415 0.91 5.05 0.21 

0.7 92.4175 14273 216134 0.80 5.60 0.19 

0.75 92.4175 12329 219886 0.69 6.29 0.16 

0.8 92.4668 11279 243649 0.63 6.74 0.15 

0.85 90.9404 10431 284273 0.59 7.15 0.14 

0.9 76.2186 14553 533610 0.82 5.51 0.19 

0.95 69.03 11607 644245 0.65 6.59 0.15 

TABLE VIII. BENCHMARKING RESULTS - USPS. 

Target ACC NZV ZV Reduction Speed-up Memory 

0 91.7289 668262 15438 1.00 1.02 1.22 

0.05 91.5795 637712 48638 0.95 1.07 1.17 

0.1 91.7788 607076 82189 0.91 1.12 1.11 

0.15 91.7289 593198 119652 0.89 1.15 1.08 

0.2 91.8784 563577 155368 0.84 1.21 1.03 

0.25 91.6791 535909 192576 0.80 1.27 0.98 

0.3 91.1809 525131 239129 0.79 1.30 0.96 

0.35 89.3373 488840 276215 0.73 1.39 0.89 

0.4 85.999 464114 321611 0.69 1.46 0.85 

0.45 80.5182 446167 376658 0.67 1.52 0.82 

0.5 76.8809 402136 411149 0.60 1.68 0.74 

0.55 73.8416 396460 492880 0.59 1.71 0.72 

0.6 71.4001 366015 554860 0.55 1.84 0.67 

0.65 67.713 331885 617345 0.50 2.03 0.61 

0.7 64.3747 302437 701118 0.45 2.22 0.55 

0.75 60.289 268751 794429 0.40 2.48 0.49 

0.8 56.2033 236489 920236 0.35 2.81 0.43 

0.85 53.0144 203762 1097918 0.30 3.24 0.37 

0.9 43.4479 161777 1319573 0.24 4.03 0.30 

0.95 34.3797 102880 1517065 0.15 6.11 0.19 
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Fig. 11.  Pruning-accuracy/size graph for USPS. 

 

0

10

20

30

40

50

60

70

80

0

0
.0

5

0
.1

0
.1

5

0
.2

0
.2

5

0
.3

0
.3

5

0
.4

0
.4

5

0
.5

0
.5

5

0
.6

0
.6

5

0
.7

0
.7

5

0
.8

0
.8

5

0
.9

0
.9

5

 
Fig. 12.  Pruning-accuracy/size graph for poker. 
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TABLE IX. BENCHMARKING RESULTS - POKER. 

Target ACC NZV ZV Reduction Speed-up Memory 

0 50.1209 263110 177766 1.00 1.40 0.75 

0.05 50.1209 251772 189237 0.96 1.44 0.71 

0.1 50.1209 240094 201181 0.91 1.48 0.68 

0.15 50.1209 228739 212593 0.87 1.52 0.65 

0.2 50.1209 216969 224534 0.82 1.57 0.62 

0.25 50.1209 205778 235972 0.78 1.62 0.58 

0.3 50.1209 193716 247730 0.74 1.67 0.55 

0.35 50.1209 184629 263258 0.70 1.71 0.52 

0.4 50.1209 173009 276816 0.66 1.77 0.49 

0.45 42.2479 161326 291083 0.61 1.83 0.46 

0.5 50.1209 137262 276273 0.52 1.97 0.39 

0.55 42.1724 109096 243696 0.41 2.16 0.31 

0.6 42.0758 86266 220869 0.33 2.35 0.24 

0.65 42.2498 68480 190110 0.26 2.52 0.19 

0.7 50.1209 67689 224588 0.26 2.53 0.19 

0.75 50.1209 56531 211977 0.21 2.65 0.16 

0.8 50.1209 51010 224357 0.19 2.71 0.14 

0.85 42.0069 51019 299227 0.19 2.71 0.14 

0.9 38.8308 53604 381591 0.20 2.68 0.15 

0.95 32.0346 42312 393415 0.16 2.82 0.12 

TABLE X. BENCHMARKING RESULTS - MNIST. 

