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Introduction 

Dynamical, linear discrete-time system can be 

described by finite set of coefficients of difference 

equations or state space model. The set define dynamics of 

the linear time-invariant system for all times k  
(infinite time horizon). In contradistinction the description 

of discrete-time linear time-varying systems requires in 

general definition of an infinite number of coefficients.  

In order to describe dynamics of time-varying 

discrete-time systems one can use following state space 

description equations with time-dependent matrices [1, 2, 

16, 18]:  

                          1 ,k k k k k  x A x B v  (1) 

              ,k k k k k y C x D v  (2) 

where kZ ,   kn
k x R ,   mk v R ,   ,pk y R

       , , ,k k k kn n n m p n p mk k k k
      A R B R C R D R

and   : , , .kn
k kn k n k   n Z N x R  

Above model can be converted into more general 

operators description [1, 2, 16, 18] with transfer operator 

defined by set of impulse responses 
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where 
1 0,k kh  denotes system (1)-(2) response to Kronecker 

delta  0k k   at time k1, i.e. after k1 – k0 samples.  

Nevertheless analyzing or processing data with 

infinite dimensional size is impossible. Additional 

simplifying assumptions allow one to describe the time-

varying system with finite set of coefficients. Linear time-

varying systems can be classified with respect to the 

simplifying assumption. Generally following classes of 

time-varying systems can be distinguished [3]: general 

time-varying, periodic time-varying, almost periodic time-

varying, almost time-invariant. Independently on the class 

of the system, but especially for time-varying systems in 

the general form analysis can be realized only on finite 

time horizon. It mean that accessible system data is limited 

by two constraints for indexes mink  and maxk  that define 

range for variable k 

   
  min max: \ .k k k k k k k    Z  (4) 

There are no assumptions about past and future 

system behaviour.  

Time-frequency methods for continuous time systems 

are well known [4–10] as well as frequency methods for 

discrete-time systems [11–14]. Many investigations has 

been made until now. Recently there are also known 

successful applications of time-varying approximations for 

nonlinear systems [17]. The time-frequency transform is 

formulated as parameterized extension of Laplace 

transform. General form of the transform for continuous 

time systems can be defined by generalised Weyl symbol 

[10, 15].  

Discrete-time formula of the Generalised Weyl 

Symbol can be written using digital set of parameterised 

impulse responses (5)  

 

      1 1
, 2 2

,
k n

h h k n k n


       (5) 

and the Discrete Fourier Transform (DFT) in following 

way 
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where  R  is arbitrary real number, usually bounded 

such that 0.5   and  is system response at time k1 for 

shifted by time k0 Kronecker delta 
0,k k , variable 

0,1, ,k N  represents discrete time k pt kT  and 

0,1, , 2 1l N   is connected with frequency, where 

discrete frequency l l N   and analogue frequency

 l pf l NT  where Tp is sampling period for digitalized 

systems. 

Time-frequency transformation can be computed 

directly from eq. (6) only for =  0.5 (time-varying Zadeh 

transfer function [4] 0.5   and frequency dependent 

modulation function [5] known also as Kohn-Nirenberg 

symbol [9] 0.5   ). For 0   one can apply fractional 

indexes approximation introduced in [15].  

Main aim of the paper is to develop new generalised 

fractional indexes – computational method which allows to 

determine generalised Weyl symbol for arbitrary real 

0.5,0.5 ,    not only for 0.5    (integer indexes 

method) and 0   (fractional indexes [15]). Parameter  

allows to shape the set of parameterised impulse responses. 

The selection of the parameter  in the generalised Weyl 

symbol enables selection of the best accuracy region for 

the time-frequency transform. 

Generalised fractional indexes approximation 

Definition. Generalised fractional index discrete time 

response value of one variable    ,  0,1 ,  h p p     

is defined as linear interpolation of h taken in following 

way 

        1 1 .h p h p h p        (7) 

Definition. Generalised fractional indexes discrete 

time response value of two variables 

   , ,  , 0,1 ,  ,h p m p m        is defined as 2-D 

linear interpolation of h taken in following way 
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(8)

 

Taking account (5) we have:  
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where floor denotes round toward minus infinity.  

Generalized fractional impulse response can be 

written as follows 
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(10)

 

Thus generalised discrete-time Weyl symbol 

approximation can be defined by substituting (10) in (6), in 

the following form:  

 
 

    

   

   

 

2 /
,

1

1 1 ,

1 1,
,

1 , 1

1, 1

N
j ln N

k l
n

h p m

h p m
L e

h p m

h p m

 

 

 

 







  
 
   

  
   
    

  (11) 

where variables , , , , ,a a b b    are defined above (9). 

Application of the generalised fractional indexes for 

generalised Weyl symbol computation.  

Time-invariant systems are always defined on infinite 

time horizon, thus all elements of the impulse response are 

always definite. Responses for time-varying systems do 

not need to be definite in general for all k . The system 

is defined only on some bounded time horizon (4). 

 
Fig. 1. Parameterized impulse response with 0.3    and 

fractional indexes approximation for 4th order Butterworth filter 

defined on finite time horizon 0,1,2,...,29k   

 

Computation of time-frequency Weyl symbol for 

systems defined on finite time horizon is not an easy task. 

Let us consider for example low-pass filter FIR 

Butterworth 4
th

 order filter with cut-off frequency 

0.2c  . The time horizon N=30 and is bounded by (4) 

where min max0 and 1k k N   .  

