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Abstract—This work gives an original algorithm that 

combines design and synthesis step with the optimization for 

targeted implementation technology. The approximation step is 

based on Gegenbauer polynomial and the corresponding cost 

function. The proposed methodology is an example of usage of 

computer algebra system as an alternative to classic numeric 

computing. 

 
Index Terms—Analog integrated circuits, circuit analysis 

computing, design for manufacture, elliptic design. 

I. INTRODUCTION 

Analog filters are frequency-selective electrical circuits 

that are used to amplify or attenuate the band-limited signal 

frequency spectrum [1]. Many different physical components 

can be used for implementation. In practice, the values of 

filter components diverge from the ideal and the results of 

filtering may be different from the expected frequency 

response. The different technologies are impaired with 

different types of errors in the components. An exhaustive 

research on active components is presented in [2]. It is 

important to choose a filter structure with a low sensitivity to 

the expected dominant errors in the intended implementation 

technology. For example, the elliptic digital filter is the most 

efficient filter because there is no other filter of the lower 

order that can fulfill the same filter specification [1]. The 

EMQF (Elliptic Minimum Q Factor) filters are the most 

efficient filters of the elliptic filters [3]. The design 

procedure of the EMQF digital filters is presented in [4]. 

The similar design strategy was implemented for analog 

filters implemented in SC (Switched Capacitor) technology 

[5]. 

The design of high performance digital signal processing 

circuits can be very efficient using digital programmable 

circuits as it is shown in [4], [6], and [7]. Quite different 

design procedure should be followed when analog 

programmable circuits are used with on-chip tuning [8]. The 

most important strategy is the optimization of the second 
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order sections [9]. 

In this paper, a new synthesis strategy is presented based 

on knowledge inputted into CAS (Computer Algebra 

System) [10]. The method is based on all-pole 

approximation technique and formulation of the cost 

function that minimizes the difference of the maximal pole-

Q factor of the transfer function from the set of preferred Q 

factors available in programmable analog circuits. 

II. APPROXIMATION 

The even-order low-pass prototype all-pole filter transfer 

function can be represented using the pole frequencies, ,p k  

(or the corner frequency, , / 2ck p kf   ), the pole Q-

factors, ,p kQ , and the filter order n 
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The squared magnitude response can be expressed using 

the even-order polynomial approximation, 2 ( )nA  , and the 

ripple factor,   
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The synthesis means to find the procedure for computing 

the squared pole frequencies, ,p k , and the pole Q-factors, 

,p kQ , for 1, 2, 3,..., / 2)k n , starting from (2) and to 

achieve parameters of the programmable integrated circuits 

with the minimal error of the designed transfer function for 

the specified filter specification. We choose all-pole transfer 

function in order to avoid an additional element for 

implementing zeros of the transfer function. Actually, we 

will try to optimize the maximal Q factor because it is the 

most critical element, and at the same time to fulfill filter 

specification and the implementation requirements of the 
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targeted technology. 

The squared magnitude response of the proposed filter 

class is based on the even-order Gegenbauer orthogonal 

polynomials, 2 ( )rG 
 
[11], and it is normalized to the unity 

value at the pass-band edge frequency, 2 (1) 1nA   
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The cost function   can be represented using the weight 

function 
2 1/2( ) (1 )p     , the design parameters (the 

filter coefficients 0b , 2b , 4b , 6, 2..., nb b , and the two free 

normalizing parameters, 1  and 2 ), and the even-order 

Gegenbauer orthogonal polynomials 
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The optimal values are computed by solving the system of 

equations in which the first partial derivatives of the cost 

function with respect to the design parameters are equal to 0, 

that is 2d / d 0ib  , and d / d 0i   . 

The closed-form solution is rather complicated even for 

experienced  users, and the whole procedure is implemented 

using computer algebra system [10]. 