Target ACC NZV ZV Reduction Speed-up Memory 

0 93.13 3440972 14928526 1.00 5.22 0.23 

0.05 93.19 3327687 15075738 0.97 5.40 0.23 

0.1 93.17 3208746 15290148 0.93 5.59 0.22 

0.15 93.14 3087787 15586265 0.90 5.80 0.21 

0.2 93.1 2971934 15994048 0.86 6.02 0.20 

0.25 93.04 2849282 16457548 0.83 6.27 0.19 

0.3 92.94 2731426 17046437 0.79 6.53 0.19 

0.35 92.66 2621558 17803285 0.76 6.80 0.18 

0.4 92.23 2521740 18763902 0.73 7.06 0.17 

0.45 91.91 2422939 19861701 0.70 7.34 0.16 

0.5 91.65 2328891 21211033 0.68 7.62 0.16 

0.55 91.31 2238182 22831250 0.65 7.92 0.15 

0.6 90.81 2131474 24569118 0.62 8.30 0.15 

0.65 90.28 2028023 26782833 0.59 8.70 0.14 

0.7 89.47 1909403 29330857 0.55 9.22 0.13 

0.75 87.18 1765278 32266078 0.51 9.93 0.12 

0.8 83.78 1593953 35528837 0.46 10.94 0.11 

0.85 76.85 1370830 38833718 0.40 12.60 0.09 

0.9 71.66 1118770 42109334 0.33 15.22 0.08 

0.95 52.75 851145 45191695 0.25 19.53 0.06 
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Fig. 13.  Pruning-accuracy/size graph for MNIST. 

 

 
Fig. 14.  Pruning-accuracy/size graph for CIFAR. 
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TABLE XI. BENCHMARKING RESULTS - CIFAR. 

Target ACC NZV ZV Reduction Speed-up Memory 

0 34.54 146841985 519164 1.00 1.00 1.25 

0.05 34.52 139261741 7840604 0.95 1.06 1.18 

0.1 34.66 131545686 15112995 0.90 1.12 1.12 

0.15 34.69 124122919 22384793 0.85 1.19 1.05 

0.2 34.36 116487853 29582357 0.79 1.26 0.99 

0.25 34.57 109412240 36910612 0.75 1.35 0.93 

0.3 34.71 102270755 44246200 0.70 1.44 0.87 

0.35 34.09 95169529 51633959 0.65 1.55 0.81 

0.4 32.94 87929910 58975251 0.60 1.67 0.75 

0.45 31.13 80650407 66300969 0.55 1.83 0.68 

0.5 29.61 73396121 73660009 0.50 2.01 0.62 

0.55 28.03 66172232 81078001 0.45 2.22 0.56 

0.6 27.22 58899163 88468148 0.40 2.50 0.50 

0.65 26.75 51637803 95911287 0.35 2.85 0.44 

0.7 26.79 44419751 103514464 0.30 3.31 0.38 

0.75 26.03 37189070 111228862 0.25 3.95 0.32 

0.8 21.81 29947728 119132619 0.20 4.90 0.25 

0.85 17.2 22699792 127418852 0.15 6.45 0.19 

0.9 14.61 15343490 135699454 0.10 9.50 0.13 

0.95 15.64 7944104 144679393 0.05 18.14 0.07 

TABLE XII. BENCHMARKING RESULTS - SVHN. 

Target ACC NZV ZV Reduction Speed-up Memory 

0 13.7754 205086232 191555 1.00 1.00 1.25 

0.05 13.9098 194957987 10421473 0.95 1.05 1.19 

0.1 14.2555 185743497 20763609 0.91 1.11 1.13 

0.15 14.6512 176805075 31288746 0.86 1.16 1.08 

0.2 15.7345 168223458 42101007 0.82 1.22 1.02 

0.25 16.9215 160214044 53407091 0.78 1.28 0.98 

0.3 18.5925 151307562 64803021 0.74 1.36 0.92 

0.35 20.3058 141372009 76026432 0.69 1.45 0.86 

0.4 20.8666 131534404 87530858 0.64 1.56 0.80 

0.45 20.8052 121352380 99056198 0.59 1.69 0.74 

0.5 20.2597 110768233 110447567 0.54 1.85 0.67 

0.55 20.1099 99798629 121546573 0.49 2.05 0.61 

0.6 20.179 88701366 132486705 0.43 2.31 0.54 

0.65 20.3365 77667657 143501928 0.38 2.64 0.47 

0.7 20.3288 66544984 154301096 0.32 3.08 0.41 

0.75 20.3941 55487560 165164417 0.27 3.69 0.34 

0.8 20.4057 44471245 176088302 0.22 4.59 0.27 

0.85 20.2674 33512888 187262329 0.16 6.08 0.20 

0.9 19.3838 22619933 199199743 0.11 8.98 0.14 

0.95 18.5426 11648912 211649644 0.06 17.25 0.07 

 

 
Fig. 15.  Pruning-accuracy/size graph for SVHN. 

