
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 4, 2019

1Abstract—Random numbers constitute the most important

part of many applications and have a vital importance in the

security of these applications, especially in cryptography.

Therefore, there is a need for secure random numbers to

provide their security. This study is concerned with the

development of a secure and efficient random number

generator that is primarily intended for cryptographic

applications. The generator consists of two subsystems. The

first is algorithmic structure, Keccak, which is the latest

standard for hash functions. The structure provides to generate

secure random numbers. The second is additional input that

generates with ring oscillators that are implemented on the

FPGA. The additional inputs prevent reproduction and

prediction of the subsequent random numbers. It is shown that

the proposed generator is satisfies security requirements for

cryptographic applications. In addition, NIST 800-22 test suite

and autocorrelation test are used to demonstrate that

generated random numbers have no statistical weaknesses and

relationship among itself, respectively. Successful results from

these tests show that generated numbers have no statistical

weaknesses. Moreover, important advantage of the proposed

generator is that it is more efficient than existing RNGs in the

literature.

 Index Terms—Information security; Keccak algorithm;

Random number generation; Ring oscillator.

I. INTRODUCTION

Random numbers are used in many different areas, such

as quantum mechanics, gambling games, statistics, and

cryptography. These numbers are the most important

parameters that affects the security of the whole

applications, especially in cryptography [1], [2]. For

example, any weakness in key values, initialization vectors

or seed values threat application’s security exactly.

A lot of random number generators are proposed in

literature [1]. However, these generators are generally

divided into three groups, such as True Random Number

Generators (TRNGs), Pseudo Random Number Generators

(PRNGs), and Hybrid Random Number Generators

(HRNGs) [1].

 The natural disorder and unpredictable physical systems

can be utilized to generate true random numbers [3]. This

disorder is called entropy, typical sources of which include

temperature, jitter, mechanical systems, and a computer

Manuscript received 28 September, 2018; accepted 3 April, 2019.

user’s individual way of moving a mouse [4]–[7]. The

general structure of these generators is shown in Fig. 1. The

analogue signals from entropy sources are converted to

digital data and sampled. In order to overcome statistical

weaknesses or environmental problems, approaches, such as

post-processing algorithms, are widely used [3].

Entropy

Source

Digital

Converter

Analogue Digital
Random

NumbersPost

Processing

Pure

Random

Numbers

Fig. 1. TRNG general structure.

Pseudo random numbers are created using algorithmic

structures and seed values. In PRNGs, algorithmic structure

is known exactly and random numbers are generated

according to the selected seed value. Figure 2 shows the

general structure of a these generators. The output function

is used to produce a random number and the state function is

used to update the internal state value. If the same seed

value is used in these generators, the same random number

sequences are produced [4]. If seed values or intermediate

values are known, it will be practically feasible to compute

preceding random numbers.

Sn

ɸH

ΨH

S0(Seed)

Internal

State

Sn+1:=ɸH (sn,cn)

Random Number

r0:=ΨH(sn,cn)

State

Function PRNG

Fig. 2. PRNG general structure.

HRNGs consist of algorithmic structure and additional

inputs. Encryption algorithms, hash functions, and equations

can be used as the algorithmic structure. Additional input is

composed of true random numbers, which are generated

from entropy sources, such as chaotic systems or ring

oscillators (ROs). Additional inputs to these generators

prevent the prediction and regeneration of random number

sequences and can be applied to one or both of the output

and state functions shown in Fig. 2.

The security requirements given in Table I must be met in

Secure and Efficient Hybrid Random Number

Generator Based on Sponge Constructions for

Cryptographic Applications

Selman Yakut, Taner Tuncer, Ahmet Bedri Ozer

Department of Computer Engineering, Engineering Faculty, Firat University,

Elazig, Turkey

syakut@firat.edu.tr

http://dx.doi.org/10.5755/j01.eie.25.4.23969

40

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 4, 2019

order to guarantee that the random number sequences

provide appropriate levels of protection for cryptographic

applications [1]. This ensures that these numbers have no

statistical weaknesses. That is to say, it should be exclude

replay attacks or correlation based attacks and passed from

statistical tests. It also cannot be reproduced or predicted.

TABLE I. SECURITY REQUIREMENTS FOR RNGS IN

CRYPTOGRAPHIC APPLICATIONS.

