
99 

                                      ELECTRONICS AND ELECTRICAL ENGINEERING 

      ISSN 1392 – 1215                                                                                                2012. No. 7(123) 

                                             ELEKTRONIKA IR ELEKTROTECHNIKA  
 

 

SIGNAL  TECHNOLOGY 

        
SIGNALŲ  TECHNOLOGIJA 

 

 

A New Method for Fault Diagnosis of Mine Hoist based on Manifold 

Learning and Genetic Algorithm Optimized Support Vector Machine  
 

Sunwen Du  
College of Mining Technology, Taiyuan University of Technology,  

Yingze Street, 79#, Taiyuan 030024, Shanxi, P. R. China, e-mail: wendu_sun@163.com 

 
  http://dx.doi.org/10.5755/j01.eee.123.7.2385 

 

 

Introduction 

 

Mine hoist is one of the most important equipments 

in mine industry. Known as the mine throat, the mine hoist 

has been used for the coal gangue ascension, materials 

transmission, and personnel and equipment lift. Hence, the 

normal operation of the mine hoist has great significance 

for ensuring the security of the mining. The safety problem 

has been accepted considerable attentions. However, grave 

accidents occurs time after time [1], leading to huge 

economic lost and severe casualties. Therefore, it is 

imperative to monitor the mine hoist conditions to detect 

the faults at the early stage. 

The failures caused by the crucial components of the 

mine hoists, i.e. the drive motors and gear transmissions, 

account for a large proportion in general malfunctions of 

mine hoists. The brake failure, pulleying and sliding, 

overspeed of the hoist are the main faults of mine hoists. In 

recent years, the monitoring methods based on the vibration 

signal of the mine hoists have been put forward [2]. 

Advance signal processing methods can evaluate the 

situation of mine hoists through the analysis of the vibration 

signal generated by the crucial components of the mine 

hoists. A lot of effective methods have been proposed, 

including the wavelet transform [2] and empirical mode 

decomposition [3], etc. These methods have been combined 

with intelligent classifiers (e.g. artificial neural network 

(ANN)) to provide accurate fault diagnosis. However, the 

problem is that due to the lack of the training fault samples, 

the networks are prone to fall into local minimum. This 

disadvantage restricted the applications of the ANNs. 

However, owning to the strong generalization ability, the 

support vector machine (SVM) can work well even when 

the training data is very small [4]. Hence, the SVM may 

overcome the shortcomings of the neural networks.  
On the other hand, the data fusion of multiply sensors 

is essential for reliable fault feature extraction. The 

vibration signals are often submerged in a large amount of 

redundant data. As a result, the extracted feature vector 

contains some useless features, which may influence the 

fault detection. Hence, it needs to eliminate these useless 

ones. The problem is that it is difficult to select the 

distinguished features from a set of data. The principal 

component analysis (PCA) has been proven to be effective 

for the feature selection [2]. However, the nonlinear 

properties of the original feature space decline PCA’s 

ability [5]. Fortunately, the manifold learning algorithms 

can deal with the nonlinear dimensionality reduction. The 

representative algorithms include locally linear embedding 

(LLE), Isomap, and Laplacian eigenmap [5]. Compared 

with the PCA, the manifold learning projects the original 

high-dimensional data into a lower dimensional space and 

keeps the nonlinear characteristics of the original data. 

Thus, the applications of the manifold learning have got 

many attentions in the field of mechanical fault diagnosis. 

Jiang [6] proposed the supervised Laplacian eigenmap (S-

LapEig) for feature extraction of rotational machinery. 

Wang [7] adopted the supervised kernel locality preserving 

projection to extract distinct features in the DC motor 

system. Li [5] proposed the adaptive LLE for the fault 

diagnosis of rotor systems. The manifold learning was 

effective for fault feature selection in these studies. Hence, 

it is worth investigating the manifold learning for feature 

selection in the fault diagnosis of mine hoists. 