Fig. 2. 3D Magnitude-Time-Frequency diagram calculated for 

0.5    using fractional indexes impulse responses for system 

defined on finite time horizon 
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Impulse responses 
1 2,k kh  available for computation 

must fit the time horizon min max
1,2

.i
i

k k k

    For at 

least one index outside the time horizon 

min min
1,2

 or  i i
i

k k k k

    responses are indefinite. Fig. 1 

shows impulse responses (5) accessible for computations 

in respect to discrete variables k and n and parameter 

0.3    in (5). Inaccessible responses for indexes outside 

the range (past and future) are not plotted.  

Fig. 3. 3D Magnitude-Time-Frequency diagram calculated for 

0.5   using fractional indexes impulse responses for system 

defined on finite time horizon 
 

Applying parameterized impulse response (5) for the 

discrete-time low-pass filter mentioned above defined on 

finite horizon, three following 3D time-frequency diagrams 

are calculated and plotted in Fig. 2, Fig. 3 (integer indexes 

0.5   ) and 4 (generalised fractional indexes 0.3  

 ). Inaccessible impulse responses 

  1 2 min min
1,2

, :  or  i i
i

h k k k k k k


 
   

 
  

are substituted for computations by zeros. In Fig. 2–Fig. 4 

visible are finite time horizon boundary effects.  

 
Fig. 4. 3D Magnitude-Time-Frequency diagram calculated for 

0.3    using fractional indexes impulse responses for system 

defined on finite time horizon 

 

Fig. 2 shows Kohn-Nirenberg symbol [9] with 

0.5    and the high accuracy at the beginning part of 

the time horizon while in fig. 3 is plotted time-varying 

transfer function [4] with 0.5   and the high accuracy at 

the end part of the time horizon. Fig. 4 is 3D magnitude of 

Generalised Weyl Symbol with 0   calculated using 

fractional indexes approximation for impulse responses. 

The high accuracy are in the beginning-middle part of the 

time horizon. Accuracy for the end and beginning part of 

the time horizon is worse. Applying for computations 

generalised Weyl symbol with fractional indexes it is 

possible to choose precisely the part of the time horizon to 

compute with the high accuracy.  

Conclusion 

Time-frequency transformation is well known tool for 

systems and signals analysis. Accuracy of discrete-time, 

time-frequency diagrams depends mostly on the length of 

the time window. For systems defined on finite time 

horizon the length samples outside the time horizon are 

inaccessible. Generally there are two ways to analyse the 

system: use very short time-window, at least 2 times 

shorter then time horizon, or analyse the system on the full 

time horizon with incomplete data (without data outside 

the defined time horizon.  

Short time horizons results in boundary effects 

(boundary distortions) on the time-frequency diagram – the 

beginning and the end of time horizon. Using additional 

parameter   one can continuously choose the best 

accuracy region from the finite time horizon. Negative 

values of the transformation parameter close to 0.5    

results in the best accuracy at the beginning of the time 

horizon, whereas positive values close to 0.5   gives 

the best accuracy at the end of the time horizon. Middle 

values of   close to zero ensures the best accuracy in the 

middle of the time horizon.  
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P. Orlowski. Generalised Fractional Indexes Approximation with Application to Discrete-Time Generalised Weyl Symbol 

Computation // Electronics and Electrical Engineering. – Kaunas: Technologija, 2012. – No. 7(123). – P. 13–16. 

Unique description of discrete-time, linear time-invariant systems on infinite time horizon requires only definition of finite number 

of coefficients, usually relatively small. In contradistinction the description of discrete-time linear time-varying systems requires in 

general definition of an infinite number of coefficients. Nevertheless neither analyzing nor processing data with infinite dimensional size 

is impossible. The main aim of the paper is to develop new generalised fractional indexes – computational method which allows to 

determine generalised Weyl symbol for arbitrary real  not only for =±0.5 (integer indexes) and =0. Parameter  allow to shape the 

set of parameterised impulse responses. The selection of the parameter  in the generalised Weyl symbol enable selection of the best 

accuracy region for the time-frequency transform. Numerical examples illustrates how the approximation of the system response with 

generalised fractional indexes increase accuracy for the computation of the discrete-time, time-frequency transformation calculated on 

finite time horizon. Ill. 4, bibl. 18 (in English; abstracts in English and Lithuanian). 

 

 

P. Orlowski. Apibendrinta trupmeninių indeksų aproksimacija naudojant apibendrintų Veilo simbolių skaičiavimą // 

Elektronika ir elektrotechnika. – Kaunas: Technologija, 2012. – Nr. 7(123). – P. 13–16. 

Skirtingai nuo diskrečiųjų laiko sistemų, tiesinėms laikui bėgant kintančioms sistemoms aprašyti reikia apibrėžti begalinį koeficientų 

skaičių. Tačiau begalinio dydžio duomenų nei analizuoti, nei apdoroti neįmanoma. Pagrindinis šio darbo tikslas sukurti naują 

apibendrintų trupmeninių indeksų skaičiavimo metodą, kuris leistų nustatyti apibendrintą Veilo simbolį realiam kintamajam , ne tik kai 

=±0,5 (sveikųjų skaičių indeksai), bet ir kai =0. Parametras  leidžia apibrėžti impulse parametrizuotų atsakų rinkinį. Skaičiavimų 

pavyzdžiai rodo, kaip sistemos atsako aproksimavimas, naudojant apibendrintus trupmeninius indeksus, padidina skaičiavimo tikslumą. 

Il. 4, bibl. 18 (anglų kalba; santraukos anglų ir lietuvių k.). 

 