R1:
The random numbers should not show any statistical

weaknesses

R2:

The knowledge of subsequences of random numbers shall not

allow to compute predecessors or successors practically or to

guess them with no negligibly larger probability than without
knowledge of these subsequences

R3:

It shall not be practically feasible to compute preceding random

numbers from the internal state or to guess them with no

negligibly larger probability than without knowledge of the
internal state

R4:

It shall not be practically feasible to compute future random

numbers from the internal state or to guess them with no
negligibly larger probability than without knowledge of the

internal state

The generation of secure and efficient random numbers is

an important consideration in many areas. This is

particularly true in the field of cryptographic applications

[2]. Random numbers used in these applications should not

contain reproducible, unpredictable, and statistical

weaknesses [1]. However, the use of a TRNG for this

purpose introduces a number of problems, which include

low speed, high cost, hardware dependency, and statistical

weaknesses. While various approaches, such as post

processing algorithms, are proposed to overcome these

problems, these methods can lead to large data loss because

they ignore some data, which includes statistical

weaknesses. Furthermore, the PRNG contains periodic

repetition and the output space cannot exceed the seed

space. Generators that do not have an entropy source are not

appropriate for cryptographic applications, so that they

cannot meet the R4 security requirement [4]. A HRNG can

be used to overcome these difficulties and to take the

advantage of these generators [3]. These generators consist

of algorithmic method and additional input. Additional

inputs are also taken from TRNGs, which prevent random

numbers from being reproduced and guessed. The use of

strong cryptographic constructs as an algorithmic method,

therefore, guarantees the security of the generator. However,

many of the proposed HRNGs cause data loss and work

with low efficiency.

Numerous RNGs intended for cryptographic applications

have been documented [1]. These methods use physical

phenomena, including electrical noise, and chaotic systems

as the entropy source [1]–[4]. Random numbers from these

sources are then used in conjunction with strong algorithms

to provide the security [1]. These generators use different

algorithms, especially cryptographic constructs, such as

encryption or hashing algorithms, to guarantee security [8],

[9]. Avaroğlu, et al. proposes a hybrid structure using the

Advanced Encryption Standard (AES) algorithm operating

in conjunction with a chaotic additional input, and this work

proves to be satisfactory for cryptographic applications [9].

Thamrin, et al. uses an optical mechanism and linear

feedback recording to generate hybrid random numbers,

which satisfy the requirements of the appropriate statistical

tests [10]. Grøstl generate secure random numbers using the

hash function and additional chaotic inputs. Numbers

produced with this generator are found to meet the statistical

tests and security requirements successfully [11]. Avaroğlu,

et al. suggests the use of a RO and chaotic functions to

generate random numbers using a hybrid RNG, and the

resulting output from this generator is again successfully

verified [12]. Yuan, et al. proposes a structure consisting of

digital-analogue constructs, using electronic elements with

chaotic structures, and the data produced by this work are

once more validated [13]. Avaroğlu proposes a generator

based on chaotic structures and shows that the statistical

requirements are satisfied [14]. Łoza, et al. generate random

numbers using the RO and Sha-256 algorithms and proves

that they are robust [15]. Magfirawaty and his colleagues

generates random numbers using chaotic structures and the

hash function, and, once more, these are statistically verified

[16]. Wang and Li generate random numbers using an

approach based on RO and XOR operations, and

demonstrates successful results from statistical tests [17].

Liu, et al. propose RO-based approach to generate true

random numbers and show analysis of these numbers.

Buchovecká, et al. have produce and analyse real random

numbers with a RO-based approach [18], [19]. Chen, et. al.

produce and analyse these numbers based on hash functions

[20]. Kote, et al. propose TRNG that is based on the

electronic circuit. In the study, the proposed generator is

successful according to the analyses results of produced

number [21]. Wieczorek and Gołofit propose TRNG based

on two stages of randomness. The first stage is based on a

chaotic circuit and the second stage is based on metastability

of a flip-flop that is stimulated by chaotic initial conditions.

The proposed generator shows successful results in the

randomness tests [22]. Wieczorek presents a generator that

utilizes both the ring oscillations and metastability

phenomena. The proposed generator is successful in the

randomness tests [23]. Wieczorek proposes and analyses

TRNG based on nearly-metastable operation of groups of

FPGA flip-flops and an adaptive feedback loop. Numbers

that produce from the generator are successful in the

randomness tests [24]. Wieczorek and Gołofit present a

dual-metastability time-competitive generator. The

generator is analysed both numerically and theoretically and

the statistical test results of the presented generator are

successful [25]. Wieczorek presented a dual-metastability

time-competitive generator. Empirical and statistical test

results of random number that take from the generator are

successful [26].

