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1Abstract—Automatic visual quality assessment of the 3D 

printed surfaces is currently one of the most demanding 

challenges in additive manufacturing. Regardless of the 

applications of the computer vision for the 3D printing process 

monitoring purposes, a reliable surface quality evaluation 

during manufacturing may introduce brand new possibilities. 

The detection of some distortions and their automatic 

evaluation can be helpful when deciding to stop the process to 

save time, energy, and filament. In some cases, some further 

corrections can also be made for relatively small distortions. 

Since many general-purpose image quality assessment methods 

have been proposed in recent years, their applications for the 

quality evaluation in the additive manufacturing are 

investigated. As most of the metrics are full-reference and 

require the availability of the original perfect quality image, 

their direct application is not possible. Therefore, their 

adaptation is described in the paper together with experimental 

verification of classification results obtained using various 

metrics. 

 
 Index Terms—Additive manufacturing; 3D prints; Surface 

quality assessment; Image analysis. 

I. INTRODUCTION 

The additive manufacturing technology, also referred as 

3D printing, becomes one of the most revolutionary 

technology in modern industry, being one of the fundaments 

of the development of the Industry 4.0 solutions [1]. Such 

fourth industrial revolution brings together interdisciplinary 

areas of science and technology related to electronics, 

automation, robotics, mechatronics, IT, telecommunication, 

as well as electrical engineering and transport. Regardless of 

the idea of smart factories, a relevant type of non-massive 

production supplementing the market needs and necessities, 

may be the use of 3D printing technology, which becomes 

more and more popular. The growing availability of 3D 

printers makes possible to design and produce many 

individual objects, e.g., mechanical parts, as well as rapidly 

build prototypes or even some unique tools [2]. 

The application areas of the additive manufacturing are 

still growing, including biomedical engineering, preserving 

the cultural heritage and art, visualization of various 3D 
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objects or model making. One of the most typical 

applications might be the 3D scanning of some old used 

elements and then “copying” them using additive 

manufacturing technology for the replacement purposes [3]. 

Since 3D printing is a considerably slow process, there is 

often an obvious necessity of the continuous monitoring of 

the manufacturing progress, as well as the quality monitoring 

of the produced objects [4]. In case of failure detection, the 

printing process should be stopped. However, when the 

lower surface quality is found, an appropriate action might 

be aborting the whole process to save filament, energy, and 

time or – for smaller distortions – trying to correct the 

surface in the last step of manufacturing. It is worth noting 

that surface quality assessment may also be related with the 

mechanical properties of the manufactured element although, 

in most cases, the main reason of such an evaluation is 

aesthetic. 

In this paper, some opportunities of using image analysis 

for the automatic visual surface quality estimation of 3D 

prints are analyzed, particularly in a view of possible 

application of the general-purpose full-reference (FR) image 

quality metrics proposed during recent several years. 

Although their direct application is impossible because of 

the lack of the reference images, they can be efficiently used 

for the comparison of image fragments. Since the high 

values of image quality assessment (IQA) measures usually 

indicate the high surface quality, their decrease is typically 

caused by the existence of some structural deformations 

locally visible in one of the compared image fragments. 

II. MACHINE VISION IN ADDITIVE MANUFACTURING 

Most of the approaches proposed by various researchers 

utilizing machine vision in 3D printing focus on the process 

monitoring. One of the first of such solutions was proposed 

by Fang et al. [5], [6], where so called process signatures 

were used to detect failures in ceramics printing. Another 

idea of the inspection of top surface and boundaries of layers 

during printing was presented later by Cheng and Jafari [7]. 

Comparing the consecutive layers before the next one is 

deposited, 2D profiles from the representative signatures 

were obtained useful for detection of the volume voids. The 
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main purpose of the method developed by Szkilnyk et al. [8] 

was the detection of failures in automated assembly 

machines using the machine vision approach based on 

processing od images captured by webcams in the LabVIEW 

environment. Further extensions of this idea were discussed 

by Chauhan and Surgenor [9], [10]. 

Recently, an interesting inspection system for 3D printers 

was proposed in the reference [11] that allows detection of 

collisions with the use of machine learning and tracking 

based on singular points. Scime and Beuth [12] used 

unsupervised machine learning method with the use of image 

patches for an automatic detection and classification of 

anomalies occuring during the spreading of the powder in 

the laser powder bed fusion process. On the other hand, 

Delli and Chang [13] recently used a supervised machine 

learning approach for process monitoring. Tourloukis et al. 

