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1Abstract—This paper presents a hardware accelerator for 

sparse decision trees intended for FPGA applications. To the 

best of authors’ knowledge, this is the first accelerator of this 

type. Beside the hardware accelerator itself, a novel algorithm 

for induction of sparse decision trees is also presented. Sparse 

decision trees can be attractive because they require less 

memory resources and can be more efficiently processed using 

specialized hardware compared to traditional oblique decision 

trees. This can be of significant interest, particularly, in the 

edge-based applications, where memory and compute resources 

as well as power consumption are severely constrained. The 

performance of the proposed sparse decision tree induction 

algorithm as well as developed hardware accelerator are 

studied using standard benchmark datasets obtained from the 

UCI Machine Learning Repository database. The results of the 

experimental study indicate that the proposed algorithm and 

hardware accelerator are very favourably compared with some 

of the existing solutions. 

 
 Index Terms—Decision trees; Hardware accelerator 

architectures; Genetic algorithms; Edge computing. 

I. INTRODUCTION 

Until recent discoveries of Convolutional Neural 

Networks and other Deep Learning architectures, Decision 

trees (DTs) had been recognized as one of the three most 

popular predicting models in machine learning field, 

together with Artificial Neural Networks and Support Vector 

Machines.  

The decision tree predicting model was first presented in 

the literature more than 30 years ago [1], while axis-parallel 

DTs were introduced only few years after [2]. Assuming that 

the classification problem is represented by a set of n 

attributes, Ai (i = 1, …, n), axis-parallel DTs in each tree 

node perform testing of a single attribute Ai from a test 

instance against the threshold ai: Ai > ai. Inducing axis-

parallel (also called orthogonal), DT assumes the selection 

of the attribute to be assigned and tested in each DT node 

(Ai) as well as the threshold value required for a comparison 

(ai). ID3 and C4.5, the two most commonly used algorithms 

for inducing axis-parallel DTs, are presented in [2]. 
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Although proposed quite long ago, axis-parallel DTs are still 

a topic of interest for the academic community [3]–[6]. 

Oblique decision trees are the generalization of axis-

parallel DTs allowing multiple attribute testing in every DT 

node. As a result, oblique DTs are usually much smaller in 

size providing higher classifying accuracy when compared to 

axis-parallel DTs. In oblique DTs, this multivariate testing 

has a form, which is expressed as follows 
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where ai, i = 1, …, n + 1 are called hyperplane coefficients. 

The most important oblique DT induction algorithms are 

CART, proposed in [1], and OC1, which is presented in [7]. 

After the authors in [8] proved that finding the best oblique 

DT is a NP-complete problem, many oblique DT induction 

algorithms use some kind of heuristics in order to find sub-

optimal hyperplane coefficients [9]–[12]. The authors in 

[13] use HereBoy evolutionary algorithm [14] for solving 

this hard oblique DT induction problem. In our research, we 

use this approach as the starting point and modify it in order 

to support the induction of sparse oblique DTs. 

Recently, a huge effort in machine learning community 

has been spent on the compression and size reduction of the 

prediction models, mainly Artificial Neural Networks 

(ANNs) and Convolutional Neural Networks (CNNs) [15]–

[19]. The authors in [20], [21] exploit the benefits of 

minimizing the number of non-zero hyperplane coefficients 

in oblique DTs as well. However, the focus in these papers is 

on the feature/attribute selection and the elimination of 

irrelevant or noisy features/attributes, while the percentage 

of non-zero elements after DT induction is not reported. 

In this paper, we present SDTI algorithm for the induction 

of sparse DTs and SDTA hardware accelerator for sparse 

DTs. The proposed accelerator, intended for an 

implementation in FPGA, is particularly interesting for 

embedded and edge applications, where the storage capacity, 

memory consumption, and bandwidth as well as computing 

capabilities are severely constrained. As a result of the DT 

sparsification and increased number of zero-valued 

hyperplane coefficients, SDTA requires less memory for 

storing DT parameters and provides significant speedup by 

skipping zero-valued product terms in (1) and avoiding 
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unnecessary operations. 