During this study, a secure and efficient HRNG is

developed for cryptographic applications. In this generator,

Keccak hash algorithm is used as an algorithmic method and

RO is used in generating additional input. In order to make

the developed generator more efficient, Keccak algorithm is

rearranged and used. The structure of Keccak algorithm is

reorganized, so that for each operation of the algorithm, a

pure true number of 512 bits is taken and 1600-bit output

data is generated after 24 rounds of processing by the kernel

function. From this data, 1024-bit true random numbers and

1088-bit output data for the next iteration are produced. Five

ROs, each with 3 inverter gates, are used to generate

additional inputs, and these are designed in an FPGA

41

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 4, 2019

environment. Thus, problems arising from the fact that these

numbers are produced outside are eliminated as well as real

random numbers that are secure for additional input.

Random numbers generated using this method satisfy the

security requirements for cryptographic applications. The

NIST 800-22 test suite and the autocorrelation test show that

this procedure does not introduce any statistical weaknesses.

The most important advantage of the proposed generator is

that the pure real random number is not lost and the

generator is 2 times more efficient because of difficulties

and high cost to generate true random numbers to make data

loss more important.

The work undertaken by this study can be summarized as

follows:

1. A model based on Keccak, the latest standard of

abstract algorithms, is used;

2. Weaknesses arising from the generator or

environmental factors are eliminated without data loss

and without the use of any post-processing algorithm;

3. In order to make these numbers more secure, additional

inputs are generated on a circuit that were designed on the

FPGA;

4. The resulting RNG is found to meet the security

requirements for cryptographic use;

5. Successful results are obtained from statistical tests

on the output from the generator.

6. The proposed generator takes 512 bits of raw

truerandom numbers as an additional input and generates

a true random number of 1024 bits.

This paper is organized as follows. In Section II, the

structure of the proposed generator is considered, both the

structure of the hash algorithm, which is an algorithmic part

of the generator, and a true random number generator that

forms additional inputs are examined. In Section III,

security analysis and statistical analyses of the proposed

generator are carried out. In Section IV, the results of the

developed generator are discussed.

II. THE PROPOSED HYBRID GENERATOR

During this study, a secure and efficient HRNG is

designed for cryptographic applications. This generator

consists of two basic subsystems. The first of these

produced are pure true random numbers using a RO. The

second subsystem uses an algorithmic function that allowes

secure random numbers to be generated from the pure true

random numbers. Keccak hash algorithm is used for this

purpose.

The general structure of the proposed RNG is given in

Fig. 3. In the generator 512 bits of pure true random number

data is used as an additional input. In the first operation of

this generator, the additional input (S0) is given to Keccak

function, while the latter is given to the additional input state

function. In the first operation of the generator, 512 bits of

pure TRNG data is taken as an input by the algorithmic

section and subjected to algorithmic operations, and a 1600-

bit hash value is generated. In these algorithmic operations,

a 1600-bit input vector is taken and a 1600-bit output vector

is generated after executing 24 rounds of its operations. The

generated 1600-bit hash data forms the input data of the

output function. Using the output function, 1024-bit real

random number and 1088-bit intermediate input data are

generated from this hash data. This new input vector of

1600-bit is then generated for the algorithmic partition using

1088-bit interleaved input data received by the transition

function and the 512-bit pure TRNG data forms the

additional input. In subsequent runs of the generator, this

1600-bit input vector is processed by the algorithm and then

output to the function. Thus, in each run of the developed

generator, 1024-bit safe real random numbers are generated.

Algorithmic

Section

(Keccak)

Output

Function

State Function

Sn+1:= ϕ (Sn)

1600 bits

Additional Input

(S0) (512 bits)

Additional Input

 (512 bits)

Intermediate

Input Data

1088 bits

Random

Numbers

(1024 bits)

1600

bits

Fig. 3. General structure of the generator.

The output function in the proposed generator is arranged

as shown in Fig. 4. In the figure, relation of the processed

and generated data, which is operated by the generator, is

shown. The 1600-bit output vector received by this function

is divided into three parts: Rn1, Rn2, and Cn. Rn1is a data

block taken from TRNG, Rn2 is a data block taken from

previous round, and Cn is a security parameter for Keccak.

n-bit TRNG data is received and 2n-bit TRNG is produced

thanks to this structure. In each run of the output function,

random numbers are generated using pieces of 512-bit Rn1

and Rn2, each. Using 512 bits of Rn2 and 576 bits of Cn,

1088 bits of intermediate input data are generated.