[14] used neural networks to analyze the quality of 

electronic products obtained using the 3D inkjet printing 

technology. Holzmond and Li [15] compared the geometry 

of the 3D printed object using the 3D digital image 

correlation with the computer model to detect print defects. 

The application of image analysis of the images captured 

by cameras in the system build from five Raspberry Pi units 

for in-situ detection of defects was proposed by Straub [4]. 

Although the system was able to detect the “dry printing” 

and premature job termination, its main disadvantages were 

high sensitivity to camera movements and illumination 

changes. Nevertheless, some possibilities of using the 

machine vision algorithms even for limited computational 

power systems were demonstrated. Another successful 

attempt to the application of machine vision in 3D printing 

was Multifab project [16] initially presented at SIGGRAPH 

2015 conference. In this multi-material 3D printing solution, 

captured images were used for self-calibration of the 

printheads and 3D scanning, as well as close-feedback loop 

useful for corrections of prints. As stated by the Authors, the 

overall price of the system should not exceed $7,000. 

Another recent solution [17] is related with the detection 

of stripes caused by motions of printheads without printing 

with leaking drops of filament. The Authors proposed the 

use of the ant colony optimization to choose the tool path 

speeding-up the manufacturing process and avoiding some 

of the visual artifacts. 

Nevertheless, none of the discussed solutions utilized the 

image quality assessment approach to describe numerically 

the overall quality of the printed surfaces to make a decision 

about continuing or interrupting the manufacturing process. 

III. SELECTED FULL-REFERENCE IMAGE QUALITY 

ASSESSMENT METHODS 

During recent several years, a significant progress in 

objective image quality assessment can be observed. It 

changed from the pixel based comparison based on Mean 

Squared Error (MSE) and Peak Signal to Noise Ratio 

(PSNR) or similar formulas into much more sophisticated 

comparisons of image fragments and/or features. The first 

metric changing the approach to the objective FR IQA 

methods was the Universal Image Quality Index (UIQI) 

proposed by an active group of researchers under the 

leadership of Alan Conrad Bovik from the Laboratory for 

Image & Video Engineering (LIVE) located within the 

University of Texas at Austin in 2002 [18]. It became a basic 

point for the popular Structural Similarity (SSIM) metric 

[19] and its multi-scale version (MS-SSIM) proposed by the 

same group several months later [20]. The formula of the 

local SSIM for the 11×11 pixels fragments of images x and y 

based on average values, variances and covariance was 

defined as follows 
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where C1 = (0.01 × L)2 and C2 = (0.03 × L)2 are small 

constants used to avoid possible divisions by zero for the 

darkest and/or flat areas of images and L = 256 is the 

number of permitted levels in grayscale images. The final 

quality index is then obtained as the average for all positions 

of the sliding window and the local similarity values form 

the quality map. It is also worth noting that most of IQA 

metrics were defined only for the single channel images and 

quality assessment of the color images is still a challenge. 

During the next years, several modifications of these 

methods were proposed by various researchers, including the 

Gradient SSIM [21], Quality Index based on Local Variance 

(QILV) [22], Riesz based Feature Similarity (RFSIM) [23] 

or Feature Similarity (FSIM) [24]. Some other proposed 

metrics utilized the Singular Value Decomposition, eg., R-

SVD [25] or the information theory, eg., Information 

Fidelity Criterion (IFC), as well as the Visual Information 

Fidelity (VIF) [26], [27]. The source codes of MATLAB 

implementations of many metrics can be found on the 

webpages of their Authors and some of them were collected 

in the MeTriX_MuX package [28]. 

To increase the correlation of objective assessment results 

with subjective evaluations, some hybrid/combined metrics 

utilizing multi-metric fusion approach were proposed, 

including the first such nonlinear fusion of MS-SSIM, VIF, 

and R-SVD [29], as well as CISI metric [30] being the 

weighted product of MS-SSIM, VIF, and FSIMc. Next 

combination with RFSIM and improved FSIMc metric led to 

the Extended Hybrid Image Similarity (EHIS) metric [31], 

further increasing the linear correlation coefficient with 

subjective scores available in IQA databases. 

Unfortunately, all these metrics, as well as many other 

approaches to general-purpose IQA utilizing the 

comparisons of the reference “pristine” images and their 

distorted versions (full-reference methods), cannot be 

directly applied for the assessment of 3D printed surfaces, 

especially during the printing process, due to the lack of 

reference image. 