The problem of hardware implementation of DTs has 

been in the focus of the research community for more than 

15 years, resulting in a number of proposed architectures 

[22]–[28]. However, all previously proposed architectures 

are concerned with the acceleration of dense univariate, 

oblique or non-linear DTs, or ensembles composed out of 

dense DTs. To the best of the authors’ knowledge, the 

hardware architecture for the acceleration of sparse DTs, 

presented in this paper, is the first of its kind. 

The rest of the paper is organized as follows. In Section 

II, we present SDTI algorithm that induces sparse DTs by 

forcing high percentage of zero hyperplane coefficients in 

each DT node (1) without decreasing DT accuracy. In 

Section III, we introduce SDTA hardware accelerator for the 

sparse oblique decision trees intended for FPGA 

applications. The proposed hardware accelerator is going to 

benefit from the sparsity in DTs and provide faster 

classifications by computing operations only with non-zero 

operands. In Section IV, we give the experimental results of 

benchmarking our SDTI algorithm and SDTA accelerator 

performance using datasets from the UCI machine learning 

repository. Conclusions are given in Section V. 

II. SPARSE DECISION TREE INDUCTION (SDTI) ALGORITHM 

In this section, we present the application of HereBoy 

evolutionary algorithm for solving the sparse DT building 

problem. In our SDTI algorithm, iteratively for each node in 

DT, one by one hyperplane coefficients from (1) are masked 

and set to zero, while HereBoy algorithm is used to fine tune 

remaining non-masked coefficients in order to change and 

improve the position of the hyperplane. This incremental 

sparsification is repeated until the desired percentage of the 

hyperplane coefficients is set to zero. DT itself is built using 

the classical DT building algorithm with an iterative 

sparsification explained above and performed at each DT 

node. 

In order to evaluate position of the hyperplane, during 

incremental sparsification procedure performed in each DT 

node, the fitness function from [13] is used 
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where ld stands for a binary logarithm, log2(n). The symbols 

in proposed fitness function are:  

 k (number of classes of the classification problem); 

 N (number of training instances associated with the 

current node); 

 Ni (number of training instances that belong to the class 

i (from the total of N instances); 

 N1i (number of instances that belong to the class i, 

placed above the current hyperplane). 

In SDTI implementation, a binary encoding scheme, 

where HereBoy is working with a single chromosome 

similar to [13], is also accepted. Given n attributes from a 

dataset, the chromosome consists of n + 1 values that encode 

coefficients ai from (1), where each coefficient is encoded 

with l bits (typical value for l being 20). Also, like in [13], 

the initial chromosome for the evolutionary algorithm is 

generated in a way that corresponding hyperplane divides 

training set and ensures that at least one instance from the 

training set can be found on both sides of the hyperplane. 

The basis for our SDTI algorithm is HBDT algorithm 

presented in [13]. Similar to HBDT algorithm, in every step, 

we use HereBoy algorithm to find the sub-optimal 

hyperplane, which splits instances from different classes in 

two disjoint regions. This is recursively repeated until the 

current region contains only the instances from a single 

class, which results in creating the leaf and setting the output 

class label to that particular class value. Modification of 

HBDT algorithm, introduced in our SDTI algorithm, is 

related to the incremental sparsification of a hyperplane in 

each node of DT. For each hyperplane obtained by 

evolutionary algorithm, the worst hyperplane coefficient is 

found, with the property that the fitness value calculated 

using (2) minimally decreases after the replacement of that 

coefficient with a zero value. The worst coefficient, when 

found, is masked and set to zero. This procedure is repeated 

with remaining non-masked hyperplane coefficients until the 

desired percentage of sparsification is reached. 
 

Algorithm 1.  Sparse Decision Tree Induction (SDTI) algorithm. 

