
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 5, 2019

1Abstract—This paper presents a hardware accelerator for

sparse decision trees intended for FPGA applications. To the

best of authors’ knowledge, this is the first accelerator of this

type. Beside the hardware accelerator itself, a novel algorithm

for induction of sparse decision trees is also presented. Sparse

decision trees can be attractive because they require less

memory resources and can be more efficiently processed using

specialized hardware compared to traditional oblique decision

trees. This can be of significant interest, particularly, in the

edge-based applications, where memory and compute resources

as well as power consumption are severely constrained. The

performance of the proposed sparse decision tree induction

algorithm as well as developed hardware accelerator are

studied using standard benchmark datasets obtained from the

UCI Machine Learning Repository database. The results of the

experimental study indicate that the proposed algorithm and

hardware accelerator are very favourably compared with some

of the existing solutions.

 Index Terms—Decision trees; Hardware accelerator

architectures; Genetic algorithms; Edge computing.

I. INTRODUCTION

Until recent discoveries of Convolutional Neural

Networks and other Deep Learning architectures, Decision

trees (DTs) had been recognized as one of the three most

popular predicting models in machine learning field,

together with Artificial Neural Networks and Support Vector

Machines.

The decision tree predicting model was first presented in

the literature more than 30 years ago [1], while axis-parallel

DTs were introduced only few years after [2]. Assuming that

the classification problem is represented by a set of n

attributes, Ai (i = 1, …, n), axis-parallel DTs in each tree

node perform testing of a single attribute Ai from a test

instance against the threshold ai: Ai > ai. Inducing axis-

parallel (also called orthogonal), DT assumes the selection

of the attribute to be assigned and tested in each DT node

(Ai) as well as the threshold value required for a comparison

(ai). ID3 and C4.5, the two most commonly used algorithms

for inducing axis-parallel DTs, are presented in [2].

Manuscript received 26 November, 2018; accepted 30 June, 2019.

This work was partially supported by Serbian Ministry of Education and

Science (Project title: “Innovative electronic components and systems

based on inorganic and organic technologies embedded in consumer goods

and products”, No. TR32016).

Although proposed quite long ago, axis-parallel DTs are still

a topic of interest for the academic community [3]–[6].

Oblique decision trees are the generalization of axis-

parallel DTs allowing multiple attribute testing in every DT

node. As a result, oblique DTs are usually much smaller in

size providing higher classifying accuracy when compared to

axis-parallel DTs. In oblique DTs, this multivariate testing

has a form, which is expressed as follows

1

1

0,
n

i i n

i

a A a 



   (1)

where ai, i = 1, …, n + 1 are called hyperplane coefficients.

The most important oblique DT induction algorithms are

CART, proposed in [1], and OC1, which is presented in [7].

After the authors in [8] proved that finding the best oblique

DT is a NP-complete problem, many oblique DT induction

algorithms use some kind of heuristics in order to find sub-

optimal hyperplane coefficients [9]–[12]. The authors in

[13] use HereBoy evolutionary algorithm [14] for solving

this hard oblique DT induction problem. In our research, we

use this approach as the starting point and modify it in order

to support the induction of sparse oblique DTs.

Recently, a huge effort in machine learning community

has been spent on the compression and size reduction of the

prediction models, mainly Artificial Neural Networks

(ANNs) and Convolutional Neural Networks (CNNs) [15]–

[19]. The authors in [20], [21] exploit the benefits of

minimizing the number of non-zero hyperplane coefficients

in oblique DTs as well. However, the focus in these papers is

on the feature/attribute selection and the elimination of

irrelevant or noisy features/attributes, while the percentage

of non-zero elements after DT induction is not reported.

In this paper, we present SDTI algorithm for the induction

of sparse DTs and SDTA hardware accelerator for sparse

DTs. The proposed accelerator, intended for an

implementation in FPGA, is particularly interesting for

embedded and edge applications, where the storage capacity,

memory consumption, and bandwidth as well as computing

capabilities are severely constrained. As a result of the DT

sparsification and increased number of zero-valued

hyperplane coefficients, SDTA requires less memory for

storing DT parameters and provides significant speedup by

skipping zero-valued product terms in (1) and avoiding

Hardware Acceleration of Sparse Oblique

Decision Trees for Edge Computing

Predrag Teodorovic*, Rastislav Struharik

Department of Power, Electronic and Telecommunication Engineering,

Faculty of Technical Sciences, University of Novi Sad,

Trg Dositeja Obradovica 6, 21000, Novi Sad, Serbia

t_pedja@uns.ac.rs

http://dx.doi.org/10.5755/j01.eie.25.5.24351

18

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 5, 2019

unnecessary operations.