This paper aims to deal with the fault diagnosis of 

mine hoists. In order to enhance the fault detection rate, a 

new approach is presented based on the integration of LLE 

and SVM. The features of the vibration signals of the mine 

hoist were firstly extracted by the wavelet packet analysis 

[8]. Then the LLE was used to eliminate the useless 

features to form a new feature space. Lastly, the least 

square SVM (LS-SVM) was used to learn the new feature 

space that matches with the hoist operation states. To speed 

up the training and learning, the genetic algorithm (GA) 

was adopted to optimize the SVM parameters. Experiments 

have been conducted in a mine hoist test rig to show the 

effectiveness of the proposed method. 
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Fault diagnosis method 

 

A brief description of the proposed fault diagnosis 

method is presented in Fig. 1. The theories of the LLE and 

GA-SVM are given in this Section, and the details of the 

wavelet packet transform can refer to [8]. 
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Fig. 1. The workflow of the proposed diagnosis procedure 

 

A. The locally linear embedding (LLE). Given a high-

dimensional dataset 1 2[ ]
p

nS R s s s , where n is 

the total sample number and p the dimensionality, the 

objective of LLE is to reconstruct a nonlinear mapping to 

project S into a low dimensionality space 

1 2[ ]
q

r r r rnS R s s s  (q<<p). The LLE algorithm 

can be described as follows [5]: 

1. Compute neighbourhoods of every sample using the 

Euclidean distance. 

2. Compute the local reconstruction weight matrix W by 

minimizing a cost function 

2
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0
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3. Map the original dataset into the embedded 

coordinates. Compute the reconstructed q-dimensional 

manifold space rS by minimizing the following 

constraint 
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n n
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r j ri rj r r
i j

S m s s S MS
 

   ,         (2) 

where function tr( ) is used to calculate matrix trace, 

,ri js  are the projection vector of ,i js  in the embedded 

coordinates and the cost matrix M is 

( ) ( )
T

n n n nM I W I W    .                  (3) 

Hence, the minimization of (2) can be reduced to an 

eigenvalue problem, and rS could be determined by the q 

smallest nonzero eigenvectors of M.  

B. GA optimized SVM. The SVM algorithm is briefly 

described, a more detailed description of SVM can refer to 

Ref. [4]. For a given sample set 1{ , }n

l l lT x y   (n is the 

sample number), the SVM model can be described as [9] 
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where, ω denotes the weight matrix, and b is the threshold. 

Eq. (4) satisfies the following constrains: 
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where 
l (l=1, 2, …, n) are the relaxation factors, and C a 

penalty constant.  

The classification decision function of the LS-SVM 

can be expressed as [9] 

, 1

( ) sgn( ( ) ( ) )
n

T

i i j
i j

by x x x  
 

  ,           (7) 

where ix and jx are the SVM inputs, y is the output, i is 

the Lagrange multiplier, and ( )  is the nonlinear 

transform.  

The Kernel trick is used to simplify the inner product, 

i.e. define the Kernel ( , ) ( ) ( )
T

i j i jK x x x x  . Popular 

kernel is [9]  

2
( , ) exp( / 2 )i j i jK x x x x    ,          (8) 

where  is the kernel coefficient. The kernel 

parameter and the SVM decision boundary C have great 

influence on the classification performance of the SVM. So 

the GA was used to optimize the two parameters. The 

energy entropy based individual selection procedure [10] 

was employed in the GA searching processing in this work. 

The following fitness function was used 

21 1
, and ( ) ( ) ,

( ) 2
m m

m

F e o R G
e o

            (9) 

where o (o = 1,…,N) is the chromosome number, m is the 

training samples, Gm is desired SVM output, and Rm is the 

real SVM output.  

 

Experiments 

 

The vibration signals of man-seeded faults were 

collected on a mine hoist fault test rig. Fig. 2 shows the 

experimental test rig. The test rig is driven by two motors. 