SDTI (TI, sparsity)    

TI - Set of instances used to build a DT. Each 

instance is a vector of n numerical 

attributes plus the output  class value  

sparsity – sparsification level for each DT node 

(percentage of hyperplane coefficients 

that will be masked and set to zero) 

→ Create node root  

→ If the values of output_class for all 

instances from the TI set belong to the same 

class, make root node a leaf, with output 

label matching the appropriate class value  

→  Otherwise      

 {  

  → Find out the dominating class in the TI 

set, and set the class label for the node 

root to that value  

  →  Repeat 

 { 

 → Using the HereBoy algorithm and 

fitness function (2) find the  optimal 

position of the dividing hyperplane 

  → Find among non - masked hyperplane 

coefficients coefficient hc_worst 

that, when replaced with zero, 

minimally reduces fitness of the 

hyperplane, calculated by fitness 

function (2) 

→ Mask and set to zero hc_worst 

→ Calculate cs (current sparsity) as a 

percentage of zero elements within 

hyperplane coefficients 

} until cs is greater or equal to 

sparsity  

        

  → Using the best hyperplane, divide the TI 

set into two subsets, one containing 

instances located above the hyperplane, 

TIabove and the other, containing instances 

located below the hyperplane, TIbelow.   

  → Create a new branch descending from the 

node root, and create a sub-tree by calling 

the algorithm SDTI(TIabove, sparsity)  

  → Create a new branch descending from the 

node root, and create a sub-tree by calling 

the algorithm SDTI(TIbelow, sparsity)      

 }  

→ Return root 
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Since the iterative sparsification, explained above, is 

repeated for each DT node, the resulting DT should have 

exactly the same percentage of zero values per each DT 

node defined by the sparsity argument. As it is shown in 

section IV, for all 10 benchmarked datasets from the UCI 

repository, we are able to reach the sparsification percentage 

above 60 % (in some cases, even close to 80 %) without the 

loss in accuracy. 

Similar to HBDT algorithm, in order to reach even better 

classification results, pruning of a DT at the end is 

performed. As a result, the size of the DT is decreased as a 

consequence of the redundant nodes removal. For this 

purpose, Prune_DT algorithm, reported in [13], is used. 

III. HARDWARE ACCELERATOR FOR SPARSE DTS 

The architecture for hardware acceleration of sparse 

decision trees, called SDTA (Sparse Decision Tree 

Accelerator), is the evolution of SMpL architecture 

introduced in [24]. 

 
Fig. 1.  Implementing DT using SMpL architecture from [24]: a) Structure 

of typical oblique DT; b) SMpL architecture for hardware implementation 

of DT. 

Let us consider the DT shown in the Fig. 1(a). A 

straightforward approach to the hardware realization would 

be to implement the complete DT in hardware, which is 

originally presented in [22]. However, this approach is not 

the optimal because of the following key property of DTs. 

While the instance is being processed by a DT, only a subset 

of nodes from the complete DT is going to be visited. This is 

because each instance is taking exactly one path from the 

root node to one of the DT leaves. For example, if the 

current input instance will eventually be classified into the 

leaf node L4 from Fig. 1(a), then it will be processed only by 

DT nodes 1, 3 and 4 while nodes 2 and 5 will not be active 

during the current instance processing. Therefore, to classify 

an instance, there is no reason to evaluate every node in the 

DT, but only a selected subset of nodes, one from each DT 

level, at most. SMpL architecture, originally presented in 

[24], that evaluates only visited DT nodes during the 

classification of an instance, is more efficient than the 

architecture in [22] in terms of separate node modules that 

need to be implemented in hardware. For example, Fig. 1(b) 

shows the implementation of the DT from Fig. 1(a) based on 

the SMpL architecture. The SMpL architecture consists of 

three separate modules, called Universal Nodes. They can 

evaluate any DT node located on the same depth within a 

DT. We need three of these modules since the depth of the 

DT from the Fig. 1(a) is three. Operation of the SMpL 

architecture is pipelined, so the instance processing 

throughput is not influenced by the depth of implemented 

DT and is only dependent on the time required to evaluate a 

single DT node, which, in case of SMpL architecture, is 

proportional to the number of attributes, n, in the underlying 

classification problem DT was created to solve. 

As shown in Section II, for any classification problem, 

instead of learning dense oblique DT, in which we would 

have to process all n attributes in every DT node, we can 

learn a sparse oblique DT, which processes only a fraction p 

of n problem attributes in each node. Using the sparse DT 

can be beneficial, particularly when instance processing 

speed is concerned since computation of each sparse DT 

node will be 1/p times faster compared to a dense DT node 

computation time. However, all previously proposed 

architectures for the DT acceleration are not able to benefit 

from this optimization opportunity. 