The problem of hardware implementation of DTs has

been in the focus of the research community for more than

15 years, resulting in a number of proposed architectures

[22]–[28]. However, all previously proposed architectures

are concerned with the acceleration of dense univariate,

oblique or non-linear DTs, or ensembles composed out of

dense DTs. To the best of the authors’ knowledge, the

hardware architecture for the acceleration of sparse DTs,

presented in this paper, is the first of its kind.

The rest of the paper is organized as follows. In Section

II, we present SDTI algorithm that induces sparse DTs by

forcing high percentage of zero hyperplane coefficients in

each DT node (1) without decreasing DT accuracy. In

Section III, we introduce SDTA hardware accelerator for the

sparse oblique decision trees intended for FPGA

applications. The proposed hardware accelerator is going to

benefit from the sparsity in DTs and provide faster

classifications by computing operations only with non-zero

operands. In Section IV, we give the experimental results of

benchmarking our SDTI algorithm and SDTA accelerator

performance using datasets from the UCI machine learning

repository. Conclusions are given in Section V.

II. SPARSE DECISION TREE INDUCTION (SDTI) ALGORITHM

In this section, we present the application of HereBoy

evolutionary algorithm for solving the sparse DT building

problem. In our SDTI algorithm, iteratively for each node in

DT, one by one hyperplane coefficients from (1) are masked

and set to zero, while HereBoy algorithm is used to fine tune

remaining non-masked coefficients in order to change and

improve the position of the hyperplane. This incremental

sparsification is repeated until the desired percentage of the

hyperplane coefficients is set to zero. DT itself is built using

the classical DT building algorithm with an iterative

sparsification explained above and performed at each DT

node.

In order to evaluate position of the hyperplane, during

incremental sparsification procedure performed in each DT

node, the fitness function from [13] is used

  1 1

1 1

1 1

1 1

1 1

1
1 ,

k k
i i i

i i ik k
i i

j j

j j

N N N
fitness N ld N N ld

N
N N N 

 

 
 


    
 

 
 

 
 

(2)

where ld stands for a binary logarithm, log2(n). The symbols

in proposed fitness function are:

 k (number of classes of the classification problem);

 N (number of training instances associated with the

current node);

 Ni (number of training instances that belong to the class

i (from the total of N instances);

 N1i (number of instances that belong to the class i,

placed above the current hyperplane).

In SDTI implementation, a binary encoding scheme,

where HereBoy is working with a single chromosome

similar to [13], is also accepted. Given n attributes from a

dataset, the chromosome consists of n + 1 values that encode

coefficients ai from (1), where each coefficient is encoded

with l bits (typical value for l being 20). Also, like in [13],

the initial chromosome for the evolutionary algorithm is

generated in a way that corresponding hyperplane divides

training set and ensures that at least one instance from the

training set can be found on both sides of the hyperplane.

The basis for our SDTI algorithm is HBDT algorithm

presented in [13]. Similar to HBDT algorithm, in every step,

we use HereBoy algorithm to find the sub-optimal

hyperplane, which splits instances from different classes in

two disjoint regions. This is recursively repeated until the

current region contains only the instances from a single

class, which results in creating the leaf and setting the output

class label to that particular class value. Modification of

HBDT algorithm, introduced in our SDTI algorithm, is

related to the incremental sparsification of a hyperplane in

each node of DT. For each hyperplane obtained by

evolutionary algorithm, the worst hyperplane coefficient is

found, with the property that the fitness value calculated

using (2) minimally decreases after the replacement of that

coefficient with a zero value. The worst coefficient, when

found, is masked and set to zero. This procedure is repeated

with remaining non-masked hyperplane coefficients until the

desired percentage of sparsification is reached.

Algorithm 1. Sparse Decision Tree Induction (SDTI) algorithm.

SDTI (TI, sparsity)

TI - Set of instances used to build a DT. Each

instance is a vector of n numerical

attributes plus the output class value

sparsity – sparsification level for each DT node

(percentage of hyperplane coefficients

that will be masked and set to zero)

→ Create node root

→ If the values of output_class for all

instances from the TI set belong to the same

class, make root node a leaf, with output

label matching the appropriate class value

→ Otherwise

 {

 → Find out the dominating class in the TI

set, and set the class label for the node

root to that value

 → Repeat

 {

 → Using the HereBoy algorithm and

fitness function (2) find the optimal

position of the dividing hyperplane

 → Find among non - masked hyperplane

coefficients coefficient hc_worst

that, when replaced with zero,

minimally reduces fitness of the

hyperplane, calculated by fitness

function (2)

→ Mask and set to zero hc_worst

→ Calculate cs (current sparsity) as a

percentage of zero elements within

hyperplane coefficients

} until cs is greater or equal to

sparsity

 → Using the best hyperplane, divide the TI

set into two subsets, one containing

instances located above the hyperplane,

TIabove and the other, containing instances

located below the hyperplane, TIbelow.

