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1Abstract—The widespread use of Voltage Source Converter 

based High Voltage Direct Current Transmission (VSC-HVDC) 

technology has significantly increased the complexity of grid 

configuration and operation, which demands higher quality of 

AC/DC state estimation. The bad data detection and 

identification plays a vital role in ensuring the accuracy of state 

estimation outcomes. This paper presents a new approach to 

bad data in hybrid AC/DC grids based on the combined deep 

belief network (DBN) and K-means clustering method. First, 

the DBNs are trained separately for active and reactive power 

given the characteristics of VSC-HVDC by which the bad data 

can be detected. Then, an improved K-means is used for 

clustering the DBN outputs by setting the mean and the number 

of the samples within the clusters as two metrics for bad data 

identification. Finally, the case study is performed in a modified 

IEEE 14-bus system and the results demonstrate the 

effectiveness of the proposed method in terms of both the 

accuracy and efficiency. 

 
 Index Terms—AC/DC; VSC; Bad data; Deep belief network; 

K-means clustering; State estimation. 

I. INTRODUCTION 

The technical development of Voltage Source Converter 

based High Voltage Direct Current Transmission 

(VSC-HVDC) has become an effective solution to the critical 

issue of renewable energy integration and utilization [1]. 

However, the complexity of the hybrid AC/DC network is 

challenging for the system operation and control, which 

relies on accurate information of the grid status [2]. Since the 

bad data is inevitable in the tele-measuring process, it is 

important to identify them to ensure the reliability of state 

estimation, and, thus, provide system operators with 

data-based advanced application module for the AC/DC 
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system. 

A traditional way of identifying bad data is to take the 

normalized/weighted residuals as eigenvalues, such as 

Largest normalized residual (LNR) test method [3], [4], 

which need repeated detection and identification of the bad 

data in a recursive manner after the state estimation. 

Specifically, if there are k detectable bad measurements, the 

state estimation based on weighted least square (WLS) 

algorithm along with LNR test should be executed at least k 

times before removing all bad data in the entire measurement 

set. This type of approaches is computationally intensified in 

the large-scale hybrid AC/DC power systems, given the 

high-dimensionality of the residual sensitivity matrix.  

At present, the data-driven learning algorithms, like 

support vector machine (SVM) and artificial neural network 

(ANN), have been gaining increasing popularity in the 

application of bad data detection and identification [5], [6]. In 

particular, the research on this field is inspired by the data 

mining techniques that combine the historical data and prior 

knowledge. In [7], Chen et al. presents a SVM-based 

approach to identifying the bad measurement data, as well as 

its application in the generation automatic voltage control 

(AVC) systems. However, this method is only suitable for 

small sets of training samples. In other words, it builds up the 

identification model for one component at a time, e.g., a 

single generator or a transmission line, which is 

computationally inefficient and has low accuracy. In [8], a 

back propagation (BP) neural network is constructed as a 

filter of the state estimation, and the bad data is identified 

using the measurement section in the standard working 

conditions to train the network. Although the BP neural 

network has strong capabilities of self-learning and fitting the 

complex and non-linear functions, its network parameters are 

initialized arbitrarily, which may lead to poor generalization 

and be easily trapped into local optimization. To circumvent 

this problem, an alternative way is to enlarge the scale of 

training for the entire power flow model. As the expansion of 
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AC/DC grids along with the measurement types and 

influencing factors, shallow networks may run into the 

bottleneck in reflecting the complex relationships between 

input and output variables.  

This paper explores an application of using the deep belief 

network (DBN) approach to the bad data detection and 

identification in hybrid AC/DC power systems. The training 

datasets are pre-processed in blocks based on the 

characteristics of the hybrid system integrating VSCs, and 

two DBNs are trained respectively for active and reactive 

power. The DBN outputs are weighted residuals that are used 

to detect the bad measurements through hypothesis testing. 

As compared to BP method, the DBN has better initialized 

network parameters obtained from the unsupervised greedy 

learning algorithm layer by layer in the pre-training, which 

could avoid the issue of under-fitting or over-fitting [9]. 

When the bad data in the measurement section are detected, 

we use an improved K-means algorithm based on distance 

cost function to cluster the pre-processed DBN outputs. This 

clustering approach is to identify the bad data by setting the 

number of clusters and the distance to the clustering centre. 

Finally, the effectiveness of the proposed method is verified 

in a modified IEEE 14-bus test system with multiple VSCs.  

