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1Abstract—Thousands of electric vehicles (EV), which are 

large in number and flexible in their use of electricity, will be 

connected to the power system in the near future, which will 

bring more uncertainty to the power system. Therefore, it is 

necessary to study the general characteristics of EV charging 

behaviours. In the charging process, big data regarding 

charging behaviour of EVs are generated. This paper proposes a 

big data mining technique based on Random Forest and 

Principle Component Analysis for EV charging behaviour to 

identify and analyse clusters with different charging 

characteristics from the big data. This paper uses Dundee’s 

January 2018 EV charging data to conduct experiments, and 

obtains the charging behaviour clusters of the workdays, 

weekends, and holidays of January. The superiority of the 

random forest algorithm in the EV clustering problem is 

reflected when compared to the Euclidean distance method. The 

clusters obtained by the random forest algorithm have clearer 

characteristics, including the user’s charging method and travel 

behaviour. The results show that the charging behaviour of EVs 

has certain regularity, and the charging load has obvious 

peak-to-valley difference that is necessary to be regulated.  

 
 Index Terms—Electric vehicle; Charging behaviour; Big 

data; Random Forest; Cluster analysis. 

I. INTRODUCTION 

As environmental pressures and the lack of energy shortage 

become more serious, electric vehicles attract more and more 

attention because of their high energy efficiency and low 

emissions of pollutant gases [1]–[3]. Analysing the spatial and 

temporal distribution of EV charging load is the basis for 

studying the impact of large-scale development of electric 

vehicles on the power grid, capabilities of participating in grid 

interaction, and charge/discharge-control strategies [4]. 

However, the charging behaviours of EVs are normally 

random and diverse, which seemingly makes them 

complicated and hard to analyse [5]. 

At present, the modelling of EV charging behaviour is 

mainly based on the fitting of statistical data and the 

probability distribution function [6]. Reference [7] proposed 

a calculation method that comprehensively considered the 

charging time distribution of different types of EVs, 

especially private cars, buses, and taxis. Reference [8] 
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introduced the gravity model in traffic demand forecasting 

and analysed the spatial distribution of EV charging loads. 

However, data used in [7] and [8] was relatively vague.  

Reference [9] analysed the differences in EV charging 

behaviour between residential and commercial areas based on 

demographic and traffic information. In [10], the multi-agent 

simulation was used to establish the spatiotemporal 

distribution model of EV charging loads. However, the 

probability distribution functions used in [9] and [10] were 

mainly based on simulation, and hardly considered a large 

amount of actual charging data. 

Because the results of the above-mentioned two methods 

may have a large deviation from the actual, this paper will 

create the third method of EV-charging-behaviour modelling, 

which is based on the measured charging information and the 

big data mining technology. The current trend shows that the 

functions of charging facilities are constantly updated, and 

more multiple types of charging data will be recorded to form 

Big Data on the charging behaviour of EVs in a specific 

region [11]. In the absence of human intervention, the 

collected EV charging data samples usually contain 

information, such as charging start time, end time, charging 

energy, and charging location, which are not marked with a 

clear category. Thus, the EV charging data sample is 

Unlabelled Data. However, the study of the regularity and 

cluster of EV from the perspective of measured charging 

information is quite lacking. Currently, the classification of 

electric vehicles is mainly based on the types of vehicles. 

Reference [12] classified the charging mode of hybrid EVs by 

considering the difference in the structures of hybrid EVs. It 

did not cover all types of EVs and do not consider the 

differences in the behaviour patterns of EV users. However, if 

the actual measured charging information, including all kinds 

of EVs in a certain region, can be fully used, the accuracy of 

the charging behaviour description will be greatly improved, 

which is beneficial to manage the charging behaviour of EVs.  

The big data mining technology used in this paper is mainly 

based on Principle Component Analysis (PCA) [13] and 

Random Forest (RF). The Random Forest algorithm designed 

by L. Breiman in the early 21st century is one of the most 

successful methods currently available for processing Big 

Data [14]. The RF algorithm refers to a machine learning 

method that uses multiple decision trees to train and predict 

samples [15]. It is capable of highly parallelized processing 
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and can meet the clustering requirements of high-dimensional 

and large-sample data sets in the era of Big Data. At the same 

time, the RF algorithm does not produce over-fitting problems 

and can also assess the importance of variables [15], [16]. 

Besides, it has successfully addressed a variety of practical 

areas. Due to its characteristics and advantages, Random 

Forest is very suitable for cluster analysis of EV behaviour 

based on Big Data. Since the EV charging data sample is 

Unlabelled Data, the category corresponding to the samples 

cannot be trained. Thus, Random Forest can only be trained 

from the original sample set. This problem belongs to 

Unsupervised Learning. 

