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1Abstract—Image quality assessment (IQA) is one of the 

constantly active areas of research in computer vision. Starting 

from the idea of Universal Image Quality Index (UIQI), 

followed by well-known Structural Similarity (SSIM) and its 

numerous extensions and modifications, through Feature 

Similarity (FSIM) towards combined metrics using the multi-

metric fusion approach, the development of image quality 

assessment is still in progress. Nevertheless, regardless of new 

databases and the potential use of deep learning methods, some 

challenges remain still up to date. Some of the IQA metrics can 

also be used efficiently for alternative purposes, such as texture 

similarity estimation, quality evaluation of 3D images and 3D 

printed surfaces as well as video quality assessment. 

 
 Index Terms—Image analysis; Image quality assessment. 

I. INTRODUCTION 

Development of computer vision and image analysis 

methods and growing variety of their applications cause the 

increasing interest in accuracy of results obtained using such 

algorithms. In many applications the results of image 

analysis may be used to make some decisions and therefore 

they should be as reliable as possible. Nevertheless, most of 

computer vision algorithms require high quality input 

images to ensure their proper work and therefore the 

knowledge of image quality assessment (IQA) results is 

strongly desired. For example, analysing the consecutive 

frames of a video stream, some of them could be skipped, if 

low image quality is detected, to prevent their influence on 

the results of analysis. Such a strategy can be useful e.g. for 

machine vision control of mobile robots. 

The most widely known classical IQA methods rely on 

the comparison of respective pixels of two images with the 

assumption of the same resolution and a perfect adjustment 

of both images – one of them is considered as a “pristine” 

reference image and the second one is subjected to some 

distortions or contains some contaminations.  

Such approach, based on the comparison with the 

reference image, is referred as full-reference (FR) 

assessment, whereas “blind” methods, which do not demand 

the knowledge of the original image, are known as 

referenceless or no-reference (NR) ones. In some cases, the 

partial information related to the original image is known 

and therefore the reduced-reference (RR) methods can also 

be applied, assuming its availability. 
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Considering numerous different IQA methods proposed 

during recent years, it can be stated that FR metrics are more 

universal, although in many applications where the 

reference image is unavailable, e.g. live video transmission, 

“blind” methods are much more desired. 

II. FULL-REFERENCE IMAGE QUALITY ASSESSMENT  

A. Structural Similarity and its Modifications 

Since the classical pixel based IQA metrics, such as Mean 

Squared Error (MSE) and Peak Signal to Noise Ratio 

(PSNR), are poorly correlated with perception of various 

types of distortions by human observers, some other 

approaches have been proposed which are additionally more 

robust to small mutual translations of both compared 

images. The first such idea has been the Universal Image 

Quality Index [1] based on the product of three factors 

corresponding to luminance distortions, loss of contrast and 

structural distortions calculated using the sliding window 

approach. Obtained quality map is further averaged leading 

to the final metric. As for the dark or flat areas of images 

(with constant brightness) the results may become unstable, 

due to the presence of zero variance in the denominators, the 

further modification of this approach has led to probably the 

most popular Structural Similarity (SSIM) metric [2], 

containing additional small constants preventing the division 

by zero. Its formula for calculations of the local similarity 

factors can be defined as 
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where x and y are the 11 × 11 pixels local fragments of 

assessed and reference images weighted with 2D Gaussian 

window with small constants preventing the division by 

zero: C1 = (0.01 × L)2 and C2 = (0.03 × L)2 assuming L = 

256 being the number of luminance levels. 

Over the next several years this approach has been often 

modified being the basis for numerous extended metrics. 

The first, proposed by the creators of the SSIM, is its multi-

scale version referred as MS-SSIM [3] expressed as 
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where the contrast and structural factors are weighted for 

each scale and the luminance is calculated only for full 

resolution image with the weights optimized by its authors. 