 → Create a new branch descending from the

node root, and create a sub-tree by calling

the algorithm SDTI(TIabove, sparsity)

 → Create a new branch descending from the

node root, and create a sub-tree by calling

the algorithm SDTI(TIbelow, sparsity)

 }

→ Return root

19

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 5, 2019

Since the iterative sparsification, explained above, is

repeated for each DT node, the resulting DT should have

exactly the same percentage of zero values per each DT

node defined by the sparsity argument. As it is shown in

section IV, for all 10 benchmarked datasets from the UCI

repository, we are able to reach the sparsification percentage

above 60 % (in some cases, even close to 80 %) without the

loss in accuracy.

Similar to HBDT algorithm, in order to reach even better

classification results, pruning of a DT at the end is

performed. As a result, the size of the DT is decreased as a

consequence of the redundant nodes removal. For this

purpose, Prune_DT algorithm, reported in [13], is used.

III. HARDWARE ACCELERATOR FOR SPARSE DTS

The architecture for hardware acceleration of sparse

decision trees, called SDTA (Sparse Decision Tree

Accelerator), is the evolution of SMpL architecture

introduced in [24].

Fig. 1. Implementing DT using SMpL architecture from [24]: a) Structure

of typical oblique DT; b) SMpL architecture for hardware implementation

of DT.

Let us consider the DT shown in the Fig. 1(a). A

straightforward approach to the hardware realization would

be to implement the complete DT in hardware, which is

originally presented in [22]. However, this approach is not

the optimal because of the following key property of DTs.

While the instance is being processed by a DT, only a subset

of nodes from the complete DT is going to be visited. This is

because each instance is taking exactly one path from the

root node to one of the DT leaves. For example, if the

current input instance will eventually be classified into the

leaf node L4 from Fig. 1(a), then it will be processed only by

DT nodes 1, 3 and 4 while nodes 2 and 5 will not be active

during the current instance processing. Therefore, to classify

an instance, there is no reason to evaluate every node in the

DT, but only a selected subset of nodes, one from each DT

level, at most. SMpL architecture, originally presented in

[24], that evaluates only visited DT nodes during the

classification of an instance, is more efficient than the

architecture in [22] in terms of separate node modules that

need to be implemented in hardware. For example, Fig. 1(b)

shows the implementation of the DT from Fig. 1(a) based on

the SMpL architecture. The SMpL architecture consists of

three separate modules, called Universal Nodes. They can

evaluate any DT node located on the same depth within a

DT. We need three of these modules since the depth of the

DT from the Fig. 1(a) is three. Operation of the SMpL

architecture is pipelined, so the instance processing

throughput is not influenced by the depth of implemented

DT and is only dependent on the time required to evaluate a

single DT node, which, in case of SMpL architecture, is

proportional to the number of attributes, n, in the underlying

classification problem DT was created to solve.

As shown in Section II, for any classification problem,

instead of learning dense oblique DT, in which we would

have to process all n attributes in every DT node, we can

learn a sparse oblique DT, which processes only a fraction p

of n problem attributes in each node. Using the sparse DT

can be beneficial, particularly when instance processing

speed is concerned since computation of each sparse DT

node will be 1/p times faster compared to a dense DT node

computation time. However, all previously proposed

architectures for the DT acceleration are not able to benefit

from this optimization opportunity.

The SDTA architecture that we are proposing is explicitly

designed to take an advantage of such an optimization.

SDTA architecture is closely related to SMpL architecture

presented in [24], but modified in order to be able to skip all

unnecessary computations due to the fact that some

hyperplane coefficients ai becomes equal to zero as a result

of the sparsification introduced in each DT node.

The top-level architecture of SDTA sparse DT accelerator

is presented in Fig. 2.

Fig. 2. Top-Level Architecture of SDTA Sparse DT accelerator.

The SDTA sparse DT accelerator consists of M identical

pipeline stages, where M is the maximum depth of a sparse

DT that it can accelerate. Each pipeline stage is capable of

evaluating sparsified tests from all nodes found at the same

depth in the DT and consists of three major modules:

attribute memory (module M1), Decision Tree or Pass

Through (DTPT) node (module M2), and memory for

storing relevant information about the nodes found at the

same depth in the DT (module M3). Attribute memories

from the pipeline stages create a chain, shifting the attribute

values related to different instances that are being processed

by the SDTA accelerator through the system. Each attribute

memory is also connected to the corresponding DTPT node.