Rn1

512 bit

Rn2

512 bit

Cn

576 bit

Generated Random

Numbers

Generated Intermediate

Input Data

Fig. 4. Data processed by the generator at each step.

The additional inputs, which constitute an important part

of the proposed generator, are produced using a RO-based

approach, in which 5 ROs, each containing 3 inverter gates,

are used. This technique is implemented in FPGA to

produce pure true random numbers, which are used to create

additional inputs. Details of this pure data generator are

given in Section IIA. In Section IIB, Keccak algorithm,

which constitutes the algorithmic part of the proposed

generator, is given.

A. The Method of Obtaining the Additional Input

The irregularities and unpredictability of entropy sources

are used to produce true random numbers. Although there

are a lot of entropy sources, electrical noise is commonly

used because of providing more reliable methods [4].

Random numbers generated using ROs have a widespread

use and this technique can be achieved using odd number of

NOT gates. Each of these gates has a different delay, which

is expressed as jitter, and these delays are used as a source

of entropy. This approach utilizes multiple ring oscillators in

combination with the XOR gate followed by sampling with

42

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 4, 2019

a flip-flop. It is desirable that the numbers of ring oscillators

and inverter gates are minimized in order to consume much

less power. Numerous methods based on this approach are

proposed, which can be used in conjunction with strong

cryptographic constructs to design safe RNGs [1], [12]. The

proposed generator needs true random numbers in order to

provide additional inputs. For this purpose, a true RNG with

a RO base is implemented. To achieve low power

consumption, the number of ROs and the number of

inverters per RO are 5 and 3, respectively. Figure 5 provides

details of the RO design used.

Each RO generated logic values are of 0 at the beginning

of the process, because the data0 input is logic 1. When an

external signal (logic 1) is applied from the physical

medium to the selection input of the multiplexer (mux), the

input value of data1 is observed at the output of the mux.

Thus, non-periodic and random 1 and 0 values are

continuously observed at the output of the odd-numbered

inverter. Each RO output is sampled with D-type flip-flops

and subjected to XOR processing. Random numbers are

generated by resampling the XOR output as shown in Fig.

5(b).

RO1

RO2

RO5
...

fs

fs

fs

fs

fb

Output

fi

(a)

(b)

Fig. 5. Number generator using 3 inverters and 5 ROs (a); RO Design

realized in altera’s quartus software (b).

A backup unit is designed to use the numbers generated

by this structure as additional inputs. Figure 6 shows how

these numbers are recorded. The phase-locked loop

equipment is used for synchronous operation of the RO and

memory units and has a frequency of c0 = 50 MHz. A

counter is used to write each generated number to memory

addresses and specify the address of the memory handler.

The Wren entry is set so that the generated number could be

written to memory. Quartus software allows the numbers

stored in memory elements to be written to a file in text

format, so that they could be easily accessible.

Figure 7 contains a sample of the numbers obtained from

the system in real time, which are recorded in the memory

unit.

Fig. 5. Memory design for recording numbers.

Fig. 6. Numbers generated in real time and recorded in the memory unit.

An oscilloscope image for a fraction of the actual random

numbers actually obtained from the designed system is

given in Fig. 8.

Fig. 7. Oscilloscope pattern of true random numbers actually generated.

B. Algorithmic Part of the Proposed Generator: Keccak

The hash algorithms receive an input message of any

length and generate an output value, or hash of a certain

length that is specific to that message. These algorithms

form the most important part of many cryptographic

applications, such as digital signatures, key generation, and

pseudorandom number generation.

Security properties of hash algorithms are critical for the

security of the application for which they are used. The most

important security consideration for these algorithms is to

ensure that they are preimage resistant. In other words, it

should not be possible to construct the original message

from the hash value. Another important factor is that the

43

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 4, 2019

same output value should not be generated for two different

messages. This is expressed as collision resistance.

Keccak that is the latest standard for hash algorithms can

take an input sequence of any length and generate hash that

is various lengths since it is based on sponge constructions

[27], [28]. The general structure of Keccak is given in Fig.

9. The input and intermediate vectors of Keccak consist of

two parameters r and c, where, r indicates the processed

message size per round, c is a parameter used for security, f

is the kernel function, n is the number of blocks, bi is the

processed block size, and hi is a produced hash value per

round.