Some other extensions of the SSIM idea have been 

proposed independently, such as gradient based SSIM [4], 

the use of local variance (QILV) with the same formula [5], 

Gradient Similarity [6], three-component SSIM [7] or the 

simplified fast SSIM [8]. Some mathematical properties of 

the SSIM have been analysed by Brunet et al. [9], whereas 

its reduced-reference estimation has been proposed by 

Rehman and Wang [10] and its quaternion version for 

colour images by Kolaman and Yadid-Pecht [11]. 

Similar formulas can also be applied for the images 

converted to some other domains e.g. using the wavelet 

transform. Some exemplary metrics have been provided as 

well, e.g. Complex Wavelet SSIM (CW-SSIM) [12], 

Information Weighting SSIM (IW-SSIM) [13] and Edge 

Strength Similarity (ESSIM) [14]. 

An interesting modification of this general idea has been 

proposed with the use of Riesz transform leading to RFSIM 

metric [15], being the basis for widely accepted Feature 

Similarity (FSIM) metric [16] defined as 
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with phase congruency (PC) and gradient magnitude (G) 

factors calculated according to the SSIM-like formula 
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where PCmax is the higher from two local values of phase 

congruency from the reference and assessed image, (u,v) is 

the position of the sliding window in images 1 and 2, and T 

prevents the division by zero. Gradient values can be 

obtained using one of the popular convolution filters (Scharr 

mask is recommended by the FSIM authors). Its colour 

version, known as FSIMc, contains the additional factor 

(with the exponent ), where the same formulas are applied 

for both chrominance components in YIQ colour space. 

Another direction of research related to the application of 

the idea of the Structural Similarity is its use for texture 

similarity, leading to the idea of STSIM metric [17], useful 

e.g. for Content Based Image Retrieval (CBIR) purposes. 

B. Some Other Full-Reference IQA Metrics 

Regardless, of the popularity of Structural Similarity and 

numerous SSIM based methods, some alternative methods 

have been proposed by various researchers. Some of the 

representative trends include the use of information theory, 

e.g. Information Fidelity Criterion (IFC) [18], further 

extended into Visual Information Fidelity (VIF) [19], as 

well as Human Visual System (HVS) based models applied 

e.g. in NQM [20] and VSNR [21] metrics. 

Some recently proposed approaches incorporating the 

similarity assessment for IQA purposes are the Haar 

wavelet-based perceptual similarity index (HaarPSI) [22] 

and SuperPixel-based similarity index (SPSIM) [23].  

One of the most promising alternative approaches to the 

FR IQA seems to be the application of Singular Value 

Decomposition (SVD). The first approach to its use for this 

purpose, namely M-SVD [24], utilizes the Euclidean 

distances between the vectors of singular values obtained for 

8 × 8 pixels blocks. Nonetheless, in this method only the 

singular values have been used without the analysis of the 

remaining coefficients and it has been verified for only 5 

test images subjected to six types of distortions.  

The two other interesting methods have been presented in 

2009. The first one is the Reflection Factor (RF) [25], which 

utilizes not only the singular values but also right singular 

vector matrices to calculate the reflections, denoted as total 

weighted differences scaled by the singular values 

dependent on the energy of the image. The second 

algorithm, known as R-SVD [26], is based on the “referee 

matrix” obtained by the substitution of the reference image’s 

left singular matrices by their equivalents calculated for the 

distorted one. These calculations have been made using the 

sliding window approach using the 8 × 8 pixels image 

fragments to determine the local quality. Both methods have 

been tested using LIVE Image Quality Assessment 

Database, described in Section V.  

In the paper [27] SVD has been employed to separate the 

structural (content-dependent) and the content-independent 

components, further fused to obtain the final quality scores 

verified using the TID2008 dataset (discussed later as well). 

The utilization of local singular value decomposition (SVD) 

as a structural projection tool to select local image distortion 

features followed by perceptual spatial pooling and neural 

networks to predict a perceptual quality score has been 

presented by Hu et al. [28] and verified using 3 databases. 