Nevertheless, some preliminary attempts to the off-line 

application of selected metrics assuming the division of 3D 

printed surface images into smaller fragments were 

presented in earlier papers [32], [33]. Obtained results were 

promising. However, the verification of results was made for 

a limited number of images obtained by a 2D flatbed scanner 

in controlled lighting conditions and the application of these 

methods for a larger number of photos did not lead to 
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satisfactory results. Therefore, further improvement of this 

approach towards its potential in-situ application in 3D 

printing devices, including the verification of the usefulness 

of some other IQA metrics, is the main motivation of the 

research presented in this paper. 

IV. PROPOSED APPROACH AND EXPERIMENTAL RESULTS 

The quality assessment of 3D printed surfaces, 

particularly conducted during the manufacturing process, 

can be efficiently made assuming the cameras observing the 

side of the manufactured object. Considering the principle of 

operations of the most popular Fused Deposition Modelling 

(FDM) based devices, the filament is deposited layer by 

layer from the printing head and, therefore, the consecutive 

layers should be well visible for a side view. Usually, two 

types of thermoplastic filaments are used in such a low cost 

3D printers – Polyactic Acid (PLA) and Acrylonitrile 

Butadiene Styrene (ABS) with slightly different physical 

properties, e.g., melting temperature. 

Due to the expected regularity of the visible layers for 

high quality prints, high image similarity values should be 

obtained when individual images representing fragments of 

the same surface are compared. As a result of some local 

distortions, the similarity factors should decrease since, in 

practical applications, these contaminations will occur in 

different locations in each fragment of the compared images. 

They can be related with “dry printing” (lack of the filament 

or under-filling), presence of cracks (especially for ABS 

filament), as well as over-filling. Such distortions may be 

caused by improper melting temperature, inappropriate 

speed of the filament’s delivery, problems with stepper 

motors, etc.). To verify the suitability of the proposed 

approach, several planar samples were manufactured 

employing three available devices (Prusa i3, RepRap Pro 

Ormerod 2, and da Vinci 1.0 Pro 3-in-1) that use various 

colors of PLA and ABS filaments. The exemplary obtained 

samples are shown in Fig. 1. 

All samples captured by cameras were subjectively 

assessed by the colleagues from our department and 

classified as high, moderately high, moderately low, and low 

quality. The main goal of the considered method is the 

classification of the samples in accordance with subjective 

evaluation. 

 
Fig. 1.  Examples of high, moderately high, moderately low, and low 

quality 3D printed samples. 

 
Fig. 2.  Illustration of the idea of the mutual similarity calculation between 

9 image fragments. 

Since all considered FR IQA metrics were developed for a 

single channel images, the obtained photos were converted 

to grayscale using the ITU Recommendation BT.601-7 

implemented in MATLAB rgb2gray function. Additionally, 

the contrast adjustment operation was conducted to suppress 

the impact of image brightness on the obtained results. 

The next operation influencing significantly both the 

results and the further computation time, is the division of 

the image into fragments. To limit the number of 

comparisons, the division into 4, 9, and 16 fragments were 

used. The idea of the division into 9 fragments obtained as 

the pattern of 3×3 blocks is presented in Fig. 2. 

For the division into 4 fragments (2×2 blocks pattern), 

only 6 mutual similarities have to be calculated, whereas 

using 9 fragments requires the calculation of 36 similarities 

as shown in Fig. 2. Using the division into 16 fragments 

denotes 120 such calculations and, therefore, in such case, 

the computational complexity of the used metric may play 

a significant role. So, in practical on-line applications, the 

use of some metrics, which require more computations, 

particularly combined ones, should be restricted to lesser 

number of blocks. However, in some cases, depending on 

hardware possibilities, the local similarity calculations might 

be partially done in parallel. 

Nevertheless, since the division of an image into smaller 

fragments may cause the phase shift between the compared 

fragments, the additional phase adjustment is proposed 

based on the calculation of the 1D correlation between both 

compared fragments in vertical direction (after averaging of 

all pixels’ values in each row). The adjustment of the phase 

shift to maximize the calculated correlation with cropping 

both images ensures that the top and bottom rows of 

compared fragments represent the same phase of the 

different layers (e.g., the darkest lines of layers). Since the 

resolution of the captured images is 1600×1600 pixels, the 

height of each layer of the filament is several pixels 

(depending on the nozzle size used during the 

manufacturing). 