The SDTA architecture that we are proposing is explicitly 

designed to take an advantage of such an optimization. 

SDTA architecture is closely related to SMpL architecture 

presented in [24], but modified in order to be able to skip all 

unnecessary computations due to the fact that some 

hyperplane coefficients ai becomes equal to zero as a result 

of the sparsification introduced in each DT node.  

The top-level architecture of SDTA sparse DT accelerator 

is presented in Fig. 2. 

 
Fig. 2.  Top-Level Architecture of SDTA Sparse DT accelerator. 

The SDTA sparse DT accelerator consists of M identical 

pipeline stages, where M is the maximum depth of a sparse 

DT that it can accelerate. Each pipeline stage is capable of 

evaluating sparsified tests from all nodes found at the same 

depth in the DT and consists of three major modules: 

attribute memory (module M1), Decision Tree or Pass 

Through (DTPT) node (module M2), and memory for 

storing relevant information about the nodes found at the 

same depth in the DT (module M3). Attribute memories 

from the pipeline stages create a chain, shifting the attribute 

values related to different instances that are being processed 

by the SDTA accelerator through the system. Each attribute 

memory is also connected to the corresponding DTPT node. 

DTPT nodes create a pipeline chain as well. Figure 3 

presents the detailed architecture of one pipeline stage. 

Attribute memory, M1, is used to store attribute values for 

the current instance. Module M2 normally calculates the 

position of the instance relative to the hyperplane associated 

to the selected node while skipping all product terms from 

(1), where coefficients ai are equal to zero, and calculates 

the address of the node from the next level that should be 

visited next. 
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Fig. 3.  Detailed architecture of the SDTA pipeline stage. 

This happens when the current instance has not been 

classified yet, i.e., module M2 operates in the “Decision 

Tree” mode. In case the current instance has already been 

classified by some previous pipeline stage, module M2 

simply transfers the input class value to the next pipeline 

stage operating in the “Pass Through” mode. Module M3 

stores the necessary information about all nodes from the 

same level in DT and consists of two memory units. 

The first memory unit, SHCM, stores sparse hyperplane 

coefficients for all nodes. For each non-zero hyperplane 

coefficient ai, its value together with the attribute address 

increment is stored. The address increment is used to fetch 

the appropriate attribute from M1 memory, which should be 

multiplied with the current hyperplane coefficient. For 

example, if there is a total of 10 problem attributes and in 

the current DT node non-zero hyperplane coefficients are 1st, 

3rd, 6th, 7th and 10th coefficient, their corresponding attribute 

address increment values would be 0, 2, 3, 1, and 3, 

respectively.  

The second memory unit stores the following data for 

each node associated to the current pipeline stage: number of 

non-zero hyperplane coefficients NNZ; base address 

Base_Addr, where the block of non-zero coefficients for the 

current node begins in the SHCM memory; addresses of left 

and right child nodes of the current node, AdrL and AdrR; 

class values for all child nodes that are actually leaves, 

ClassL and ClassR. In case a child node is not a leaf, its 

corresponding class value is set to zero.  

During the evaluation of the DT node, module M2 

calculates (1), but multiplying and adding only 

attribute/hyperplane coefficient product terms, for which the 

hyperplane coefficient ai is different from zero. All product 

terms, where a hyperplane coefficient ai is zero, are skipped 

effectively speeding up the hyperplane computation process. 

Compared to SMpL architecture from [24], the node 

processing time of the SDTA architecture is measured in 

clock cycles, equals: 
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where n is the number of problem attributes and NNZ is the 

number of non-zero hyperplane coefficients, ai.  

Clearly, since NNZ < n, the node processing time of the 

SDTA architecture is always strictly shorter than the node 

processing time of the SMpL architecture. The amount of 

the node processing time reduction depends on the number 

of hyperplane coefficients that is set to zero during the 

process of inducing the sparse DT, using SDTI algorithm. 

The more coefficients are set to zero, i.e., the more DT node 

tests are sparsified, greater DT processing speedup can be 

reached when using SDTA instead of SMpL architecture. 