The algorithm is divided into two parts during this

process. The first of these is dedicated to receiving the input

message blocks, while the second is responsible for

generating the hash values.

r

f

c

r

f

c

 r

f

c

r

f

c

r

f

c

......

absorbing squeezing
b1 b2 bn h1 h2

Fig. 9. General structure of Keccak algorithm.

The first part of the algorithm consists of 3 steps:

1. The initial vector is firstly set to zero. The input

message is then divided into blocks of equal length and

can be added to the last block if necessary. 10 ... 1 bit

arrays are inserted instead of the missing bits;

2. Starting with the first block, all blocks are then

XOR’ed with the first r bits of the input vector. A new r-

bit fragment of the resulting input vector is generated

from this process;

3. The input vector is modified by the function f. After

all input blocks are processed, the first part of the function

is completed.

The second part of the function is hash producing. Upon

completion of the first part of Keccak algorithm, the first r

bit of the output vector is taken and, if necessary, the output

vector is again processed using the f function. This process

continues until the hash value is generated at the desired

length.

One of the most significant features of these structures is

that they are flexible, allowing the size of the message

block, the number of operations, and the size of the input

and intermediate vectors to change. The vector expresses the

limited range defined by the parameter v = 5 × 5 × w and w

= 2l, l = 1, 2, ... 6. Therefore, the size of the input and

intermediate vectors can take on 25, 50, ...,1600 bits. These

vectors are converted to a three-dimensional array, A, before

being processed by the kernel function. The size of A is

taken as A = 5 × 5 × w. The algorithm performs subsequent

operations on this array.

The number of cycles of the kernel function changes

according to the vector size in Keccak hash algorithm. This

change is expressed as 12 + 2 × l. For example, when the

1600-bit input vector is considered, the value of l becomes 6

and the expression of 12 + 2 × l provides 24 rounds. For

security reasons, it is desirable that the vector size should be

large [23].

The most basic part of Keccak is the f function, which

forms the crucial part of the sponge construction. The

function comprises 5 basic steps, which are being composed

of operations, such as AND, OR, and XOR. The steps are

represented by the symbols θ, ρ, π, χ, and ι. They are

performed in this order during each round [28]. At each

operation step, A is taken as an input and A' is generated

after the operations are completed. In the next round, these

operations are repeated [28].

III. ANALYSIS OF THE PROPOSED GENERATOR

The random numbers used in cryptographic applications

have a vital importance on the security of the whole

application. Therefore, the security of random numbers used

in these applications should be assured. For the security of

random number generators, they must not contain statistical

weaknesses and the security requirements given for these

generators must be met. Furthermore, the security of the

algorithmic method and the additional inputs used in the

generator must be assured.

In the proposed generator, the algorithmic part is created

by Keccak, which is the last standard for cryptographic hash

algorithms, because it is faster and more efficient than other

candidate algorithms [29]. The security of this algorithm

guarantees the security of the generator since it constitutes

the main structure of the generator. The use of 24 bit and

1600-bit vectors prevents the possibility of attacks, which

aim to decrease the number of rounds or input vectors.

Possible weaknesses that may exist in this algorithm have

already been determined during the security verification of

the generator and no further analysis is considered necessary

in this respect.

RNGs used in cryptographic applications must meet

specific security requirements in order to be considered

secure for use. These requirements, R1 to R4, were

mentioned earlier in this paper. Strong cryptographic

constructs, such as Keccak, satisfy the security requirements

of R1 to R3. Moreover, when the security parameters of

hash algorithms are taken into consideration, they are ideal

structures for use as algorithmic methods. Using these

constructions, secure and efficient random number

generators can be designed. The use of this algorithm

ensures it is not possible to calculate the preceding and

subsequent numerical values, even if intermediate values are

obtained. The use of pure true random numbers as an

additional input also enables the security requirements of R4

to be satisfied, and it is therefore considered impossible to

determine the random numbers, which are generated.

Potential weaknesses that might result from

environmental factors are prevented since additional inputs

are generated by RO that implement on FPGA. Moreover,

the power consumption is reduced by minimizing the

number of RO and inverter gates used. Successful results are

obtained despite the fact that the additional inputs are used

without any post-processing.

One of the most important security considerations for

RNGs is that they do not contain any statistical weaknesses,

which make them susceptible to various attacks. Therefore,

it should be assured that the numbers used in cryptographic

44

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 4, 2019

applications do not contain statistical weaknesses. A lot of

tests are used to statistically analyse the output from RNGs

and these contain similar procedures and features. The test

suite recommended by NIST and autocorrelation method are

most commonly used and accepted.