The most recent attempt to use the SVD for IQA purposes 

has been presented as the evaluation of the structural 

information utilizing its reflection on the original singular 

vector matrices, denoted as Structural SVD (SSVD) [29]. In 

this metric both singular values and vectors are used to 

effectively estimate the perceived visual quality. The overall 

quality metric is the combination of separately estimated 

structural and luminance degradations calculated for local 

blocks with additional regulating factor and further 

averaged. The performance of the SSVD metric has been 

evaluated using 9 state-of-the-art IQA databases. 

Interestingly, it demonstrates the best performance for the 

newest TID203 database, whereas for the older and smaller 

TID2008, better results can be achieved for HaarPSI. 

Nevertheless, the list of the above mentioned metrics is 

far from completeness due to numerous different IQA 

metrics proposed in recent years by many researchers. Some 

of them are available together with the wrapper code in the 

MeTriX MuX package provided by Matthew Gaubatz [30].  

Moreover, recent trends related to the use of deep 

learning methods will probably cause the development of 

many new algorithms, including no-reference algorithms. 

Another expected direction of research is the development 

of colour specific metrics as most of these mentioned above 

are designed for grayscale images only. 
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III. MULTI-METRIC FUSION AND COMBINED METRICS  

A. Correlation with Subjective Quality Assessment 

The most typical approach to the development of a new 

image quality metric is related to the increase of its 

correlation with subjective scores. To verify the 

appropriateness of newly proposed metrics, some IQA 

databases have been provided, containing numerous images 

subjected to various types of distortions together with Mean 

Opinion Score (MOS) values or Differential MOS values, 

obtained as a result of analysis of opinions expressed by 

independent human observers. The most popular publicly 

available IQA datasets are briefly discussed in Section V. 

Although high correlation of automatically calculated 

metric’s values with subjective scores are not always the 

most relevant element, in most of the applications – 

especially related to computer visualization – can be 

considered as a reasonable objective. Since most image 

analysis algorithms provide results strongly dependent on 

the quality of input images, only relatively small number of 

robust methods, e.g. Hough line detection, can be 

considered as exceptions. Nevertheless, it is worth 

remembering that in some machine vision applications high 

correlation of IQA results with subjective quality assessment 

may not always be of the highest priority.  

Three most common approaches to calculation of the 

correlation between the subjective and objective scores are: 

Pearson Linear Correlation Coefficient (PCC), Spearman 

Rank Order Correlation Coefficient (SROCC) and Kendall 

Rank Order Correlation Coefficient (KROCC). Since the 

widely known PCC can be considered as a measure of 

quality prediction accuracy, both rank order coefficients 

should be treated as measures of prediction monotonicity.  

Spearman ρ (rho) coefficient is a nonparametric measure 

of statistical dependence between the rankings of two 

variable assessing how well this relationship can be 

expressed using the monotonic function. In contrast to PCC 

which is calculated directly for the raw quality scores in 

both rankings of objective and subjective evaluations, 

SROCC is equal to the Pearson correlation between the rank 

values of those two variables expressed as 
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where di denotes the difference between the two ranks of 

each observation and n is the number of observations. 

Another rank order metric is Kendall’s τ (tau) measuring 

the ordinal association between two measured quantities. It 

can be defined as 
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where P and N are the numbers of concordant pairs and 

discordant pairs respectively. All three coefficients 

calculated for the subjective and objective scores obtained 

for the same series of images should tend to 1 for a perfect 

IQA metric. Since the Human Visual System is highly 

nonlinear, according to the recommendation [31] of the 

Video Quality Experts Group (VQEG), the nonlinear 

mapping between the subjective and objective scores, 

preferably using the logistic function, should be applied.  