The purpose of this paper is to establish a big data mining 

technology for charging behaviour of electric vehicles. PCA 

will be used to reduce the dimensions of the data. Cluster 

analysis will be based on the Random Forest algorithm and on 

the EV charging data of Dundee in the UK. The application 

results of the big data mining model will be given. 

II. THE MODELLING OF BIG DATA MINING TECHNOLOGY 

A. Model Framework 

As shown in Fig. 1, the big data mining model can be 

divided into 4 parts. 

EV Charging Data

PCA

RF Clustering

EV Charging Patterns
 

Fig. 1.  Model framework of big data mining technology. 

Firstly, the original data are cleaned and standardized. 

Secondly, PCA is applied to reduce the dimensionality of the 

big-data-mining problem without losing much EV charging 

information. Thirdly, the big data should be clustered 

according to characteristics of EV charging behaviour. 

Random Forest is used to complete the cluster function. 

Finally, the clusters of EV charging behaviour are achieved 

after the correlation analysis of the data samples is done by 

RF. 

B. Principle Component Analysis Algorithm Flow 

Principal Component Analysis is a kind of Deep Learning 

method. It is used to extract important sample features to 

reduce the number of features, but still retain most of the 

information of the original samples. 

In order to obtain the principal components of the EV 

charging data set, the following calculation steps are required, 

including: 

Step (1): Standardize the raw EV charging data and delete 

the error data; 

Step (2): Establish a coefficient matrix R  between 

variables 

   ,ij m m
r


R  (1) 

where ijr  is the element of R  and m is the number of features 

owned by each sample. 
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where 
kix  is the value of k th charging event. 

ix  is the 

average value of the i th charging characteristic. 

Step (3): Find the eigenvalue of .R  The order of the feature 

roots is 
1 2 m 0.       At the same time, the feature 

vectors 
ma  corresponding to each feature root are obtained as 

follows 

  1 2 ,
T

l l l mla a aa  (3) 

where 1, 2, 3, , .l m  

The principal component iF  can be expressed as 

 
1 1 2 2 ,i i i mi mF a x a x a x        (4) 

where 1, 2, 3, , .i m  

The cumulative contribution rate of the first N  principal 

components 
NC  is recorded as follows 
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It can be commonly considered that only the first 

N principal components can represent most of the 

information of the original feature when the cumulative 

contribution rate of the current N  principal components is as 

high as from 85 % to 95 %. 

C. Random Forest Algorithm Flow 

Random Forest belongs to an integrated algorithm, which is 

based on the Bagging algorithm, and the Classification and 

Regression Tree (CART) algorithm [17]. The Bagging 

algorithm is short for Bootstrap Aggregating, and it is based 

on Bootstrap sampling [18]. The core idea is to use the results 

of Bootstrap sampling to construct a number of independent 

classifiers.  

The implementation process of Random Forest is as 

follows. 

Step (1): Assume that the training data set regarding EV 

charging S have M features. It is repeatedly sampled by 

Bootstrap sampling to obtain randomly generated training 

data sets 
1 2, , , .nS S S  These training data sets have m 

( m M ) features. The probability that this new data set does 

not contain the sample is about 36.8 %. This part of the data is 

called Out of Bag (OOB). 

Step (2): Each decision tree is constructed by the binary 

recursive method in the CART algorithm based on the 

corresponding training data set 
1 2, , , .nS S S  When 

processing each node of the decision tree, all possible splits 

are calculated based on m features of the training data set. 
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Choose the best split mode (e.g. get the largest Gini metric) to 

split each node. Repeat the above splitting process until a 

certain condition is met. Each tree will not be pruned, when 

classifiers 
1 2, , , nC C C  are trained corresponding to each 

training data set. 

Step (3): Use the original EV data set X that has been 

separated, and use the decision trees have not been pruned 

obtained in Step (2) to discriminate. Then, obtain the sample 

distribution at the end of each decision tree 

     1 2, , , .nC X C X C X  

Step (4): Count the samples at the end of each decision tree. 

If two samples appear at the same end, the correlation 

between the two will increase. 

D. Principle Component Analysis Algorithm Flow 

The correlation between any two samples in the EV 

charging big data is defined as the ratio of the numbers of 

these two samples appearing on the last node of the same 

decision tree. Assuming that the total number of EV charging 

data samples is n , a similar matrix of nn  dimensions can 

be constructed. Each element in this matrix belongs to [0, 1] 

and represents the similarity of two corresponding data 

samples in each tree of the Random Forest. The probability of 

aggregation of similar data samples at the end of the decision 

tree is greater than the probability of the aggregation of 

dissimilar data samples [16]. The correlation of RF data 

samples can be used for cluster analysis. 