The NIST test suite comprises 14 different procedures

and examines the generator and resulting random number

sequence for statistical weaknesses [30]. Procedures used in

this determination phase are described in the literature [30].

In Table II, the test results for the pure real random numbers

and the numbers generated by the proposed method are

given. Successful results are obtained when these tests have

are conducted on the generator developed during this study

(Table III).

TABLE II. STATISTICAL TEST RESULTS OF THE PROPOSED HRNG

AND THE RESULTS OF WITHOUT THE GENERATOR.

Raw True Random

Numbers

Numbers of

Proposed Generator

Tests
P-

Value
Result P-Value Result

Frequency Test - Unsuccess 0.4968 Success

Block-frequency - Unsuccess 0.5023 Success

Runs - Unsuccess 0.6234 Success

Test for the Longest

Run of Ones in a
Block

- Unsuccess 0.2867 Success

Binary Matrix Rank 0.4247 Success 0.6403 Success

Discrete Fourier
Transform

- Unsuccess 0.0182 Success

Non-overlapping

Template Matching
- Unsuccess 0.7173 Success

Overlapping

Template Matching
0.0215 Success 0.6038 Success

Maurer’s Universal

Statistical
- Unsuccess 0.7332 Success

Linear Complexity 0.6155 Success 0.6051 Success

Serial Test1 - Unsuccess 0.2557 Success

Serial Test2 0.8790 Success 0.4979 Success

Approximate

Entropy
- Unsuccess 0.1605 Success

Cumulative Sums - Unsuccess 0.5487 Success

These tests are used to show that the random number

sequences generated by autocorrelation are self-contained.

The corresponding mathematical description is given below

1

()0
() (),

n d

n n di
A d b b

 (1)

where denotes the XOR operation, n denotes size, and d

denotes the integer value in the range 0 ≤ d ≤ n / 2. The

relationship between zero and one is given as follows

 5

2 () () / 2

()

A d n d
X

n d

 (2)

The fact that the test results from this study were in the

range | X5 | <1.6449 shows that the required criteria are

satisfied. Successful results of the autocorrelation test for the

proposed generator are given in Table III.

The generator designed during this study provides an

important advantage in that it increases efficiency because it

takes as input n bits data and produce 2 × n-bits true random

numbers. Most existing methods incur data loss due to the

fact that they take as input n-bits data and produce less than

n-bits true random numbers, and this is an important

consideration when taking into account the difficulty and

cost of producing pure random numbers. The method

developed during this study avoids this while ensuring that

the efficiency is doubled in comparison to other techniques.

The efficiency of this generator is seen to be the most

important advantage when compared to other methods or the

post processing. In Table IV, similar random number

generators suggested in the literature, used algorithmic

method and additional inputs, used statistical tests and

performance are given. In the last column, the efficiency of

these methods was examined. In the Table IV, it is seen that

the proposed generator is much more efficient than the other

generators.

TABLE III. AUTOCORRELATION TEST RESULTS.

D value X5 value Result

 8 -0.3440 Success

10 -0.1250 Success

13 0.1172 Success

20 0.9761 Success

25 0.8591 Success

100 -0.3441 Success

500 -0.7227 Success

1000 0.5875 Success

TABLE IV. SUMMARY OF PROPOSED NUMBER GENERATORS IN

THE LITERATURE.

Similar

Studies

Additional

Input

Algorithmi

c Method
Statistical Tests

Produ-

ctivity,

%

[9] Chaotic Input AES NIST 800-22 100

[10] Optical LFSR NIST 800-22 100

[11] Chaotic Input Grøstl NIST 800-22 100

[12] RO
Chaotic

Functions
NIST 800-22 100

[13]
Electronic

Components

Chaotic

Functions
NIST 800-22 100

[14] Chaotic Input
Chaotic

Functions

Autocorrelation

NIST 800-22
50

[15] RO Sha-256 NIST 800-22 50

[16] Chaotic Input Sha-256
Autocorrelation

NIST 800-22
50

[17] RO
XOR

Process
NIST 800-22 50

[18] RO
XOR

Process
NIST 800-22 50

[19] RO - NIST 800-22 25

[20] RO Sha-256 NIST 800-22 50

[21]
Electronic

Components
- NIST 800-22 100

[22] Chaotic Input
Electronic

Component

NIST 800-22

Diehard
100

[23]
RO

Metastability
-

NIST 800-22

Diehard
100

[24]
Electronic

Component

Adaptive

Feedback

Loop

NIST 800-22

Diehard
100

[25]