B. Fusion of IQA Metrics 

Since a perfect automatic IQA metric should provide the 

opportunity to compute the metric’s value, which is linearly 

correlated with subjective perception of various kinds of 

distortions, the application of any additional nonlinear 

mapping is not desirable in general. Considering the 

necessity of choice of some parameters (and type) of the 

nonlinear mapping function as the result of optimization for 

a chosen database, the direct application and proper 

interpretation of the raw metric scores by the user may be 

troublesome. 

As some metrics presented in Section II utilize different 

types of information, their combination should provide some 

new possibilities leading to better correlation with subjective 

scores. Therefore a perfect situation will be the possibly 

highest correlation of the raw values of the IQA metric with 

MOS values, especially considering Pearson’s correlation, 

since the rank order correlation coefficients will not change 

assuming the monotonicity of the mapping function. 

The first approach to the use of the combined metrics for 

this purpose was presented in the paper [32], where the 

weighted product of three metrics: MS-SSIM, VIF and  

R-SVD was proposed, leading to the increase of the PCC 

value from 0.784 (for MS-SSIM as the best from three 

metrics considering the raw scores) to 0.86 for TID2018 

database. Replacing the R-SVD with FSIMc, a further 

increase of the PCC values to 0.8752 for the same database 

was achieved for CISI metric [33]. 

A nonlinear combination of RFSIM and FSIMc metrics 

[34] led to further increase of the PCC for TID2008 to 0.886 

and the application of Extended Hybrid Image Similarity 

(EHIS) [35], being the optimized combination of four 

metrics: MS-SSIM, VIF, weighted FSIMc and RFSIM, 

increased this value to 0.9105. The weighted FSIMc values 

were obtained optimizing the  and  parameters of (4), as 

well as the  parameter for the formula used for I and Q 

chrominance channels [36]. 

The verification of this approach for images containing 

multiple distortions was presented in the paper [37], where 

the increase from 0.8083 for the best single metric to 0.8596 

for the combination of 4 metrics was reported for 270 

images from LIVE Multiply Distorted IQA Database. The 

graphical illustration of the obtained improvement is shown 

in Fig. 1, presenting the results obtained in the paper [37] for 

both parts of this dataset (only 270 images out of 450 

contain multiple distortions). 

Another successful attempt to the multi-metric fusion was 

presented by M. Oszust in the paper [38], where an 

optimization problem of a decision fusion was solved using 

a genetic algorithm for 18 IQA measures, leading to further 

extension of the approach discussed above, verified also for 

the newer TID2013 database. Some other results were 

presented in the paper [39], where more metrics were used, 

although as the weighted sum instead of the weighted 

product. Unfortunately, such an approach requires the 

additional nonlinear mapping with the regression function 

according to VQEG recommendation [31]. To compare the 

79



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 25, NO. 3, 2019 

results for TID2008 database with previous attempts, the 

best LCSIM2 metric, consisting of 11 different single IQA 

metrics, achieves the value of PCC = 0.9202 (after nonlinear 

regression). Another family of regression based Similarity 

measures (rSIMs) was presented in [40] with the linear 

combination of 16 measures leading to PCC = 0.9218 for 

TID2018 dataset. 

 
Fig. 1.  Scatter plot of the combined metric versus DMOS values for the 

LIVE Multiply Distorted Image Quality Database [37]. 

The application of neural networks and some other 

machine learning algorithms for the fusion of IQA metrics 

was discussed by Barri et al. [41], whereas the use of 

pairwise score differences to obtain the lasso regression 

Similarity measures (lrSIMs) was examined by Oszust [42]. 

Nevertheless, the obtained results were slightly worse than 

those presented in [40]. 

Some other approaches to IQA metrics fusion include the 

application of support vector regression [43], use of neural 

networks [44], as well as the utilization of SVM classifier 

for k-nearest-neighbour regression with the fusion of SSIM, 

VSNR, and VIF [45]. 