The experimental verification of usefulness of the 

proposed approach was done using several FR IQA metrics 

with the division into 4, 9, and 16 fragments with the phase 

adjustments as described above. Considering the relatively 

long computation time of some of the metrics (e.g., VIF, R-

SVD or combined metrics), we focused on similarity metrics 

with typical processing time less than one second for the 

59



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 5, 2019 

proposed algorithm using the MATLAB environment 

installed on a PC with i7-7700HQ (2.8 GHz) processor and 

16 GB RAM.  

As can be seen analyzing Fig. 3–Fig. 6 illustrating the 

experimental results obtained using some of the investigated 

metrics, the application of most of them (e.g., PSNR and 

SSIM) even for 16 blocks does not lead to appropriate 

classification. All the colors in the plots represent the colors 

of individual samples and the symbols representing the 

quality are the same as shown in the legend of Fig. 3. 

 
Fig. 3.  Obtained results for the application of SSIM metric using 16 blocks. 

 
Fig. 4.  Obtained results for the application of PSNR metric using 16 blocks. 

 
Fig. 5.  Obtained results for the application of FSIM metric using 4 blocks. 
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Fig. 6.  Obtained results for the application of FSIM metric using 16 blocks. 

The best results were achieved for the use of the Feature 

Similarity with the division of the images into 16 blocks. As 

illustrated in Fig. 6, for each color of the filament analyzed 

separately, some improper classifications (assuming the 

division into two general sets – one for high and moderately 

high quality samples and the second for low and moderately 

low ones) took place only for some of the ABS filaments: 

one yellow sample (No. 57), one dark green sample (No. 

76), and two red samples (No. 85 and No. 86 or No. 91 and 

No. 92 depending on the assumed threshold). 

Therefore, for improperly classified 4 samples out of 124, 

the overall accuracy reached 96,8 %. Considering the high 

quality samples as “true” and low quality as “false”, 

depending on the chosen threshold for the red samples, we 

obtained 2 false positives (FP) and 2 false negatives (FN) or 

only 4 FP samples. For that reason, the obtained sensitivity 

is 0.975, whereas the specificity is equal to 0.954 (or 0.913 

with the sensitivity equal to 1 considering all the improperly 

classified samples as false positives). Regardless of the 

choice of the threshold for red samples, the obtained F-

Measure, typically used for evaluation of the classification, 

is 0.975 outperforming all of the other considered image 

quality metrics. For example, with the use of SSIM (for 

results shown in Fig. 3), 18 improperly classified samples 

were obtained lowering the accuracy to 0.855 and the F-

Measure to 0.896. 

It is worth noting that all the experiments for images were 

done captured by camera and, therefore, they cannot be 

directly compared with the previous results obtained for 

partially the same samples scanned using the 2D flatbed 

scanner. Considering the controlled lighting conditions and 

uniform lighting of the sample surfaces during the 2D 

scanning process, the values of the metrics were more 

independent on the illumination changes between the 

fragments of the images and, therefore, the categorization 

into high and low quality samples was easier. 

V. CONCLUSIONS 

The application of general-purpose full reference image 

quality metrics for the objective assessment of 3D printed 

surfaces is a challenging task. Due to relatively long 

processing time, some of the IQA methods calculated 

utilizing the proposed approach based on mutual similarity 

of image fragments, cannot be used efficiently in on-line 

applications. 

Some of the analyzed metrics, e.g., PSNR or RFSIM, lead 

to improper classification and, therefore, they cannot be used 

for the objective evaluation of 3D printed surfaces.  

Nevertheless, the application of the FSIM metric for the 

proposed approach makes it possible to properly classify 

most of the tested samples. The obtained results are 

comparable to previously obtained results for a smaller 

testing dataset, which turned out to be less appropriate for 

some colors of the filaments (particularly ABS). The 

achieved accuracy is promising and confirms the usefulness 

of the FR IQA metrics for the automatic quality estimation 

of 3D printed surfaces assuming the prior knowledge of the 

filament’s color, which can be gathered during the pre-

calibration process. 

Future development of the proposed approach will be 

related to the combination with some other investigated 

methods utilizing image entropy and line detection using 

Hough transform of HOG features. Nevertheless, extensive 

experiments would be necessary to decrease the necessary 

computational efforts and provide the metric correlated with 

subjective evaluation. This task will require gathering the 

subjective quality scores from numerous observers, similarly 

as in the general-purpose IQA databases. 
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