The gear transmission system is used to propel the friction 

wheel. The tooth numbers of the gears are: Z1=Z3=24, and 

Z2=145. The motor shaft misalignment, the gear tooth 

broken and their coupled fault were investigated in the 

experiments. The faults were seeded in driver 1 and gear 

Z2. Two accelerators mounted on the flat surface of the 

driver 1 and gear Z2 were used to measure the vibration 

signals. The motor speed was 600 rpm. Hence the 

foundation frequencies of the motor shaft and the gear Z2 

were 10.0 Hz (1X) and 1.65 Hz (1R), respectively.   
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Fig. 2. The experimental test rig of the mine hoist 

 

The time and frequency spectra of the hoist vibration 

under normal and faulty conditions are shown in Figs. 3-6. 

For the motor shaft, energy peaks may appear at low 

frequency band around 1X under normal state while at 

higher frequency band when a misalignment occurs. These 

characteristics can be observed in Figs. 3 and 4. In Fig. 5, 

the harmonics of the foundation frequency 1R appear when 

the gear tooth broken down. The impact of the gear 

meshing can be observed obviously.  
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Fig. 3. Under the normal state 
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Fig. 4. Under the motor shaft misalignment 
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Fig. 5. Under the gear tooth broken 

 

In Fig. 6, when the misalignment and gear tooth 

broken were coupled, the impact energy of the gear 

meshing becomes stronger than the single gear tooth 

broken, and energy peaks appear at the coupled frequency 

of 1X and 1R (e.g. 7(X+R) in the figure).  Hence, the 

spectra reflect the characteristics of the hoist vibration 

under different operation conditions. However, it is not 

applicable diagnose the faults using the time-frequency 

plots directly. Thus, the proposed method in this paper was 

used to identify the hoist faults. 
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Fig. 6. Under the coupled fault 
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Fig. 7. The feature selection results: (a) by LLE, and (b) by PCA 
 

In the fault diagnosis procedure, the vibration signals 

were firstly decomposed by the Daubechies 16 (db16) 

wavelet function to 3 levels. The Root-Mean-Square (RMS), 

kurtosis and peak fact values of the 3rd wavelet band were 

extracted as the feature vector. Hence, the feature vector 

contained 24 elements, i.e. 8 RMS values, 8 kurtosis values 

and 8 peak fact values. Then the LLE was employed to fuse 

the original feature space from 24 dimensions into 2 

dimensions. 20 samples of each condition were analyzed 

and there were 80 samples in total. Fig. 7 gives the feature 

selection performance. The PCA method was compared 

here. It can be seen that the selected features using the LLE 

can be categorized into four groups, though there are some 

overlaps between the normal and misalignment states, and 

the gear tooth broken and coupled faults conditions. In 

contrast, the PCA cannot distinguish the three faulty states 

of the hoist in Fig. 7(b). Thus, the LLE outcomes the PCA 

in the selection of intrinsic features. 

Since there are overlaps in the new features space, the 

GA-SVM was further adopted to enhance the fault pattern 

identification. Fig. 8 compares the optimization 

performance using standard GA and the improved GA. 

Another 80 new samples were used to validate the 

diagnosis method. Table 1 gives the fault diagnosis results. 
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Fig. 8. The evolution performance for RBF optimization 

 
Table 1. Fault diagnosis results of the mine hoist 

Methods Detection results 

PCA and standard GA-SVM 87. 5% 

PCA and improved GA-SVM 88.75% 

LLE and standard GA-SVM 90.0% 

The proposed method 92.5% 

 

From Table 1, the LLE based methods are superior to 

the PCA based methods. This is because the nonlinear 

properties have been preserved by the LLE. Moreover, the 

improved GA can increase the fault identification rate. And 

the proposed method provides the best performance to the 

other three methods.  

 

Conclusions 

 

To detect the early failures of the mine hoist, a new fault 

diagnosis method is proposed in this paper. The 

contribution of the work is that the proposed method has 

adopted the manifold learning to extract the nonlinear 

properties embedded in the original data and employed the 

improved GA-SVM to recognize the fault patterns. Both 

single and coupled faults have been investigated in the 

experimental test. The analysis results demonstrate that the 

proposed method is feasible for the fault diagnosis of mine 

hoists. The fault detection of the proposed rate has been 

enhanced by 2.5% or better when compared with the PCA 

based feature selection methods. Hence, the proposed 

method has practice importance. 
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