Since the instance processing throughput of both SMpL 

and SDTA architectures directly depends on the individual 

node processing time, from previous discussion, it is obvious 

that the instance processing throughput of SDTA 

architecture is higher than the one of SMpL architecture.  

The instance processing throughput of SMpL architecture 

is given by a following equation 
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The instance processing throughput of SDTA architecture 

is more difficult to calculate since it depends on the amount 

of sparsity present in DT nodes along the path that the 

current instance is taking through a DT while it is being 

processed. However, the worst case for instance processing 

throughput for SDTA architecture can be calculated as 

follows 
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In the special case, when all hyperplanes from a DT are 

sparsified by removing identical number of coefficients (not 

necessarily located at the same positions), it is easy to 

calculate the instance processing throughput for SDTA 

architecture also 
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In this case, we can easily calculate the expected speedup 

of SDTA over the existing SMpL architecture as follows 
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From equation (7), it can be concluded that the amount of 

the speedup that is reachable when using SDTA architecture 

directly depends on the amount of DT sparsification that is 

achievable during the DT induction phase. 

IV. EXPERIMENTAL RESULTS 

To be able to compare the performance of the SDTI 

algorithm with the HDBT algorithm, the following datasets 

from the UCI machine learning repository [29] are used: 

Glass Identification (gls), Vehicle Silhouettes (veh), Statlog 

Heart Disease (hrts), Hepatitis Domain (hep), Wine 

Recognition (wine), Pima Indians Diabetes (pid), Page 
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Blocks Classification (page), Waveform 40 (wav40), Heart 

Disease Cleveland (hrtc), and Wisconsin Diagnostic Breast 

Cancer (wdbc). 

The instances with missing values are removed from the 

dataset, while all reported results are the averages of the five 

ten-fold cross-validation experiments. This assumes the 

dividing the original dataset D into 10 non-overlapping 

subsets, D1, D2, …, D10, which consist of uniformly selected 

instances from D. During each cross-validation iteration, DT 

is built using the instances from D\Di set and tested on Di set 

(i = 1, ..., 10). By repeating this procedure 5 times, 50 DTs 

are constructed in total for each dataset. Then, average 

classification accuracy is calculated as the percentage of 

instances, which are correctly classified. Additionally, the 

average DT size is expressed as the average number of 

leaves. Both average classification accuracy and average DT 

size are calculated along with the corresponding 95 % 

confidence intervals. Similar to the approach from [13], 

30 % of the instances from the training set are selected 

randomly to build the pruning set since DT pruning 

algorithm requires a separate pruning set. 

Table I presents the results of experiments designed to 

compare the accuracy and the size of dense DTs created 

using HBDT algorithm [13] and sparse DTs with increasing 

sparsification value created using SDTI algorithm proposed 

in this paper. In Table I, for each UCI dataset, results of the 

HBDT algorithm correspond to the results of SDTI 

algorithm with the sparsity value of 0 %, since those two 

algorithms are identical when the sparsification is not 

applied. 

TABLE I. BENCHMARKING RESULTS ON UCI DATASETS. 