Electronic

Component

Metastability

-
NIST 800-22

Diehard
100

[26]
Electronic

Component
-

NIST 800-22

Diehard
100

Proposed

Method
RO Keccak

Autocorrelation

NIST 800-22
200

45

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 4, 2019

IV. CONCLUSIONS

Random numbers are used in many areas, such as game

theory, statistics, and cryptography. They are vital in

influencing the security of these applications. In

cryptography, secure random numbers must be used in order

to guarantee security. During this study, a HRNG is

designed, which is secure and efficient and can be used in

many areas, especially cryptography. The generator consists

of two parts: the algorithmic method and the additional

input. Keccak hash algorithm, which is the latest standard, is

rearranged and additional inputs were obtained through a

RO-based approach. Additional input prevents the

reproduction and prediction of random numbers. Each run of

the generator is given an additional 512-bit pure true random

number input and returns a 1024-bit true random number.

Proposed generator meets the security requirements for

cryptographic applications. The successful results from the

NIST and autocorrelation tests show that it does not contain

any statistical weaknesses. It also provides significant

advantages in that it avoids data loss, which is a major

concern when considering the difficulties and cost of

random number production and is twice as efficient as

existing RNGs in the literature.

REFERENCES

[1] Ç. Koç, Cryptographic Engineering. Springer, New York, 2009. DOI:
10.1007/978-0-387-71817-0.

[2] K. Wold, “Security properties of a class of true random number

generators in programmable logic”, PhD thesis (philosophy), Gjøvik
University College in Information Security, 2011.

[3] A. J. Menezes, P.C. van Oorschot, S. A. Vanstone, Handbook of

Applied Cryptography. 1st edn. CRC Press, Boca Raton 1996.
[4] E. Avaroğlu “Hardware Based Realization Of Random Number

Generator”, Phd Thesis, Electrical and Electronics Engineering Fırat,

University, 2014.
[5] B. Sunar, W. J. Martin, and D. R. Stinson, “A provably secure true

random number generator with built-in tolerance to active attacks,

IEEE Transactions on Computers, vol. 58, no. 1, pp. 109–119, 2007.
DOI: 10.1109/TC.2007.250627.

[6] İ. Koyuncu, A. T. Ozcerit, and İ. Pehlivan, “Implementation of

FPGA-based real time novel chaotic oscillator”, Nonlinear Dynamics,
vol. 77, no. 1–2, pp. 49–59, 2014. DOI: 10.1007/s11071-014-1272-x.

[7] S. Robson, B. Leung, and G. Gong, “Truly random number generator

based on a ring oscillator utilizing last passage time, IEEE

Transactıons On Cırcuıts And Systems, vol. 61, no. 12, pp. 937–941,

2014. DOI: 10.1109/TCSII.2014.2362715.

[8] R.N Akram, “Pseudorandom number generation in smart cards an
implementation performance and randomness analysis”, in Proc. 5th

International Conference on New Technologies, Mobility and Security

(NTMS), pp. 1–7, 2012. DOI: 10.1109/NTMS.2012.6208760.
[9] E. Avaroğlu, İ. Koyuncu, A. B. Özer, and M. Türk, “A Hybrid

pseudo-random number generator for cryptographic systems”,

Nonlinear Dynamics, vol. 82, pp. 239–248, 2015. DOI:
10.1007/s11071-015-2152-8.

[10] N. M. Thamrin, G. Witjaksono, A. Nuruddin, and M. S. Abdullah,

“An Enhanced Hardware-based Hybrid Random Number Generator
for Cryptosystem”, in Proc. 2009 International Conference on

Information Management and Engineering, 2009. DOI:

10.1109/ICIME.2009.115.
[11] F. Özkaynak, “Cryptographically secure random number generator

with chaotic additional input”, Nonlinear Dynamics, vol. 78,

pp. 2015–2020, 2014. DOI: 10.1007/s11071-014-1591-y.
[12] E. Avaroğlu,T. Tuncer, A. B. Özer, and M. Türk, “A new method for

hybrid pseudo random number generator”, J Micro-electron Electron

Compon Mater, vol. 44, pp. 303–311, 2014.