IV. REFERENCELESS (BLIND) METRICS 

In many practical applications, particularly related to 

image and video transmission, the reference images may be 

unavailable, limiting the applicability of FR metrics. Despite 

the lower universality and correlation with subjective scores, 

no-reference metrics seem to be more attractive in such 

areas of technology [46]. 

Most of the “blind” metrics are sensitive to only one or 

two types of distortions, e.g. blur [47]–[50], noise [51], 

JPEG [52] or JPEG2000 [53] compression artifacts. 

Nevertheless, some of no-reference metrics, e.g. NIQE, 

BLIINDS, DIIVINE or BRISQUE [54], utilize also natural 

scene statistics, anisotropy [55], [56] or entropy [57], [58].  

Recently, some other methods were introduced, e.g. based 

on the use of multiple bandpass and redundancy domains to 

acquire the complementary features in multiple colour 

spaces [59], where the Gaussian Mixture Models (GMMs) 

followed by Fisher Vectors were used to fit them. Another 

idea [60] was the use of image statistics and robust feature 

descriptors based on Speeded-Up Robust Features (SURF) 

approach with a support vector regression technique used 

for mapping into subjective scores. The additional filtration 

of the input images was proposed in [61], followed by 

feature extraction and SVR optimization. In general, many 

of such recent metrics are based on machine learning and 

various image statistics. 

Some other representative no-reference IQA metrics 

include the use of histogram-based features with Laplacian 

of Gaussian (LoG) responses [62], Oriented Gradients 

Image Quality Assessment (OG-IQA) [63], histogram of 

local binary pattern (LBP) based descriptor [64] and other 

LBP based metrics [65], [66]. An interesting idea of the use 

of “pseudo-reference image” generated from the distorted 

image was introduced recently [67]. The Authors developed 

distortion-specific metrics to estimate blockiness, sharpness, 

and noisiness, leading to general-purpose blind PRI-based 

(BPRI) metric. An exemplary application of deep 

convolutional neural networks for “blind” IQA was 

presented in the paper [68]. The algorithm proposed by its 

Authors consists of distortion type classification, CNN 

based IQA algorithms and fusion algorithm.  

One of the most recent ideas is the application of the 

analysis of distributions of local gradient orientations in 

image regions of different sizes [69], outperforming even 

some deep learning based IQA methods. 

V. IMAGE QUALITY ASSESSMENT DATABASES 

To verify the performance of various metrics, several IQA 

databases were provided by various groups of researchers. 

They usually contain several reference images and their 

distorted versions, subjected to various types and different 

amount of contaminations, together with results of 

subjective evaluation by independent human observers, 

expressed as Mean Opinion Scores (MOS) or Differential 

MOS (DMOS) values. Knowing the subjective opinions, 

obtained after statistical analysis and outlier removal, one 

can calculated the correlation coefficients between the MOS 

or DMOS values and the currently developed objective 

metrics. A relevant common problem of the most datasets is 

that despite they contain colour images the distortions 

introduced to the subjectively assessed images are not 

colour specific. 

The first popular dataset was the LIVE Image Quality 

Assessment Database delivered by Laboratory for Image & 

Video Engineering (LIVE) of Texas University at Austin. 

Release 2 of this database, with realigned subjective quality 

data [70], contains 29 original images subjected to five types 

of distortions: JPEG compression, JPEG2000 compression, 

white noise, Gaussian blur and simulated fast fading 

Rayleigh channel (bit errors typical for the wireless 

transmission of JPEG2000 compressed images) with various 

intensities or compression ratios. The opinions of human 

observers were expressed as 982 DMOS values within the 

range 0–100, however 203 of them regard the original 

images and therefore they may be often removed from 

further analysis, since the obtained values of the objective 

metrics would be evident (e.g. SSIM = 1). 