The main contribution of the paper is to present an 

effective data-driven approach to bad data detection and 

identification in the hybrid AC/DC power systems, which 

could avoid the issue of computing the high-dimensional and 

full rank residual sensitivity matrix. It has made a big 

progress in the aspects of both practical application and 

detection methodology, which are detailed as:  

1. The proposed decoupling strategy and the generalized 

training model for DC parts are also adaptable to AC/DC 

network, and, thus, need no additional DC detection 

modules; 

2. The computation burden of WLS estimator could be 

reduced by enabling the bad data to be detected and 

eliminated a priori; 

3. The two DBNs separately designed for active and 

reactive power could lower the error detection rate, 

improve the training efficiency, as well as provide 

optimized pre-processing data (initial values) for K-means 

clustering; 

4. Two identification indicators are newly defined 

according to the characteristics of power network. The bad 

data of different types and of deviation degrees are finally 

identified using the improved K-means clustering method 

based on the distance cost function. 

The rest of the paper is organized as follows. Section II 

introduces the state estimation model and the decoupling 

strategy for the AC/DC system. A brief introduction of DBN 

is given in Section III, together with its application in bad 

data detection. In Section IV, the K-means clustering method 

based on the distance cost function is presented to handle the 

DBN outputs for bad data identification. Section V shows 

some comparative case studies for various scenarios, while 

concluding remarks are made in Section VI. 

II. STATE ESTIMATION MODEL OF THE AC/DC SYSTEM 

The VSC is a critical control element in the AC/DC 

network, which is functioned as a connection bond between  

the AC main grid and DC subsystems [10]. Suppose that a 

hybrid system is coupled via nc VSCs. Figure 1 shows the 

steady-state single-phase equivalent model of the ith VSC. 

Note that the harmonic components are neglected in the 

steady-state operation.  
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Fig. 1.  Steady-state model of single-phase VSC. 

As can be seen in Fig. 1, Us,i is the voltage magnitude at the 

joint bus, called point of common coupling (PCC). The AC 

bus is connected successively to the converter bridge and DC 

network through the filter Xf,i  and converter reactor Xl,i. Uc,i is 

the voltage magnitude of VSC output. i is the phase angle of 

the pulse width modulation (PWM), which represents the 

difference between the AC voltage angle and the modulating 

wave [11].  

The non-linear measurement equations in state estimation 

of the AC/DC system can be expressed as: 
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where z, η and x are vectors of measurement, measurement 

errors, and state variables, respectively; h(x) is measurement 

vector function; Ui and θi are voltage magnitude and phase 

angle of bus i in the AC grid. ud,i is the DC voltage.  

To enable the decoupling of the active and reactive power 

in the hybrid system, we need to omit some secondary factors 

in the Jacobi matrix based on the steady-state characteristics 

of AC/DC grids. Given that the negative sequence voltage in 

the grid is confined to 1.5 % of the rated power, to ensure the 

long-term operation of VSCs, the negative sequence current 

through the converter reactor Xl,i should be no larger than 

5 %~10 % of the rated VSC current [12]. Thus, we 

have
,min ,max=1/2 sin(2 ) [0.15 ~ 0.29] p.u.l iX    and 

,max [8.6 ~ 17.4 ]i    . It can be deduced that under normal 

operations the coupling between the active power of VSC 

(Ps,i, Pc,i) and DC state variable (Uc,i), the reactive power (Qs,i, 

Qc,i) and the DC voltage (ud,i) and angle (i) are weak and 

negligible [13]. Besides, the entries ∂P/ ∂U and ∂Q/∂θ in the 

Jacobi sub-matrix of AC side are close to 0, indicating weak 

correlations of active and reactive measurements. Therefore, 

it is reasonable to separate the active and reactive power 

measurements. The modified measurement and Jacobi 

matrices are constructed as: 
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where HP (xP) and HQ (xQ) are Jacobi matrix regarding the 

active and reactive power measurements, respectively. ZP 

and ZQ are vectors of active and reactive measurements, 

among which P
m 

i  and P
m 

ij are measurements for AC active 

power injections and line flows, respectively; P
m 

d represents 

DC active power measurements associated with the ith VSC 

including Pd,i, Ps,i, Pc,i , and Pd,ij. Q
m 

i  and Q
m 

ij are measurements 

for AC reactive power injections and line flows, respectively; 

Q
m 

d represents reactive power measurements associated with 

the ith VSC including Qs,i and Qc,i. 