1) Operation Principles of RF Clustering 

The similarity of data samples can be used as input for the 

traditional clustering operation in the clustering problem of 

EV charging data sets. However, not all multi-structured data 

sets can show the form of clustering [19]. The RF algorithm 

can detect EV charging data sets through unsupervised 

machine learning and may not require prior assumptions 

about the clustering characteristics of the data set [20]. 

The main steps of unsupervised machine learning are as 

follows. Firstly, set the initial EV charging big data as Data 

Set 1. Secondly, the values of each parameter in the same data 

sample are independently replaced to generate Data Set 2. 

The methods of independent permutation are diverse. In this 

paper, the method of random adoption is adopted according to 

the empirical boundary distribution of the parameters. Data 

Set 1 and Data Set 2 form a mixed data set. The Data Set 2 has 

independent random parameter distributions, but all 

parameters in Data Set 2 have the same univariate parameter 

distribution characteristics as that of the corresponding 

parameters in Data Set 1. Thus, Data Set 2 destroys the 

non-independent structure of Data Set 1. Random Forest 

needs to extract Data Set 1 from the mixed data set when trees 

are being trained. This double-type problem can be simulated 

by the RF algorithm. The biggest benefit of describing it as a 

double-type problem is the increased feasibility of clustering. 

2) Multidimensional-Scale-based Clustering Results Display 

Multidimensional scaling analysis is one of the ways to 

help Random Forest to analyse the characteristics of a data 

set. This method can be used to represent the degree of 

correlation between EV charging data samples. The EV 

charging data set can be represented in coordinates in a 

low-dimensional coordinate system by appropriate 

dimensionality reduction. The distance between any two 

points in the coordinate system reflects the correlation 

between two corresponding EV charging samples, which help 

to explore the factors that affect the correlation of the EV 

charging samples. 

The RF algorithm does not need to specify the distribution 

characteristics of the parameters before the operation and can 

estimate the ability of each parameter to influence the 

correlation prediction results. The cross-validation within the 

RF algorithm can be used to evaluate the error rate of the 

correlation prediction. This kind of evaluation has a high 

accuracy. 

III. APPLICATION OF BIG DATA MINING MODEL IN ELECTRIC 

VEHICLE CHARGING BEHAVIOUR ANALYSIS/CLUSTERING 

A. Data Source 

The electric vehicle charging data used herein were 

collected from 29 charging stations or charging piles in 

Dundee. The charging locations in Dundee are shown in Fig. 

2.  

 
Fig. 2.  The map of charging locations in Dundee. 

The EV charging data is provided by Dundee City Council 

(https://data.dundeecity.gov.uk). The time period for 

collecting data is from January 1st to January 31st, 2018. The 

variables used for observation include the charging start time, 

the charging end time, the charging duration, the charging 

energy, and the charging location. After removing the 

inefficient charging behaviour with incomplete parameters or 

obvious parameter errors, the total of the remaining effective 

charging behaviour is 5654 times, including 4220 for 

workdays, 1180 for weekends, and 254 for holidays.  

B. Results of Principal Component Analysis 

Based on PCA, the original five observed variables are 

converted resulting in five new principal components, whose 

contribution degrees to express the information of entire 

charging data set are shown in Fig. 3, respectively. The first 

four principal components can represent 93 % of the 

information and characteristics of the original data. 

Therefore, the fifth component is not needed in the clustering 

analysis. Practice results show that this method reduces the 

computational time of the RF algorithm and the occupied 

computer memory. 
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Fig. 3.  Cumulative contribution of principal components to the entire 

charging data set. 

C. Clustering Implementation Process 

In this paper, R programming language is used to 

implement the clustering function of the RF algorithm. The 

coordinates of the classical multidimensional scale (CMS) are 

used to characterize the relationship between the charging 

behaviours. The specific process is as follows. 

Step (1): Set the number of forests and the number of 

decision trees in each forest. This paper is set to 3 and 500, 

respectively. 

Step (2): Set the number of parameters used by each node 

on the decision tree to fork, making it equal to an integer. This 

integer is close to one-half of the total number of parameters 

and its value is set to 2 in this paper. 

Step (3): Enter the charging behaviour data into the random 

forest algorithm, which is implemented using the RFdist 

function in RStudio software. So, the importance degree of 

each parameter (Gini index) is obtained. 

Step (4): Using the cmdscale function in RStudio software 

to generate two-dimensional coordinates of each charging 

behaviour in the classical multidimensional scales. 