DTPT nodes create a pipeline chain as well. Figure 3

presents the detailed architecture of one pipeline stage.

Attribute memory, M1, is used to store attribute values for

the current instance. Module M2 normally calculates the

position of the instance relative to the hyperplane associated

to the selected node while skipping all product terms from

(1), where coefficients ai are equal to zero, and calculates

the address of the node from the next level that should be

visited next.

20

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 5, 2019

Fig. 3. Detailed architecture of the SDTA pipeline stage.

This happens when the current instance has not been

classified yet, i.e., module M2 operates in the “Decision

Tree” mode. In case the current instance has already been

classified by some previous pipeline stage, module M2

simply transfers the input class value to the next pipeline

stage operating in the “Pass Through” mode. Module M3

stores the necessary information about all nodes from the

same level in DT and consists of two memory units.

The first memory unit, SHCM, stores sparse hyperplane

coefficients for all nodes. For each non-zero hyperplane

coefficient ai, its value together with the attribute address

increment is stored. The address increment is used to fetch

the appropriate attribute from M1 memory, which should be

multiplied with the current hyperplane coefficient. For

example, if there is a total of 10 problem attributes and in

the current DT node non-zero hyperplane coefficients are 1st,

3rd, 6th, 7th and 10th coefficient, their corresponding attribute

address increment values would be 0, 2, 3, 1, and 3,

respectively.

The second memory unit stores the following data for

each node associated to the current pipeline stage: number of

non-zero hyperplane coefficients NNZ; base address

Base_Addr, where the block of non-zero coefficients for the

current node begins in the SHCM memory; addresses of left

and right child nodes of the current node, AdrL and AdrR;

class values for all child nodes that are actually leaves,

ClassL and ClassR. In case a child node is not a leaf, its

corresponding class value is set to zero.

During the evaluation of the DT node, module M2

calculates (1), but multiplying and adding only

attribute/hyperplane coefficient product terms, for which the

hyperplane coefficient ai is different from zero. All product

terms, where a hyperplane coefficient ai is zero, are skipped

effectively speeding up the hyperplane computation process.

Compared to SMpL architecture from [24], the node

processing time of the SDTA architecture is measured in

clock cycles, equals:

 

 

_ _ Pr _ 1 ,

_ _ _ 1 ,

clk

clk

SMpL Node ocessing Time n T

SDTA Node Processing Time NNZ T

 

 
 (3)

where n is the number of problem attributes and NNZ is the

number of non-zero hyperplane coefficients, ai.

Clearly, since NNZ < n, the node processing time of the

SDTA architecture is always strictly shorter than the node

processing time of the SMpL architecture. The amount of

the node processing time reduction depends on the number

of hyperplane coefficients that is set to zero during the

process of inducing the sparse DT, using SDTI algorithm.

The more coefficients are set to zero, i.e., the more DT node

tests are sparsified, greater DT processing speedup can be

reached when using SDTA instead of SMpL architecture.

Since the instance processing throughput of both SMpL

and SDTA architectures directly depends on the individual

node processing time, from previous discussion, it is obvious

that the instance processing throughput of SDTA

architecture is higher than the one of SMpL architecture.

The instance processing throughput of SMpL architecture

is given by a following equation

 

1
_ .

1 clk

SMpL Throughput
n T




 (4)

The instance processing throughput of SDTA architecture

is more difficult to calculate since it depends on the amount

of sparsity present in DT nodes along the path that the

current instance is taking through a DT while it is being

processed. However, the worst case for instance processing

throughput for SDTA architecture can be calculated as

follows

  
_

1
_ _ .

max 1i clk
i DT Nodes

SDTA Throughput WC

NNZ T






(5)

In the special case, when all hyperplanes from a DT are

sparsified by removing identical number of coefficients (not

necessarily located at the same positions), it is easy to

calculate the instance processing throughput for SDTA

architecture also

 

1
_ .

1 clk

SDTA Throughput
NNZ T




 (6)

In this case, we can easily calculate the expected speedup

of SDTA over the existing SMpL architecture as follows

1 1 1

, 1.
1

n
Speedup when n

NNZNNZ p

n


   


 (7)

From equation (7), it can be concluded that the amount of

the speedup that is reachable when using SDTA architecture

directly depends on the amount of DT sparsification that is

achievable during the DT induction phase.