III. BAD DATA DETECTION USING DBN 

The DBN could well approximate the non-linear mapping 

of multiple inputs to outputs and has some capability of 

fault-tolerance [14]. It provides a possible solution to the bad 

data detection and identification, since it is especially useful 

for large datasets. The critical problem is how to design the 

DBN-based data detection model for an effective training. 

A. Bad Data Detection Model 

As is discussed in Section II, the modified sets of active 

and reactive power measurements are weakly coupled in the 

AC/DC system integrating VSCs. Therefore, two DBNs are 

trained separately to detect the bad data, one for active and 

one for the reactive power to reduce the large training size 

and improve the efficiency.  

Since the high requirements of training samples for 

reliable outcomes, we take the historical grid measurements 

as input data and the state estimation results as outputs. Based 

on the decoupling strategy assumed in Section II, the active 

and reactive power measurements are sorted into two training 

datasets as follows: 
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where the active and reactive training datasets are taken from 

(4) and (5), respectively. zP, yP  and zQ, yQ are the DBN inputs 

and outputs for active and reactive power, respectively. 

The architecture of the proposed DBN for bad data 

detection is shown in Fig. 2. It is composed of one input layer, 

one output layer, and several hidden layers. The lower layers 

aim at extracting features from the input data that are then 

clamped into higher layers. The output of the top layer is a BP 

neural network, functioned as the regression layer. wl is the 

set of connection weights between the l-1th and the lth 

hidden layer. bl is the bias vector of the neurons in the lth 

layer. 
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Fig. 2.  DBN structure for bad data detection. 

B. DBN Training  

A DBN is piled up by several basic layers, called restricted 

Boltzmann machine (RBM), which are trained independently 

to provide the network with better initial parameters (wl, bl), 

and, thus, solve the intrinsic problem of local optimum for 

most ANNs [15]. The training process contains two stages: 

unsupervised pre-training and supervised fine tuning using 

BP algorithm.  

The joint probability of the visible units ( )ivv  and 

hidden units ( )jhh  for each RBM is given by [16] 
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where ( , ; )E v h ψ  is the energy function defined as 
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where { ( ) , ( ) , (b ) }ij n m i n j mw a   ψ w a b  are sets of 

network parameters of the RBM. wij is the connecting weight 

between the visible unit vi and hidden unit hj. ai , and bi 

denote the bias of the units vi and hj. n and m are the number 

of visible and hidden units, respectively.  

Since there are no connections between any two hidden 

units within the same layer, given a particular random input 

configuration v, the probability of the binary unit hj set to 1 

becomes [17] 

 
1
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where f(x) is the sigmoid function, i.e., f(x)=(1+e-x)-1. 

Similarly, given the hidden state h, the probability of 

visible unit vi set to 1 is given by  

 
1

( 1 | h) ( ).
m

i ij j i

j

P v f w h a


    (9) 

As for the above RBM model, this paper uses the 

contrastive divergence (CD-k) algorithm to optimize the 

parameters to fit the input training datasets [18]. The update 

rules for the parameters can be expressed as: 
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where 
CD  represents the learning rate.  denotes the 

expectations for the random variable. vi' and hj' are the 

updated states of vi and hj at the kth step. 

Specifically, the training process of RBM, also called 

pre-training [19], is unsupervised by nature that each RBM 

receives the inputs from the previous layer and feeds to the 

RBM in the next layer. Hence, the parameters of each RBM 

are updated accordingly, starting by the lower-level RBM 

and progressively moving up in the hierarchy. 

After the pre-training stage, the resulting network is 

fine-tuned using the BP algorithm to reach the global 

optimum [20]. We take the sum of square errors of outputs as 

the loss function defined as 

 
21

( ) ( ) ,
2 x

C y a z
N

  ψ
ψ  (11) 

where N is the total training samples. z denotes a specific 

training sample. a
ψ

 is the network outputs for the input z. y is 

the associated expected outputs. The parameters   are 

adjusted in the negative gradient direction that minimize the 

error ( )C ψ . 

C. Bad Data Detection  

When the training datasets are large enough, the trained 

DBN could well approximate the complex non-linear model, 

and is, thus, suitable for bad data detection. The active and 

reactive measurements to be detected are input to the DBN, 

we obtain the weighted output residual 
bwr , which can be 

calculated as  

 
, ,

i i

bw i

i

z o
r


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where 
iz  and 

io  are the ith measurement value and the ith 

DBN output, respectively. 
i  is the standard deviation of the 

ith measurement point.  