Step (5): The classical multidimensional scales of all 

charging behaviours are drawn based on the two-dimensional 

coordinates of the charging behaviour obtained in Step (4). 

The distance between the two points represents the 

dissimilarity of the two charging behaviours. Each point is 

represented by  ,x y . 

Step (6): According to the shape feature of the classical 

multidimensional scale obtained in Step (5), the image is 

divided, and the dense points are classified into the same 

class. Thereby, the clustering results of the charging 

behaviour of the EV users are obtained. 

In this paper, the charging behaviours of workdays, 

weekends, and holidays are clustered separately and the 

corresponding classical multidimensional scales are obtained, 

respectively, as shown in Fig. 4. 

D. Clustering Results 

According to the shape features of the CMSs of the three 

periods, the clusters are performed separately, so that the 

clustering results of the three periods can be obtained. Figure 

6 shows the distribution characteristics of different clusters of 

parameters. The abscissas of Fig. 5 represent time or charging 

energy and the ordinates represent the number of times that 

the corresponding value of the abscissas appear in the big 

data.  

Table I provides a detailed explanation of Fig. 5. 

 
                                                 (a)                                                                   (b)                                                                   (c)                                                 

Fig. 4.  Classic Multidimensional Scale of EVs Charging Behaviour: (a) is the CMS on workdays; (b) is the CMS for weekends; (c) is the CMS for the 

holidays. 

TABLE I. THE CHARGING BEHAVIOUR CHARACTERISTICS OF EACH CLUSTER. 

Period Cluster 
Proportion 

(%) 
Start time range End time range 

Average 

charging time 

(hours) 

Average 

charging 

capacity  

(kWh) 

Main charging location 

Workdays 

1 9.9052 00：03 ~ 08：35 00：04 ~ 09：49 0.7536 8.6963 7, 10, 21, 22, 24 

2 56.7299 08：21 ~ 18：51 08：53 ~ 23：59 3.4944 7.4130 6, 9, 10, 20, 21, 22, 29 

3 14.9763 16：45 ~ 23：50 17：14 ~ 23：59 0.6001 9.2825 7, 10, 21, 22 

4 2.2512 20：35 ~ 22：46 06：00 ~ 08：38 9.6960 10.5245 2, 3, 13 

5 16.2085 10：30 ~ 23：54 00：02 ~ 20：50 26.2296 9.3603 6, 21 

Weekends 

1 14.4915 00：00 ~ 05：33 00：01 ~ 05：48 0.4127 10.8698 7, 10, 21, 22 

2 13.6441 00：07 ~ 23：58 00：06 ~ 23：51 18.9864 13.0891 2, 3, 9, 12, 13, 21, 22 

3 71.8644 03：18 ~ 23：51 05：35 ~ 23：58 0.9612 8.5612 7, 10, 21, 22 

Holidays 
1 13.3858 06：30 ~ 23：56 00：18 ~ 20：18 20.6003 13.2809 3, 9, 13, 16, 21 

2 86.6142 00：00 ~ 23：18 00：07 ~ 23：49 0.6901 8.5522 7, 10, 21, 22 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 5.  Characteristic distributions of five clusters of EVs charging 

behaviour in workdays: (a) is the charging start time distribution; (b) is the 

distribution of charging end time; (c) is the charge duration distribution; (d) 

is the charging energy distribution. Each subgraph contains five 

distributions, which in turn represent the charging behaviour of the first to 

fifth clusters from top to bottom. 

IV. DISCUSSION OF RESULTS 

E. The Superiority of Random Forest Clustering 

Firstly, the effectiveness and superiority of the Random 

Forest algorithm for the clustering of EV charging behaviour 

will be analysed in this section. The Euclidean distance 

method is used to express the correlation between all charging 

behaviours in the workdays of January 2018. The result is 

shown in Fig. 6. 

 
Fig. 6.  CMS of EV Charging Behaviour on Workdays by Euclidean 

Distance. 

It can be seen that there are more than 10 clusters in Fig. 6. 

So, the clustering results obtained by the Euclidean distance 

method are too complicated. Moreover, according to the 

evaluation of the importance of the feature parameters by the 

R programming, the scatter distribution obtained by the 

Euclidean distance method depends only on one feature 

parameter and is independent of the remaining feature 

parameters. In addition, as can be seen from the values  of the 

axes, the distance between each point is much larger than the 

result obtained by Random Forest. Therefore, the clusters 

obtained by the Euclidean distance method are diverse, but 

not suitable for the general characteristics of the reaction 

behaviour. However, the shape of the scatter plot obtained by 

RF clustering is regular and dense. The images are striped in 

strips, which makes it easy to segment and discover categories 

of images. Besides, the difference between the abscissa and 

the ordinate of each point is small. This is consistent with the 

characteristics of the RF algorithm, i.e., the correlation value 

of the data samples generated by the random forest algorithm 

should be between 0 and 1. This also makes the CMS of RF 

more versatile. In summary, the random forest algorithm has 

obvious advantages in the cluster analysis of EV charging 

behaviour. 