The squared norm, rh , of the orthogonal Gegenbauer 

polynomial 2 ( ), 0, 1, 2, 3,...rG r    is defined 
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The integration gives the values of rh in terms of r, the 

weighting parameter   and the Pochamer symbol 2(2 ) r  
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The design procedure is explained by the example in the 

next section. Notice that filter specification can be given 

using the reflection factor   
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The design algorithm is implemented in software 

Mathematica [10]. 

III. BUILDING KNOWLEDGE FOR SYNTHESIS 

Some software tools already have special functions that 

are required for the filter design. Since we are going to 

prepare template notebook, we present the code in 

Mathematica [10] software as one of the best CAS software. 

Firstly, the formulas are inputted into CAS software. 

The first cells contain the minimal number of parameters 

such as the number of biquads (nBiquads=5) and auxiliary 

weighting factor (v0=1/2) for computing all other values: 

nBiquads = 5; 

n = 2 nBiquads; 

b = Table[ToExpression[StringJoin["b", 

ToString[r]]], {r, 0, 2 n, 2}] 

v0 = 1/2 

The list of coefficients b is automatically generated: 

{b0,b2,b4,b6,b8,b10,b12,b14,b16,b18,b20} 

The code of the squared magnitude response is similar to 

(3): 

 

The code for the cost function is also very similar to the 

definition (4), except that the name of the special function is 

not the Gegenbauer polynomial but unknown function pP: 

 

After defining the cost function   in CAS, the next step 

is to find the first partial derivatives of the cost function with 

respect to the design parameters. The Gegenbauer 

polynomials can be treated as constants and the integration 

can be performed after derivation. One of the key features of 

CAS is that it is not necessary to specify exact values of 

variables on the right side of an equation, but the symbolic 

name can be used instead. Since we have three different 

expressions of the Gegenbauer polynomials, the same 

number of substitution rules is specified: 

sub0= pP[x_,v_,0] → GegenbauerC[x, v, 0]; 

sub1= pP[x_,v_,1] → GegenbauerC[x, v, 1]; 

subw= pP[x_,v_,w_] → GegenbauerC[x, v, w]; 

Now, we can create a set of equations that are generated 

using partial derivatives (actually only left side of 

equations): 

eqB=Table[D[  , b[[r+1]]],{r,0,n}]/. sub0 /. sub1 

/. subw /. v → v0; 

eqL = {D[  ,L0]/. sub0/. sub1/. subw/. v→v0, 

       D[  ,L1]/. sub0/. sub1/. subw/. v→v0}; 

The whole processing time is much larger when the 
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substitution of the Gegenbauer polynomials is performed 

before derivation. The two matrices are joined in one and 

symbolic description for equating to 0 is added to the each 

row:  

eqLeft = Join[eqB, eqL]; 

eqs=Thread[eqLeft==0]; 

parameters=Join[b,{L0,L1}] 

After forming the system of equations eqs and the list of 

all parameters parameters, the solutions are computed 

using built-in command Solve. The solutions are in the 

form of replacement rules sol1, which can be used in earlier 

defined squared magnitude function aw: 

sol1 = Solve[eqs, parameters] 

aw = a2/.sol1; 

 
Fig. 1.  Polynomial approximation for 10n , 0.5  , 2 ( )  -2.47nA   

 
2 4 6 20 111  1712.6 22318 .        

Figure 1 illustrates the computed squared magnitude 

function. It is important to notice that only the number of 

biquads is defined and the value of weighting factor. For any 

other number of biquads or another value of weighting 

factor, the same notebook can be evaluate after changing the 

two numeric values in the first input cell. 

The rest of the notebook can be prepared in a similar way. 

The denominator of (2) is defined for the specified ripple 

factor or the preferred reflection factor, say  =1/10. The 

roots are in quadruplet and only the left half plane roots are 

selected to form the poles of the transfer function. 

Multiplying the two consecutive complex-conjugate roots 

the squared pole magnitude is computed, and using the 

definition of the pole Q factor [1] the Q factors of each 

biquad can be computed.  