The output of the trained DBN can be very close to the 

expected value, i.e., 
i io y . Since the neural networks are 

error-tolerated, a few of bad data input to the network will not 

largely influence the overall training outcomes, and the 

relationship between the DBN output and the expected value 

still holds. Based on this, the bad data could be detected by 

setting the threshold for
bwr . Given that under normal 

measurement conditions the probability of the measurement 

error greater than 3
i  is very low [21], we set the following 

threshold   as the bad data detection criterion 

 , .bw ir   (13) 

Using (13) to detect the AC/DC measurements one by one, 

i.e., any measurement that exceed this threshold are 

considered as the suspected bad data. We can come to the 

remarks that, if all of the output residuals are less than the 

threshold, the sets of measurements are normal and can be 

proceeded to the state estimation directly. On the other hand, 

if there exists bwr
 greater than the threshold, output the 

datasets that contain bad measurements, and includes them to 

the database for the subsequent bad data identification based 

on K-means clustering. 

IV. BAD DATA IDENTIFICATION BASED ON K-MEANS 

CLUSTERING 

A. K-means Clustering Method  

The K-means method aims at partitioning the datasets into 

k different clusters. Each object in the set is distributed to the 

cluster, which has the shortest Euclidean distance. Then, we 

re-calculate the means and form the new clustering centers. 

This process is repeated until the function in (14) converges 

[22]: 
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where E is the error criterion function, denoting the sum of 

square errors of the clustering objects x. 
km  is the mean of 

the kth cluster 
kC , representing the center of the cluster. 

( )dist   denotes the Euclidean distance. xi and xj are two 

p-dimensional objects. 

The obtained k clusters, based on the distance error 

criterion, have the merits of independence and 

compactability, which could maximize the discrepancy of 

different clusters and is beneficial to tell apart the bad data 

from normal measurements. Therefore, the aim of identifying 

the bad data can be fulfilled by analysing the characteristics 

of different clusters.  

B. Bad Data Identification   

The output residuals of active and reactive power based 

DBNs are taken as the database for clustering. Since there is 

little chance that several bad data appear in the same set of 

measurements at one time based on the intrinsic feature of 

power systems, we can set the number of clusters 
maxk  and 

initialize the value k = 2. 

The ideal number of clusters should be two in this 

identification issue, i.e., one for sets of normal measurements 

and one for bad data. However, given that the degree of 

deviation for the bad data can be different, k = 2 may not be 

the optimal number of clusters. We, therefore, use the 

distance cost function D in (15)–(17) to find the optimal 

number of clusters, which could reflect two essential indices 

of the distance in-between and within the clusters [23], i.e., Lg 

and Ln: 
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where mk and m are the means of the clustered and global 

objects, respectively. Lg is the sum of the distances from the 

clustering center Ck to the global center m. Ln is the sum of 

distances from each object within the cluster to the associated 

clustering center mk. 

The clustering analysis is carried out for
max2 ~rk k  

clusters by calculating and searching for the minimum 

distance cost function D* and outputting the associated *

rk  

clusters. Given that there is a few bad data in the sets of 

measurements for power systems and they usually deviate 

large distances from normal measurements, we choose two 

indicators (cluster center distance mk and number of objects 

within the cluster) as the reference indices for bad data 

identification. Within the *

rk  clusters, the clusters of small 

object numbers along with big center distance mk are 

regarded as the target sets, which contain the bad data and 

need further identification for each data object.  

V. CASE STUDY 

A. The Bad Data Detection Using DBN  

The proposed method is tested on a modified IEEE 14-bus 

AC/DC system incorporating VSCs (Fig. 3).  
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Fig. 3.  The modified IEEE 14-bus test system incorporating VSCs. 

The training datasets are normalized first with active and 

reactive AC/DC measurements as DBN inputs and state 

estimation results as outputs. Meanwhile, to make the test 

results more applicable to real power system operations, the 

loads are magnified to simulate the sets of power flow 

measurements under different conditions. Specifically, the 

AC/DC loads are multiplied by a random number n (n=1~4) 

to generate 4000 sets of power flow measurements. The 

parameters of converter reactance and resistance of each 

VSC are set to be 0.15 p.u. and 0.012 p.u., respectively. The 

DBNs used in the case study have two hidden layers, with 25 

and 21 units for the active power, while 24 and 20 units for 

the reactive power. The learning rate is set to be 0.01 and the 

number of iteration is 5000. 