F. Analysis of EV Cluster General Characteristics 

According to the results of Table I, the information of EV 

charging data is further mined in this section. Table II 

summarizes the links between EV clusters and social 

behaviours. 

As can be seen from Table II, the characteristics of each 

cluster are clear and closely related to different social 

behaviour. This also shows that the Random Forest algorithm 

effectively implements the function of clustering the charging 

behaviour. However, there are fewer clusters for holidays and 

weekends and their characteristics are not as obvious as in the 
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clusters of workdays. Because of less data samples for 

holidays and weekends, there are less clusters that exist 

objectively. Also, the behaviour patterns of EV users on 

holidays and weekends do differ from the working days. In 

addition, due to the small amount of data on holidays, the 

images are scattered and irregular, which is not conducive to 

clustering based on CMS. However, the number of holidays is 

much smaller than the number of workdays during the whole 

year. So, even if there is inaccuracy in the holiday clustering, 

it will not have a huge impact on the overall results. 

TABLE II. THE GENERAL CHARACTERISTICS OF VARIOUS CLUSTERS OF EVs CHARGING BEHAVIOUR. 

Period Cluster General characteristics 

Workdays 

1 
These users often work at night, charging mainly at midnight and dawn. Their charging duration is very short, generally no 

more than an hour, but the charging energy is relatively large. 

2 These users are basically active during daytime, mainly charging after dawn. They charge longer, but charge less. 

3 
This type of user mainly starts charging in the afternoon. Their charging time is very short, but the charging energy is 

relatively large.  

4 
This type of user mainly starts charging in the evening. The end of charging duration is the next morning. Therefore, the 

charging time is longer. However, the amount of charge is relatively small. 

5 
This type of user mainly starts charging in the morning. However, the charging end time is irregular. The charging duration 

is very long, which can even contain a few days, but the charging energy is relatively small.  

Weekends 

1 
This type of user charges mainly at midnight and dawn. Their charging duration is very short, but the charging energy is 

relatively large.  

2 
This type of user starts charging all day long and takes a long time to charge. However, the amount of charge is relatively 

small. 

3 
These users start charging mainly after dawn and their charging duration is very short. However, the amount of charge is 

relatively large. 

Holidays 

1 
This type of user mainly starts charging in the morning. They charge for a long time, even for a few days. However, the 

amount of charge is relatively small. 

2 
The distribution of charging start times for such users is more dispersed. The charging duration is very short, but the charge 

is relatively large.  

 

G. Analysis of EV Charging Loads 

It can be seen from Table I that Workday Cluster 2, of 

which the main charging period is morning and afternoon, has 

the highest proportion and consumes the most amount of 

electricity. This will create the first peak of charging during 

the day. The charging behaviour of Workday Cluster 3 and 

Cluster 4 is concentrated in the middle of the night and is 

mainly based on the fast charging. These two clusters will 

create the second charging peak during the day. In addition, 

the trends of charging behaviour on weekends and holidays 

are roughly similar to that of workdays. However, the number 

of times of charging and the charging energy of a single day 

on weekends and holidays are less than that of workdays, 

which indicates that the charging behaviours of EVs in the 

workday are more frequent. Therefore, it is necessary to 

distinguish the charging laws of the three periods.  

Furthermore, the charging load of electric vehicles has a 

distinct peak-to-valley difference. If the charging load of the 

EVs can be controlled to effectively reduce the peak load, the 

power and grid investment can be reduced and the operating 

cost of the grid will possibly be cut also. 

V. CONCLUSIONS 

This paper proposed a big data mining technique based on 

Random Forest and Principle Component Analysis for 

electric vehicle charging behaviour to identify and analyse 

different types of charging behaviour characteristics. 

Experiments were carried out using Dundee’s January 2018 

charging data to obtain the charging behaviour clusters for the 

workdays, weekends, and holidays. It was found that each 

cluster has relatively clear characteristics and the users’ 

charging methods can be inferred by analysing the clustering 

results. The conclusion is that the charging behaviour of EVs 

has certain regularity. It is necessary to control the EV 

charging behaviour because it can help to reduce the 

reconstruction and operating costs of the power grid. 
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