 

Fig. 2.  Attenuation of the filter 
2

1010log ( )nA H j   in dB for 

10n  , 0.5  ,  =0.1. 

Finally, a list of the biquad transfer functions is carried 

out: 

 

The attenuation is computed and shown in Fig. 2 and 

Fig. 3. 

 
Fig. 3.  Attenuation of the filter in the pass-band for 10n  , 0.5  , 

 =0.1. 

IV. POLE Q-FACTOR OPTIMIZATION 

Commonly, the filter design generates transfer function 

from the filter specification and at least one of the 

parameters is better than required [1]. We can use that 

parameter for the optimization and to improve some 

characteristics. For example, the stop-band attenuation can 

be higher than specified. Instead of redesigning the filter, 

that can be time consuming, we can optimize one of the 

design parameters. In this paper, we are changing the 

weighting factor until we have the exact value of the critical 

Q factor from the set of available values. 

The optimization procedure is as follows: firstly, we 

determine the range of the weighting factors for that the 

pass-band and stop-band attenuations fulfill filter 

specification. Next, we determine the pole-Q-factor as a 

function of the weighting factor. Finally, by equating the 

function with one or more values from the available values 

specified by manufacturer, we find values of the weighting 

factor. 

For example, suppose that the filter specifications are 

fulfilled for the weighting factor from the range of values 

{0.1. 0.2}. Since the filter design knowledge already exists 

in computer algebra system, the redesign process can be 

simplified. The basic idea is not to find a minimal value of 

the pole-Q-factor, but to design a filter that has an exact 

predefined value of the maximal pole-Q-factor, for example 

a value from the set of possible values available from 

programmable analog integrated circuits [7]. Using fitting 

function, we can derive a closed form approximation of the 

critical Q-factor (the largest Q-factor) in terms of the 

parameter  . The closed form approximation can be 

presented in a polynomial form. Solving the equation 

setQ Q  we can derive the parameter   in terms of the 

specified Q-factor. In this case, for the preferred value of the 

critical Q-factor 9setQ  , the value of the weighting factor 

is 0.125198. The next step is to find the optimal sequence of 

biquads for the maximal dynamic range. Figure 4 illustrates 
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an example of the implementation using programmable chip 

(AN221E04 device) that is designed using 

AnadigmDesigner software. Four biquads are placed in a 

chip, while the fifth one is in another chip. The implemented 

corner frequencies and the corresponding Q factors are 

shown with each biquad. 

The attenuations at the outputs of the cascaded connection 

of biquads are illustrated in Fig. 5. The maximal variation in 

the pass-band is lower than 12 dB. 

Attenuation in the pass-band is presented in Fig. 6 for 

±0.2% tolerance of Q factors and in Fig. 7 for ±0.2% 

tolerances of pole magnitudes. It follows that the pass-band 

variation is lower than 0.1 dB, except for the pole magnitude 

tolerances of the critical biquad. The on-chip tuning can be 

performed for the critical biquad so that the overall 

attenuation in the pass-band is lower than 0.1 dB. 

 
Fig. 4.  Implementation with programmable chips. 

 
Fig. 5.  Attenuation at the output of biquads for implementation with 

programmable chips. 

 
Fig. 6.  Overall attenuation for ±0.2% tolerances of the critical Q factor 

(dashed lines) and other Q factors (solid line). 

 
Fig. 7.  Overall attenuation for ±0.2% tolerances of the pole magnitudes 

(biquad with critical Q factor - dashed lines, other biquads - solid line). 

The design procedure is very simple because the 

weighting factor can be used for optimization for the 

minimal variation in the pass-band. 

V. CONCLUSIONS 

In this paper, a new class of even-order transfer functions 

based on Gegenbauer polynomials and the appropriate cost 

function is presented. The design step is a part of the 

synthesis step, because the free optimization parameter is 

selected on implementation requirements. In order to 

simplify the procedure, a template notebook is prepared so 

that the minimal numbers of input parameters are specified, 

such as the number of biquadratic sections and the ripple 

factor. 
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