1) Test results for small bad data 

Firstly, we set the small bad data (error magnitude = 10 σ) 

for the power flow measurements (Ps,3, Qs,3, P14-9 , and Q14-9) 

to simulate the bad data in the AC/DC measurement system. 

Multiple tests on the bad data detection are performed and the 

results (for active power only) are shown in Table I. 

TABLE I. SMALL BAD DATA RESULTS FOR ACTIVE POWER OF 

DBN OUTPUTS. 

Multiple of AC/DC 

loads 

Suspect set 

Measurement (rbw) 

1 P14-9 (8.8157) Ps,3 (9.3919) 

2 P14-9 (8.2386) Ps,3 (9.7690) 

3 P14-9 (7.9185) Ps,3 (8.8965) 

4 P14-9 (8.6939) Ps,3 (8.8127) 

Note: the bad data points are P14-9 and Ps,3. 

It can be seen that the weighted residual of DBN outputs 

rbw for the active power measurements are larger than the 

predefined threshold γ = 3, and several bad data is 

successfully detected. Similar conclusions can be made for 

the reactive power measurements. Therefore, the test results 

demonstrate that whatever the bad data exist in AC or DC 

measurements, it is possible to effectively detect and identify 

the small bad data, as well as their measurement point 

positions using the DBN. 

2) Test results for large bad data 

This time we set the large bad data (error magnitude = 20 

σ) in the same power flow measurements (Ps,3, Qs,3, P14-9, and 

Q14-9) for multiple trials of bad data detection and 

identification. The results of the active power outputs are 

shown in Table II. 

TABLE II. LARGE BAD DATA RESULTS FOR ACTIVE POWER OF 

DBN OUTPUTS. 

Multiple 

of AC/DC 

loads 

Suspect set 

Measurement (rbw) 

1 
P14 

(4.0427) 

P9-14 

(3.3176) 

P14-9 

(17.4259) 

Ps,3 

(19.2218) 
--- 

2 
P14 

(4.3521) 

P14-9 

(17.9608) 

Ps,3 

(19.4976) 
--- --- 

3 
P14 

(4.9251) 

P10-11 

(3.3372) 

P13-14 

(3.9853) 

P14-9 

(17.5451) 

Ps,3 

(18.8767) 

4 
P14 

(4.2853) 

P14-9 

(18.1639) 

Ps,3 

(18.6243) 
--- --- 

 

It is observed that for large bad data, the detection results 

are the suspected bad measurement sets. Each set of power 

flow measurements not only contains the bad data (P14-13 and 

Ps,3), but has a few normal measurements. This is because 

that large bad data may influence the training output, which 

leads to the errors by misdetecting the normal measurements. 

Similar conclusions can be made for the reactive power 

measurements. 
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3) Comparisons of training performance 

Comparative studies are performed using the sets of 

measurements in Table II between the proposed DBN (active 

and reactive power model), decoupling strategy, and DBN 

(network power model) and BP neural network. In order to 

quantify and compare the accuracy of the training models 

above, deviation of training outputs based on weighted 

output residual 
bwr  is defined below: 

     Deviation of training outputs    

 =
     

.
     

bw

bw

mean value of r among the rest meas

mean value of r among suspect bad data
 (18) 

Note that number of the rest meas = number of meas - 

number of suspect bad data. 

The smaller the deviation of training outputs is, the more 

accurate the training results are. That is, better-preprocessed 

database can be provided to K-means clustering, which 

facilitate identification of bad date. As can be seen from Fig. 

4, the training deviation of the proposed DBN (active and 

reactive power model) is similar to DBN (network power 

model), and is better than that of BP network. It shows that 

decoupling training strategy of DBN maintains almost the 

same accuracy as the conventional DBN (network power 

model). In addition, comparisons of detection results are 

shown in Table III. It can be seen that the number of data 

detected by mistakes is reduced using the DBN compared to 

those of BP network, and the ratio of error detection is 

decreased by 18.03 %. 
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Fig. 4.  Deviation of training outputs comparisons. 

TABLE III. COMPARISONS OF BAD DATA DETECTION. 

 
Multiple of AC/DC loads Averag

e 1 2 3 4 

Number of 

suspect bad 

data 

BP 6 4 7 5 5.5 

DBN 
(Network 

power 

model) 

4 3 5 3 3.75 

DBN 
(Active and 

reactive 

power 

model) 

4 3 5 3 3.75 

Number of 

good meas. 