IV. EXPERIMENTAL RESULTS

To be able to compare the performance of the SDTI

algorithm with the HDBT algorithm, the following datasets

from the UCI machine learning repository [29] are used:

Glass Identification (gls), Vehicle Silhouettes (veh), Statlog

Heart Disease (hrts), Hepatitis Domain (hep), Wine

Recognition (wine), Pima Indians Diabetes (pid), Page

21

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 5, 2019

Blocks Classification (page), Waveform 40 (wav40), Heart

Disease Cleveland (hrtc), and Wisconsin Diagnostic Breast

Cancer (wdbc).

The instances with missing values are removed from the

dataset, while all reported results are the averages of the five

ten-fold cross-validation experiments. This assumes the

dividing the original dataset D into 10 non-overlapping

subsets, D1, D2, …, D10, which consist of uniformly selected

instances from D. During each cross-validation iteration, DT

is built using the instances from D\Di set and tested on Di set

(i = 1, ..., 10). By repeating this procedure 5 times, 50 DTs

are constructed in total for each dataset. Then, average

classification accuracy is calculated as the percentage of

instances, which are correctly classified. Additionally, the

average DT size is expressed as the average number of

leaves. Both average classification accuracy and average DT

size are calculated along with the corresponding 95 %

confidence intervals. Similar to the approach from [13],

30 % of the instances from the training set are selected

randomly to build the pruning set since DT pruning

algorithm requires a separate pruning set.

Table I presents the results of experiments designed to

compare the accuracy and the size of dense DTs created

using HBDT algorithm [13] and sparse DTs with increasing

sparsification value created using SDTI algorithm proposed

in this paper. In Table I, for each UCI dataset, results of the

HBDT algorithm correspond to the results of SDTI

algorithm with the sparsity value of 0 %, since those two

algorithms are identical when the sparsification is not

applied.

TABLE I. BENCHMARKING RESULTS ON UCI DATASETS.