Dataset Spars. Attr Tree size Mem Spd Accuracy 

hrts 0 % 13 7.22 ± 0.72 0 % 1.00 75.52±1.74 

hrts 28.57 % 13 8.92 ± 0.78 -9 % 1.40 74.81 ± 2.05 

hrts 50 % 13 11.44 ± 1.2 -16.1 % 2.00 75.93 ± 1.53 

hrts 57.14 % 13 13.02 ± 1.11 -17.2 % 2.33 75.52 ± 1.72 

hrts 71.43 % 13 18.4 ± 1.54 -17.9 % 3.50 75.41 ± 1.63 

pid 0 % 8 30.16 ± 1.49 0 % 1.00 65.17 ± 1.18 

pid 44.44 % 8 55.4 ± 2.82 3.6 % 1.80 65.71 ± 1.09 

pid 55.56 % 8 72.22 ± 3.0 8.6 % 2.25 64.67 ± 1.09 

pid 66.67 % 8 92.58 ± 3.49 4.7 % 3.00 65.18 ± 1.1 

gls 0 % 9 12.72 ± 0.73 0 % 1.00 59.80 ± 2.01 

gls 50 % 9 25.68 ± 1.59 5.3 % 2.00 60.41 ± 1.86 

gls 60 % 9 25.56 ± 1.59 -16.2 % 2.50 60.21 ± 1.79 

gls 70 % 9 26.18 ± 1.73 -35.5 % 3.33 60.10 ± 1.94 

wav40 0 % 40 45.10 ± 1.19 0 % 1.00 80.27 ± 0.41 

wav40 48.78 % 40 51.26 ± 1.89 -41.6 % 1.95 79.55 ± 0.33 

wav40 58.54 % 40 64.10 ± 2.14 -40.7 % 2.41 79.30 ± 0.35 

wav40 68.29 % 40 86.54 ± 3.06 -38.5 % 3.15 79.30 ± 0.39 

wine 0 % 13 3.6 ± 0.25 0 % 1.00 89.90 ± 1.49 

wine 35.71 % 13 5.42 ± 0.56 9.3 % 1.56 90.31 ± 1.58 

wine 50 % 13 5.7 ± 0.66 -9.6 % 2.00 90.45 ± 1.48 

wine 57.14 % 13 6.84 ± 0.72 -3.7 % 2.33 89.42 ± 1.68 

wine 64.29 % 13 7.76 ± 0.92 -7.1 % 2.80 90.13 ± 1.65 

hep 0 % 19 2.32 ± 0.35 0 % 1.00 81.12 ± 2.31 

hep 50 % 19 2.78 ± 0.46 -32.6 % 2.00 80.38 ± 2.4 

hep 60 % 19 3.18 ± 0.47 -33.9 % 2.50 81.25 ± 2.84 

hep 70 % 19 3.70 ± 0.55 -38.6 % 3.33 80.25 ± 2.51 

veh 0 % 18 31.06 ± 1.09 0 % 1.00 67.66 ± 1.12 

veh 47.37 % 18 55.40 ± 2.56 -4.8 % 1.90 68.55 ± 1.03 

veh 57.89 % 18 59.56 ± 3.22 -18 % 2.38 67.27 ± 1.12 

veh 68.42 % 18 60.50 ± 2.78 -37.5 % 3.17 67.16 ± 0.99 

page 0 % 10 24.86 ± 1.24 0 % 1.00 96.75 ± 0.15 

page 36.36 % 10 37.86 ± 2.4 -1.7 % 1.57 96.83 ± 0.15 

page 45.45 % 10 41.74 ± 2.63 -6.9 % 1.83 96.84 ± 0.15 

page 54.55 % 10 53.20 ± 2.7 -0.6 % 2.20 96.71 ± 0.17 

page 63.64 % 10 67.76 ± 3.26 1.7 % 2.75 96.52 ± 0.15 

wdbc 0 % 30 6.04 ± 0.63 0 % 1.00 92.78 ± 0.76 

wdbc 48.39 % 30 6.82 ± 0.69 -40.4 % 1.94 93.15 ± 0.76 

wdbc 58.06 % 30 7.96 ± 0.83 -42.1 % 2.38 92.29 ± 0.66 

wdbc 67.74 % 30 10.00 ± 0.98 -42.4 % 3.10 92.15 ± 0.7 

hrtc 0 % 13 14.96 ± 1.24 0 % 1.00 51.50 ± 1.65 

hrtc 50 % 13 17.42 ± 1.22 -41.2 % 2.00 50.84 ± 1.55 

hrtc 57.14 % 13 19.10 ± 1.27 -44.4 % 2.33 52.06 ± 2.15 

hrtc 64.29 % 13 20.60 ± 1.41 -49.9 % 2.80 52.10 ± 1.93 

hrtc 78.57 % 13 26.80 ± 2.12 -60.4 % 4.67 52.27 ± 1.59 
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The SDTA architecture is designed and implemented 

using Xilinx Vivado Design Suite using default parameters 

for synthesis and implementation, while the experimental 

measurements are performed on Zynq Ultrascale+ MPSoC 

ZCU102 Evaluation Board [30]. 

The first column of the Table I represents UCI dataset. 