The increasing necessity of a reliable verification of some 

newer IQA methods caused the development of some other 

datasets, including the most popular and the largest Tampere 

Image Datasets. The first one – TID2008 – contains 1700 

color images, i.e. 25 reference images subjected to 17 types 

of distortions with 4 levels each [71]. The MOS values are 

the results of 838 experiments carried out by observers from 

three countries: Finland, Italy, and Ukraine with totally 
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256428 comparisons of visual quality of distorted images. 

A newer version of this dataset (TID2013) contains 

images with 24 types of distortions, including colour 

specific ones, e.g. change of colour saturation, image colour 

quantization with dither or chromatic aberrations [72], 

which can also be analysed in 6 groups. All of the 

distortions have five levels instead of four used in TID2008. 

As stated by the Authors, 985 experiments were performed 

in five countries (Ukraine, Finland, France, USA, and Italy), 

with further rejection of 14 abnormal experimental results. It 

is worth noting that some individual distortions, e.g. lossy 

compression of noisy images, can also be considered as 

a  first step towards the quality assessment of multiply 

distorted images. 

Since the presence of multiple distortions in a single 

image may cause different subjective opinions, the 

verification and benchmarking of objective IQA metrics in 

this regard can be made using LIVE Multiply Distorted 

Image Quality Database [73]. In fact, images observed by 

consumers usually reach them after several stages of image 

processing, which may introduce different distortions, and 

therefore such judgments are crucial for further development 

of IQA algorithms. Exemplary images from this database 

are illustrated in Fig. 2, where the original images are shown 

on the left. The right images in the top two rows contain the 

images subjected to blurring and JPEG compression, 

whereas the right images from the two bottom rows contain 

blur distortions together with the additive noise. 

 
Fig. 2.  Exemplary reference (left) and multiply distorted (right) images from LIVE Multiply Distorted Image Quality Database [73]. 

Some other less popular IQA databases are: Categorical 

Subjective Image Quality Database (CSIQ) delivered by 

Oklahoma State University (30 reference images, 6 types of 

distortions, 866 test images in aggregate, 5000 subjective 

ratings), IRCCyN/IVC Database from the University of 

Nantes (10 reference images, 160 distorted images with 4 

types of distortions, 15 observers), Wireless Image Quality 

(WIQ) Database (7 reference greyscale images, 80 test 

images with distortions typical for wireless transmission, 30 

observers), MICT (Toyama) Database (the oldest one with 

14 original images and 196 test images corrupted by JPEG 

and JPEG2000 compression artifacts) and A57/Cornell 

dataset containing 54 greyscale images obtained from only 

three reference ones. 

A number of dedicated databases, including video, 

stereoscopic and 3D images, art images, etc. can also be 

found at the webpages of IRCCyN/IVC and LIVE group. 

Some recent datasets include: LIVE Mobile Video Quality 

Database, IDEAL - LIVE Distorted Face Database, LIVE 

Immersive Image Database, ESPL-LIVE HDR Subjective 

Image Quality Database or LIVE In the Wild Image Quality 

Challenge Database. 

An interesting original dataset was proposed by Zhai and 

Neuhoff [74] regarding the similarity of scenic bilevel 

images, being currently probably the only such database 

containing binary images. Nevertheless, its importance may 

be especially high for the development of binary image 

quality assessment methods, which are rarely analysed, 

although helpful in many practical applications, including 

document image analysis and Optical Character Recognition 

(OCR).  

The application of such databases and developed metrics 
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would supplement some existing methods, which are 

typically used for evaluation of image binarization results. 

For this purpose, some dedicated datasets are typically used, 

containing colour or grayscale images subjected to various 

distortions together with binary “ground-truth” images. The 

assessment of results is based more or less on the calculation 

of the number of properly and improperly classified pixels 

(true positives, true negatives, false positives and false 

negatives). They can be further used to determine some 

typical classification measures, such as e.g. accuracy, 

specificity, sensitivity, F-Measure, etc. Another possibility, 

in case of the OCR applications, is their calculation for 

recognized characters instead of individual pixels, although 

the proper text data should be known in advance. 