Dataset Spars. Attr Tree size Mem Spd Accuracy

hrts 0 % 13 7.22 ± 0.72 0 % 1.00 75.52±1.74

hrts 28.57 % 13 8.92 ± 0.78 -9 % 1.40 74.81 ± 2.05

hrts 50 % 13 11.44 ± 1.2 -16.1 % 2.00 75.93 ± 1.53

hrts 57.14 % 13 13.02 ± 1.11 -17.2 % 2.33 75.52 ± 1.72

hrts 71.43 % 13 18.4 ± 1.54 -17.9 % 3.50 75.41 ± 1.63

pid 0 % 8 30.16 ± 1.49 0 % 1.00 65.17 ± 1.18

pid 44.44 % 8 55.4 ± 2.82 3.6 % 1.80 65.71 ± 1.09

pid 55.56 % 8 72.22 ± 3.0 8.6 % 2.25 64.67 ± 1.09

pid 66.67 % 8 92.58 ± 3.49 4.7 % 3.00 65.18 ± 1.1

gls 0 % 9 12.72 ± 0.73 0 % 1.00 59.80 ± 2.01

gls 50 % 9 25.68 ± 1.59 5.3 % 2.00 60.41 ± 1.86

gls 60 % 9 25.56 ± 1.59 -16.2 % 2.50 60.21 ± 1.79

gls 70 % 9 26.18 ± 1.73 -35.5 % 3.33 60.10 ± 1.94

wav40 0 % 40 45.10 ± 1.19 0 % 1.00 80.27 ± 0.41

wav40 48.78 % 40 51.26 ± 1.89 -41.6 % 1.95 79.55 ± 0.33

wav40 58.54 % 40 64.10 ± 2.14 -40.7 % 2.41 79.30 ± 0.35

wav40 68.29 % 40 86.54 ± 3.06 -38.5 % 3.15 79.30 ± 0.39

wine 0 % 13 3.6 ± 0.25 0 % 1.00 89.90 ± 1.49

wine 35.71 % 13 5.42 ± 0.56 9.3 % 1.56 90.31 ± 1.58

wine 50 % 13 5.7 ± 0.66 -9.6 % 2.00 90.45 ± 1.48

wine 57.14 % 13 6.84 ± 0.72 -3.7 % 2.33 89.42 ± 1.68

wine 64.29 % 13 7.76 ± 0.92 -7.1 % 2.80 90.13 ± 1.65

hep 0 % 19 2.32 ± 0.35 0 % 1.00 81.12 ± 2.31

hep 50 % 19 2.78 ± 0.46 -32.6 % 2.00 80.38 ± 2.4

hep 60 % 19 3.18 ± 0.47 -33.9 % 2.50 81.25 ± 2.84

hep 70 % 19 3.70 ± 0.55 -38.6 % 3.33 80.25 ± 2.51

veh 0 % 18 31.06 ± 1.09 0 % 1.00 67.66 ± 1.12

veh 47.37 % 18 55.40 ± 2.56 -4.8 % 1.90 68.55 ± 1.03

veh 57.89 % 18 59.56 ± 3.22 -18 % 2.38 67.27 ± 1.12

veh 68.42 % 18 60.50 ± 2.78 -37.5 % 3.17 67.16 ± 0.99

page 0 % 10 24.86 ± 1.24 0 % 1.00 96.75 ± 0.15

page 36.36 % 10 37.86 ± 2.4 -1.7 % 1.57 96.83 ± 0.15

page 45.45 % 10 41.74 ± 2.63 -6.9 % 1.83 96.84 ± 0.15

page 54.55 % 10 53.20 ± 2.7 -0.6 % 2.20 96.71 ± 0.17

page 63.64 % 10 67.76 ± 3.26 1.7 % 2.75 96.52 ± 0.15

wdbc 0 % 30 6.04 ± 0.63 0 % 1.00 92.78 ± 0.76

wdbc 48.39 % 30 6.82 ± 0.69 -40.4 % 1.94 93.15 ± 0.76

wdbc 58.06 % 30 7.96 ± 0.83 -42.1 % 2.38 92.29 ± 0.66

wdbc 67.74 % 30 10.00 ± 0.98 -42.4 % 3.10 92.15 ± 0.7

hrtc 0 % 13 14.96 ± 1.24 0 % 1.00 51.50 ± 1.65

hrtc 50 % 13 17.42 ± 1.22 -41.2 % 2.00 50.84 ± 1.55

hrtc 57.14 % 13 19.10 ± 1.27 -44.4 % 2.33 52.06 ± 2.15

hrtc 64.29 % 13 20.60 ± 1.41 -49.9 % 2.80 52.10 ± 1.93

hrtc 78.57 % 13 26.80 ± 2.12 -60.4 % 4.67 52.27 ± 1.59

22

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 5, 2019

The SDTA architecture is designed and implemented

using Xilinx Vivado Design Suite using default parameters

for synthesis and implementation, while the experimental

measurements are performed on Zynq Ultrascale+ MPSoC

ZCU102 Evaluation Board [30].

The first column of the Table I represents UCI dataset.

For each dataset, multiple sparsification percentages are

reported in the second column. The given percentage refers

to the percentage of the zero hyperplane coefficients in each

DT node after running the SDTI algorithm. The fact that all

nodes use the same percentage of sparsification is

convenient for pipelining in SDTA hardware accelerator due

to the fact that each node requires exactly the same number

of computations, maximizing throughput. The third column

shows the number of attributes for each dataset, which

directly determines the maximum number of the hyperplane

coefficients in each DT node: without the sparsification, a

number of hyperplane coefficients in each DT node equal to

the number of attributes plus one according to (1). The

fourth column presents the average DT size, which is equal

to the average number of leaves in the DT. Please note that

the DT size is increased as a consequence of the

sparsification in DT nodes. The DT size is larger as DTs

become sparser.

The fifth column, Mem, shows the relative gain in terms

of the memory required to store the complete DT calculated

as the average number of internal nodes multiplied by the

number of hyperplane coefficients. The negative percentages

stand for the decreased memory requirements while positive

represent the opposite. It is interesting to notice that, in some

cases, even with high percentages of sparsification, there is

no reduction of memory requirements for storing DTs, which

is a consequence of larger DTs after the sparsification.

However, in most cases of the test, memory requirements are

decreased after the sparsification. The column Spd presents

the speedup in the classification throughput expressed with

respect to the DT with the sparsification 0 %. This is an

effective comparison between the achievable instance

classification throughput when DT is accelerated by SMpL

dense DT accelerator presented in [24] and the SDTA sparse

DT accelerator presented in this paper. The speedup is

calculated using the percentage of the sparsification

presented in the second column of the Table I according to

(7). Higher the sparsification percentage results in a reduced

number of the required computations in each pipeline stage,

and higher is the speedup of the SDTA architecture

compared to the SMpL architecture.

Finally, the last column of the Table I shows the averaged

accuracies of the DTs built for different sparsification

percentages and different UCI datasets. In the conducted

tests, only sparsifications resulting in accuracy drop lower

than 1 % are accepted compared to the accuracy of a non-

sparse DT for the same dataset. The highlighted rows mark

the highest sparsification percentages achieved with the

acceptable accuracy drop for each given dataset.

As it can be observed from the Table I, it is possible to

achieve the significant sparsification DT levels for each of

used UCI datasets without degrading the original, dense DT

accuracy. For all presented UCI datasets, the sparsification

levels greater than 60 % can be achieved. For some of them,

the sparsification levels reach the value of almost 80 %.