[13] Y. Zeshi, L. Hongtao, M. Yunchi, H. Wen, and Z. Xiaohua, “Digital-
analog hybrid scheme and its application to chaotic random number

generators”, International Journal of Bifurcation and Chaos, vol. 27,

no. 14, 2017. DOI: 10.1142/S0218127417502108.
[14] E. Avaroğlu, “Pseudorandom number generator based on Arnold cat

map and statistical analysis”, Turkish Journal of Electrical

Engineering & Computer Sciences, vol. 25, no. 1, pp. 633–643, 2017.
DOI: 10.3906/elk-1507-253.

[15] S. Łoza, L. Matuszewski, and M. Jessa, “A random number generator

using ring oscillators and SHA-256 as post-processing”, International
Journal of Electronics and Telecommunications, vol. 61, No. 2,

pp. 199–204, 2015. DOI: 10.1109/ICSES.2014.6948739.

[16] M. Magfirawaty, M. T. Suryadi, and K. Ramli, “Performance analysis
of zigzag map and hash function to generate random number”, in

Proc. 2017 International Conference on Electrical Engineering and

Informatics (ICELTICs), 2017. DOI:
10.1109/ICELTICS.2017.8253286.

[17] Y. Wang and S. Li, “A high-speed digital true random number

generator based on cross ring oscillator”, IEICE Trans. Fundam.
Electron. Commun. Comput. Sci., vol. E99.A, no. 4, pp. 806–818,

2016. DOI: 10.1587/transfun.E99.A.806.

[18] Y. Liu, R. C. C. Cheung, and H. Wong, “A bias-bounded digital true
random number generator architecture”, IEEE Trans. Circuits Syst. I

Reg. Papers, vol. 64, no. 1, pp. 133–144, 2017. DOI:

10.1109/TCSI.2016.2606353.
[19] S. Buchovecká, R. Lórencz, F. Kodýtek, and J. Buček, “True random

number generator based on ring oscillator PUF circuit”,

Microprocessors and Microsystems, vol. 53, pp. 33–41, 2017. DOI:
10.1016/j.micpro.2017.06.021.

[20] S. Chen, B. Li, and C. Zhou, “FPGA implementation of SRAM PUFs

based cryptographically secure pseudo-random number generator”,
Microprocessors and Microsystems, vol. 59, pp. 57–68, 2018. DOI:

10.1016/j.micpro.2018.02.001.

[21] V. Kote, et al., “A True random number generator with time

multiplexed sources of randomness”, Radioengineering Journal, vol.

27, no. 3, 2018, DOI: 10.13164/re.2018.0796.

[22] P. Z. Wieczorek and K. Gołofit, “True random number generator
based on flip-flop resolve time instability boosted by random chaotic

source”, IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 65, no. 7, 2018, pp. 1279–1292. DOI:

10.1109/TCSI.2017.2751144.

[23] P. Z. Wieczorek, “Lightweight TRNG based on multiphase timing of
bistables, IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 63, no. 7, 2016, pp. 1043–1054. DOI:

10.1109/TCSI.2016.2555248.
[24] P. Z. Wieczorek, “An FPGA implementation of the resolve time-

based true random number generator with quality control”, IEEE

Transactions on Circuits and Systems I: Regular Papers, vol. 61, no.
12, pp. 3450–3459, 2014. DOI: 10.1109/TCSI.2014.2338615.

[25] P. Z. Wieczorek and K. Gołofit, “Dual-metastability time-competitive

true random number generator, IEEE Transactions on Circuits and

Systems I: Regular Papers, vol. 61, no. 1, pp. 134–145. DOI:

10.1109/TCSI.2013.2265952.

[26] P. Z. Wieczorek, “Dual-metastability FPGA-based true random
number generator”, Electronics Letters, vol. 49, no. 12, pp. 744–745,

2013. DOI: 10.1049/el.2012.4126.

[27] Federal Information Processing Standards Publication 202 SHA-3
Standard: Permutation-Based Hash and Extendable-Output

Functions, 2015.

[28] G. Bertoni, J. Daemen, M. Peeters, and G. Van Assche, “Keccak
sponge function family main document”, 2019 - http://keccak.

noekeon.org/Keccak-main-2.1.pdf.

[29] X. Guo, S. Huang, L. Nazhandali, and P. Schaumont, “Fair and
comprehensive performance evaluation of 14 second round SHA-3

ASIC implementations”, NIST 2nd SHA-3 Candidate Conference,

2011.
[30] A. Rukhin, et al., “A statistical test suite for random and

pseudorandom number generators for cryptographic applications”,

NIST Special Publication 800–22rev1a, Gaithersburg, MD, USA
2010.

46