Since the Bilevel Image Similarity Ground Truth Archive 

database is rather less known in image processing 

community, some exemplary images containing various 

distortions, influencing the shapes of the visible objects, as 

well as 7 reference images, are presented in Fig. 3. 

 
Fig. 3.  Exemplary images from Bilevel Image Similarity Ground Truth 

Archive [74]. Two top rows contain the reference images. 

Another recently delivered database is the large-scale 

Waterloo Exploration Database with 4,744 pristine natural 

images and 94,880 distorted images created from them [75]. 

Since the collection of individual subjective scores for such 

large dataset would be very difficult or even impossible, the 

Authors proposed three alternative test criteria to evaluate 

the performance of IQA models: pristine/distorted image 

discriminability test (D-test), the listwise ranking 

consistency test (L-test), and the pairwise preference 

consistency test (P-test). All the images in the database were 

divided into seven major groups: human, animal, plant, 

landscape, cityscape, still-life and transportation. 

VI. ALTERNATIVE APPLICATIONS OF IQA METHODS 

Image quality assessment methods, particularly full-

reference metrics which can be considered as similarity 

measures, may be useful for many different purposes. One 

of such “natural” areas of their applications may be the 

image and video quality assessment for computer games and 

computer graphics, as well as computer-generated images 

[76] with future possible applications in virtual and 

augmented reality. 

In computer games the localization of distortions may be 

as much important as the overall evaluation, however some 

of existing metrics can be efficiently applied for this purpose 

[77]. Therefore, some datasets and metrics with marked and 

subjectively assessed local distortions, especially game 

artifacts, are of particular interest [78]. 

Another recent application of full-reference IQA methods 

is their use for the evaluation of 3D printed surfaces. 

Although their direct application for such purposes is 

limited due to the unavailability of reference 3D prints, as 

well as the necessity of phase adjustments and colour 

calibration, the mutual comparison of image fragments is 

possible. The application of SSIM, CW-SSIM and STSIM 

metrics with the division of the image of the 3D printed 

surface into 4 and 16 parts was presented in the paper [79], 

whereas the application of feature similarity metrics 

(RFSIM and FSIM) was roughly analysed in [80]. An 

improved version of the application of SSIM, with the use of 

the Monte Carlo method to decrease the computational 

complexity, was proposed in [81], although its efficient 

application requires the additional phase adjustment of 

randomly chosen image fragments. 

The application of combined metrics for the evaluation of 

the 3D printed surfaces is one of the obvious directions of 

further research, possibly in combination with some other 

investigated approaches. 

VII. SUMMARY 

Regardless of numerous methods and approaches to 

image and video quality assessment, this task still remains 

one of the open challenges in image analysis.  

Considering recent successful applications of machine 

learning approaches, and particularly deep convolutional 

neural networks (CNNs), in various computer vision and 

pattern recognition problems, one of the future trends seems 

to be their application in referenceless image quality 

assessment. Nevertheless, a significant limitation may be the 

necessity of data augmentation for training the network, 

which can be partially solved using the large-scale datasets, 

such as Waterloo Exploration Database [75]. 

Another direction of research may be the development of 

colour IQA methods, conditioned by the wider availability 

of databases containing colour specific distortions, such as 

TID2013 [72]. A similar increase of interest of researchers 

may be expected for multiply distorted images, as well as 

video quality assessment utilizing inter-frame similarity 

instead of the classical frame-by-frame approaches.  

New image similarity metrics should also be stimulating 

for the development of texture similarity methods and better 

CBIR algorithms. They can also be partially useful for 

machine vision supported navigation and self-localization of 

mobile robots and autonomous vehicles in partially known 

environment. Texture analysis methods, also utilizing 

texture similarity assessment, may also be useful for terrain 

classification for autonomous landing of drones [82]. 
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