As for the DT storage memory requirements, it can be

observed that for most of UCI datasets used a significant

reduction in memory size can be achieved compared to the

memory size required to store a dense DT. The amount of

the memory size reduction reaches up to 60 %. For some

datasets and sparsification levels, the output DTs are

significantly deeper when compared to the dense DTs

resulting in slightly increased requirements for the storing

hyperplane coefficients, even after eliminating majority of

them during the SDTI algorithm run.

However, if we analyse the throughput speedup from the

Table I, it is clear that for all datasets used the DT

sparsification is helping in improving the instance

classification throughput. The instance processing speedup,

when using sparse DTs over traditional dense DTs, ranges

from 2.75 up to 4.67 times, which is a significant

improvement.

V. CONCLUSIONS

In this paper, a novel algorithm for inducing sparse DTs,

SDTI, and hardware accelerator architecture for accelerating

sparse DTs, SDTA, are presented. Using sparse DTs over

standard dense oblique DTs can be beneficial, since sparse

DTs usually require less memory resources for storing their

parameters and can be processed faster when compared to

dense oblique DTs.

To validate the performance of SDTI, sparse DT building

algorithm and SDTA, sparse DT hardware accelerator, a set

of experiments using standard UCI machine learning

repository datasets are used. Results of experiments seem to

indicate that sparse DTs usually require significantly less

memory resources, up to 60.4 % less storage capacity

compared to dense oblique DTs, without any loss in DT

accuracy.

Speedup experiments also indicate that working with the

sparse DT hardware accelerator results in the instance

processing speedup of up to 4.67 times compared to

previously proposed dense DT hardware accelerator.

REFERENCES

[1] L. Breiman, J. H. Freidman, R. A. Olshen, and C. J. Stone,

“Classification and Regression Trees”, Chapman and Hall/CRC,

1984. DOI: 10.1201/9781315139470-8.

[2] J. R. Quinlan, “Induction of decision trees”, Machine Learning, vol.

1, no. 1, pp. 81–106, 1986. DOI: 10.1007/bf00116251.

[3] A. M. Mahmood, K. M. Rao, and K. K. Reddi, “Novel algorithm for

scaling up the accuracy of decision trees”, International Journal on

Computer Science and Engineering, vol. 2, no. 2, pp. 126–131, 2010.

[4] M. Z. Islam, “EXPLORE - A novel decision tree classification

algorithm”, in Proc. Of BNCOD 2010 - 27th British National

Conference on Databases, 2012, pp. 55–71. DOI: 10.1007/978-3-

642-25704-9_7.

[5] O. T.Yildiz, “Univariate decision tree induction using maximum

margin classification”, The Computer Journal, vol. 55, no. 3, pp.

293–298, 2012. DOI: 10.1093/comjnl/bxr020.

[6] A. López-Chau, J. Cervantes, L. López-García, and F. G. Lamont,

“Fisher’s decision tree”, Expert Systems with Applications, vol. 40,

no. 16, pp. 6283–6291, 2013. DOI: 10.1016/j.eswa.2013.05.044.

[7] S. K. Murthy, S. Kasif, and S. Salzberg, “A System for induction of

oblique decision trees”, Journal of Artificial Intelligence Research,

vol. 2, pp. 1–32, 1994. DOI: 10.1613/jair.63.

[8] D. Heath, S. Kasif, and S. Salzberg, “Induction of oblique decision

23

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 5, 2019

trees”, in Proc. of the 13th International Joint Conference on

Artificial Intelligence, 1993, pp. 1002–1007.

[9] E. Cantú-Paz and C. Kamath, “Inducing oblique decision trees with

evolutionary algorithms”, IEEE Trans. on Evolutionary

Computation, vol. 7, no. 1, pp. 54–68, 2003. DOI:

10.1109/tevc.2002.806857.

[10] R. C. Barros, M. P. Basgalupp, A. C. P. L. F. de Carvalho, and A. A.

Freitas, “A survey of evolutionary algorithms for decision tree

induction”, IEEE Trans. on Systems, Man, and Cybernetics, Part C:

Applications and Reviews, vol. 42, no. 3, pp. 291–312, 2012. DOI:

10.1109/tsmcc.2011.2157494.

[11] F. E. B. Otero, A. A. Freitas, and C. G. Johnson, “Inducing decision

trees with an ant colony optimization algorithm”, Applied Soft

Computing, vol. 12, no. 11, pp. 3615–3626, 2012. DOI:

10.1016/j.asoc.2012.05.028.
[12] S. H. Cha and C. Tappert, “A Genetic algorithm for constructing

compact binary decision trees”, Journal of Pattern Recognition

Research, vol. 4, no. 1, pp. 1–13, 2009. DOI: 10.13176/11.44.