The first column in the tables II–XII specifies the desired 

reduction in the size of the input dataset. The first row 

represents the SVM model trained without any pruning. The 

second column (“ACC”) represents the accuracy of the 

trained SVM model. The third column (“NZV”) presents the 

number of non-zero attributes in the support vectors, while 

the fourth (“ZV”) contains the number of zero attributes 

introduced during the pruning process.  

The fifth column (“Reduction”) presents the relative size 

of the trained sparse SVM model compared to the original 

dense SVM model size shown in the first row of each table. 

This column shows how effective the pruning of SVM 

modules is when the AST-SVM algorithm. In an ideal case, 

the value of this column should be equal to 1 - “Target” 

value specified in the first column, but this is rarely the case. 

The reason for this is that when the input dataset is pruned, 

more support vectors are usually needed to achieve better 

accuracy as it was described in Chapter II. As Tables II-XII 
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indicate, the reduction in the size of the trained SVM 

module is almost always possible. Please notice, when the 

reduction in trained SVM size is possible, it is always less 

than the specified target reduction value.  

For some of the datasets, the reduction of the size of the 

trained SVM model can even help to achieve better 

classification accuracy. This is the case with the SVHN 

dataset, which is the biggest dataset in the experiments. In 

this case, the sparse SVM model can be almost 2 times 

smaller and achieve accuracy, which is over 7 % better than 

the accuracy of the dense SVM model. One explanation for 

this unexpected behavior could be that the input dataset 

contains a lot of noise in the data, which pruning helps to 

eliminate. 

The sixth column shows the speed-up that is possible to 

achieve when using ASA-SVM architecture, compared to 

RMLC architecture, to implement the SVM model. With the 

reduction of trained SVM model size, fewer operations are 

needed to classify input instance. Every multiplication with 

the zero-valued support vector attribute can be skipped in 

the ASA-SVM accelerator, resulting in better performance 

and better energy usage. Please notice, that for some 

datasets, the original model also contains some zeros in its 

support vectors. In these cases, even without the pruning 

ASA-SVM architecture would enable speed-up over 

previously proposed RMLC architecture. From the Tables 

II–XII, it can be concluded that the speed-up between 1.17 

and 7.92 is possible, taking into account the accepted 

classification accuracy reduction of 2 % during the SVM 

pruning process. 

The seventh column shows achievable relative memory 

reduction, when only the NZVs of pruned SVM model are 

stored, together with their increment values, compared to 

memory size required to store the dense SVM model. 

Values greater than one indicate that memory usage is being 

increased, while values smaller than one represent a 

situation when memory footprint is decreased. In case when 

dense SVM model doesn’t contain the significant number of 

zero-valued support vector attributes, and the SVM pruning 

percentage is close to zero percent, the memory size 

required to store SVM model parameters will increase. This 

is because every NZV value has to be stored together with 

its corresponding increment value. In this case, a significant 

number of support vector attribute values will be different 

from zero, and the increments will be just additional 

information needed to be stored without any benefit to 

speeding up the instance classification process. However, 

when the SVM model can be pruned with higher pruning 

rates, a significant reduction in memory will be possible. 

With the accepted trained SVM accuracy drop of 2 % 

compared to the dense SVM model, it can be concluded 

from the data shown in Tables II–XII that the SVM size 

memory reduction from 3 % up to 85 % is achievable. 

V. CONCLUSIONS 

This paper proposes a novel algorithm for training of 

sparse SVM models, called AST-SVM, and a hardware 

architecture for the acceleration of sparse SVM models, 

called ASA-SVM, which can take advantage of sparse 

SVMs and achieve better performance compared to the 

previously proposed hardware architectures that accelerate 

only dense SVMs.  

Performed experiments, using 20 standard datasets, 

clearly indicate that using sparse over dense SVMs has two 

advantages, the memory size required to store the SVM 

model is reduced, and the input instances are processed 

faster. 

When created SVM model size is considered, a reduction 

from 3% to 85% is possible, when using sparse instead of 

dense SVMs. 

Additionally, the experiments clearly show that the sparse 

SVM models enable faster instance processing when using 

the hardware accelerator specifically designed to process 

sparse SVMs. Instance processing time speedup from 1.17 

to 7.92 was reported on selected datasets. 
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