Identified 

as bad 

BP 4 2 5 3 3.5 

DBN 
(Network 

power 

model) 

2 1 3 1 1.75 

DBN 
(Active and 

reactive 

power 

model) 

2 1 3 1 1.75 

Finally, the computation time for two training models are 

compared. One is the traditional network power model, and 

the other is the proposed classified power model. The results 

are shown in Table IV.  

TABLE IV. THE RESULTS OF TRAINING TIME. 

Training model IEEE 14 IEEE 30 

Network power model 100 100 

Active and reactive 

power model 
56.21 42.36 

 

It is clear that the classified active and reactive power 

model is more computationally efficient and takes the 

advantage when the system is expanded. 

B. The Bad Data Identification Using K-means Clustering  

The weighted residual of DBN outputs are the 

pre-processed input data for the K-means clustering, which is 

used for bad data identification based on the two indicators 

(mean and number of the sample within the cluster). Take an 

example of the sets of measurements in Table II with the 

loads multiplied by 3; we examine the effect of identification 

for several large bad data of similar deviation degree (Case 1). 

The results are shown in Table V.  

TABLE V. BAD DATA IDENTIFICATION RESULTS FOR K-MEANS 

CLUSTERING (CASE 1). 

Number 

of clusters 

Mean value  of the 

sample within the 

cluster 

Distance 

cost function 

D 

Bad data 

2 18.2109(2)、1.3557(57) 76.4421 Ps,3 P14-9 

3 
18.2109(2)、2.5296(20)

、0.7419(37) 
77.7763 Ps,3 P14-9 

4 

18.2109(2)、3.1513(10)

、1.5413(22)、
0.5097(25) 

79.0238 Ps,3 P14-9 

5 

18.2109(2)、4.2374(3)

、2.2247(17)、

1.0809(20)、0.3432(17) 

80.3625 

Ps,3 P14-9 

P14 P2 

P13-14 

 

It can be seen that the distance cost function D reaches the 

minimum when k = 2, indicating the best identification result. 

As compared to the suspected bad datasets in Table II, the 

bad data points P14-13 and P14-9 are identified, while the 

normal measurements P14, P10-11, and P13-14 are not detected. 

This demonstrates that the K-means clustering could 

effectively reduce the range of the suspected bad datasets and 

facilitate the bad data identification. 

TABLE VI. BAD DATA IDENTIFICATION RESULTS FOR K-MEANS 

CLUSTERING (CASE 2). 

Number of 

clusters 

Mean value  of the 

sample within the 

cluster 

Distance 

cost function 

D 

Bad data 

2 19.2754(1)、1.0270(58) 77.5405 Ps,3 

3 
19.2754(1)、2.5915(10)

、0.7011(48) 
78.8680 Ps,3 

4 
19.2754(1)、7.4193(1)、

1.7040(18)、0.5507(39) 
77.4446 

Ps,3 

P14-9 

5 

19.2754(1)、7.4193(1)、

1.8834(13)、0.9505(23)

、0.2763(21) 

80.1161 
Ps,3 

P14-9 

 

Set the bad data of different deviation degree in the 

measurements P14-9 and Ps,3 (Error magnitude = 9 σ and 20 σ, 
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respectively) and keep other conditions unchanged, we can 

test the effect of identification for bad data with different 

error magnitude (Case 2) as shown in Table VI. 

It is observed that the optimal number of clusters for the 

bad data with different error magnitude is not the ideal value 

(k = 2). The optimal k should be 4 for a minimum distance 

cost function D, where we have the best identification results.  

VI. CONCLUSIONS  

In this paper, we present a new approach for bad data 

detection and identification using the deep belief network and 

K-means clustering in the hybrid AC/DC grids. The 

following conclusions can be drawn as follows: 

1. In terms of the effectiveness, the DBN-based approach 

could detect and identify the position of the small bad data 

measurements. For large bad data, the suspected sets of 

measurements can be detected. As compared to the BP 

neural network, the DBN could effectively reduce the 

range of bad datasets, as well as the ratio of error detection 

by 18.03 %; 

2.  In terms of the training efficiency, two DBNs are 

trained separately for the active and reactive power based 

on the characteristics of AC/DC grids. This model is 

particularly computationally efficient, when the system is 

expanded; 

3.  In terms of the applicability, the K-means clustering 

method is used to identify the exact bad data from the 

suspected sets of measurements. This method is valid for 

both AC and DC measurements and would not be affected 

by the complexity of the system topology.  
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