For each dataset, multiple sparsification percentages are 

reported in the second column. The given percentage refers 

to the percentage of the zero hyperplane coefficients in each 

DT node after running the SDTI algorithm. The fact that all 

nodes use the same percentage of sparsification is 

convenient for pipelining in SDTA hardware accelerator due 

to the fact that each node requires exactly the same number 

of computations, maximizing throughput. The third column 

shows the number of attributes for each dataset, which 

directly determines the maximum number of the hyperplane 

coefficients in each DT node: without the sparsification, a 

number of hyperplane coefficients in each DT node equal to 

the number of attributes plus one according to (1). The 

fourth column presents the average DT size, which is equal 

to the average number of leaves in the DT. Please note that 

the DT size is increased as a consequence of the 

sparsification in DT nodes. The DT size is larger as DTs 

become sparser.  

The fifth column, Mem, shows the relative gain in terms 

of the memory required to store the complete DT calculated 

as the average number of internal nodes multiplied by the 

number of hyperplane coefficients. The negative percentages 

stand for the decreased memory requirements while positive 

represent the opposite. It is interesting to notice that, in some 

cases, even with high percentages of sparsification, there is 

no reduction of memory requirements for storing DTs, which 

is a consequence of larger DTs after the sparsification. 

However, in most cases of the test, memory requirements are 

decreased after the sparsification. The column Spd presents 

the speedup in the classification throughput expressed with 

respect to the DT with the sparsification 0 %. This is an 

effective comparison between the achievable instance 

classification throughput when DT is accelerated by SMpL 

dense DT accelerator presented in [24] and the SDTA sparse 

DT accelerator presented in this paper. The speedup is 

calculated using the percentage of the sparsification 

presented in the second column of the Table I according to 

(7). Higher the sparsification percentage results in a reduced 

number of the required computations in each pipeline stage, 

and higher is the speedup of the SDTA architecture 

compared to the SMpL architecture. 

Finally, the last column of the Table I shows the averaged 

accuracies of the DTs built for different sparsification 

percentages and different UCI datasets. In the conducted 

tests, only sparsifications resulting in accuracy drop lower 

than 1 % are accepted compared to the accuracy of a non-

sparse DT for the same dataset. The highlighted rows mark 

the highest sparsification percentages achieved with the 

acceptable accuracy drop for each given dataset. 

As it can be observed from the Table I, it is possible to 

achieve the significant sparsification DT levels for each of 

used UCI datasets without degrading the original, dense DT 

accuracy. For all presented UCI datasets, the sparsification 

levels greater than 60 % can be achieved. For some of them, 

the sparsification levels reach the value of almost 80 %. 

As for the DT storage memory requirements, it can be 

observed that for most of UCI datasets used a significant 

reduction in memory size can be achieved compared to the 

memory size required to store a dense DT. The amount of 

the memory size reduction reaches up to 60 %. For some 

datasets and sparsification levels, the output DTs are 

significantly deeper when compared to the dense DTs 

resulting in slightly increased requirements for the storing 

hyperplane coefficients, even after eliminating majority of 

them during the SDTI algorithm run. 

However, if we analyse the throughput speedup from the 

Table I, it is clear that for all datasets used the DT 

sparsification is helping in improving the instance 

classification throughput. The instance processing speedup, 

when using sparse DTs over traditional dense DTs, ranges 

from 2.75 up to 4.67 times, which is a significant 

improvement. 

V. CONCLUSIONS 

In this paper, a novel algorithm for inducing sparse DTs, 

SDTI, and hardware accelerator architecture for accelerating 

sparse DTs, SDTA, are presented. Using sparse DTs over 

standard dense oblique DTs can be beneficial, since sparse 

DTs usually require less memory resources for storing their 

parameters and can be processed faster when compared to 

dense oblique DTs. 

To validate the performance of SDTI, sparse DT building 

algorithm and SDTA, sparse DT hardware accelerator, a set 

of experiments using standard UCI machine learning 

repository datasets are used. Results of experiments seem to 

indicate that sparse DTs usually require significantly less 

memory resources, up to 60.4 % less storage capacity 

compared to dense oblique DTs, without any loss in DT 

accuracy. 

Speedup experiments also indicate that working with the 

sparse DT hardware accelerator results in the instance 

processing speedup of up to 4.67 times compared to 

previously proposed dense DT hardware accelerator. 
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