[13] R. Struharik, V. Vranjković, S. Dautović, and L. Novak, ‘‘Inducing

oblique decision trees”, in Proc. of 12th Int. Symp. Intell. Syst.

Inform. (SISY), Subotica, Serbia, 2014, pp. 257–262. DOI:

10.1109/sisy.2014.6923596.

[14] D. Levi, “HereBoy: A fast evolutionary algorithm”, in Proc. of The

Second NASA/DoD Workshop on Evolvable Hardware, 2000, pp.

17–25. DOI: 10.1109/eh.2000.869338.

[15] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and J. Chen,

“Compressing neural networks with the hashing trick”, in Proc. of

International Conference on Machine Learning, 2015, pp. 2285–

2294.

[16] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing

deep neural network with pruning, trained quantization and huffman

coding”, in Proc. of International Conference on Learning

Representations, 2016.

[17] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and

connections for efficient neural network”, is Proc. of the 28th

International Conference on Neural Information Processing Systems,

2015, vol. 1, pp. 1135–1143.

[18] F. N. Iandola et al., “Squeezenet: alexnet-level accuracy with 50x

fewer parameters and < 0.5 mb model size”, in Proc. of 5th

International Conference on Learning Representations, 2017.

[19] S. Han et al., “EIE: Efficient inference engine on compressed deep

neural network”, in Proc. of 2016 ACM/IEEE 43rd Annual

International Symposium on Computer Architecture (ISCA), Seoul,

2016, pp. 243–254. DOI: 10.1109/ISCA.2016.30.

[20] M. Krȩtowski, “An evolutionary algorithm for oblique decision tree

induction”, in Proc. of International Conference on Artificial

Intelligence and Soft Computing – ICAISC 2004, pp. 432–437. DOI:

10.1007/978-3-540-24844-6_63.

[21] M. Krętowski and M. Grześ, “Evolutionary learning of linear trees

with embedded feature selection”, in Proc. of International

Conference on Artificial Intelligence and Soft Computing - ICAISC

2006, pp. 400–409. DOI: 10.1007/11785231_43.
[22] A. Bermak and D. Martinez, “A compact 3D VLSI classifier using

bagging threshold network ensembles”, IEEE Transactions on Neural

Networks, vol. 14, no. 5, pp. 1097–1109, 2003. DOI:

10.1109/tnn.2003.816362.

[23] S. Lopez-Estrada and R. Cumplido, “Decision tree based FPGA-

architecture for texture sea state classification”, in Proc. of IEEE

International Conference on Reconfigurable Computing and

FPGA's, 2006, pp. 1–7. DOI: 10.1109/reconf.2006.307770.

[24] R. Struharik and L. Novak, “Intellectual property core

implementation of decision trees”, IET computers & digital

techniques, vol. 3, no. 3, pp. 259–269, 2009. DOI: 10.1049/iet-

cdt.2008.0055.

[25] R. Struharik and L. Novak. “Hardware implementation of decision

tree ensembles”, Journal of Circuits, Systems and Computers, vol.

22, no. 05, 2013. DOI: 10.1142/s0218126613500321.

[26] J. Barba et al., “FPGA acceleration of semantic tree reasoning

algorithms”, Journal of Systems Architecture, vol. 61, no. 3–4, pp.

185–196, 2015. DOI: 10.1016/j.sysarc.2015.01.001.

[27] F. Saqib, A. Dutta, J. Plusquellic, P. Ortiz, and M. S. Pattichis,

“Pipelined decision tree classification accelerator implementation in

FPGA (DT-CAIF)”, IEEE Trans. Computers, vol. 64, no. 1, pp. 280–

285, 2015. DOI: 10.1109/tc.2013.204.

[28] X. Lin, R. D. Blanton, and D. E. Thomas, “Random forest

architectures on FPGA for multiple applications”, In Proc. of the on

Great Lakes Symposium on VLSI 2017, pp. 415–418. DOI:

10.1145/3060403.3060416.

[29] C. L. Blake and C. J. Merz, “UCI Repository of Machine Learning

Databases”. Available. [Online]: www.ics.uci.edu/~mlearn/ML-

Repository.http

[30] Xilinx Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit. Available.

[Online]: https://www.xilinx.com/products/boards-and-kits/ek-u1-

zcu102-g.html

24

https://doi.org/10.1109/eh.2000.869338
https://doi.org/10.1016/j.sysarc.2015.01.001

