
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

1Abstract—In the paper, a new construction technique for

virtual network (e.g., Virtual Private Network (VPN)) based on

flow permutation algorithm is proposed. In existing methods

for creating virtual networks, whereby virtual networks are

constructed one by one in time and the new virtual network can

use only the remaining resources, it could be non-optimal. Our

approach treats all traffic flows simultaneously and is capable

of balancing the network much better than other existing

techniques. As we show, the proposed new construction

technique work well, even in the condition of hard loaded

networks operating on the edge of capacity, i.e., in situations

when traditional techniques could cause unbalanced network

and significant congestion problems. For huge number of traffic

flows, heuristic algorithm, whose complexity rises linearly, is

evaluated.

 Index Terms—Computer networks; Network topology;

Virtual private networks; Routing protocols; Algorithms.

I. INTRODUCTION

This paper is concentrated on virtual networks (sub-

networks) constructed over a physical network. It means that

we use a part of physical network resources (BW-

bandwidth) to enable service as Virtual Private Network

(VPN) broadly offered from the service provider to the

users. Link capacity between ending points (network nodes)

has to be sufficient to enable services to the users, but the

capacity utilization of the physical network has to be

optimal.

In the condition of the hard loaded network working on

the edge of capacity, the existing techniques based on pure

Shortest Path First (SPF) algorithms are not sufficient. In

general, this problem is common with traffic routing. As it is

an offline calculation, we can perform much more

complicated computing techniques than for online traffic

routing. We can say that each virtual sub-network (e.g.,

VPN) consists of a number of traffic flows connecting pairs

of endpoints (nodes) in the customer network as we can see

from the example shown in Fig. 1. The demanding

throughput (BW) can be equal in the whole sub-network, but

it is not necessary. Normally, on some links, the throughput

has to be higher to satisfy aggregated traffic consisted of

Manuscript received 18 March, 2019; accepted 30 January, 2020.

many flows passing to the different locations. The most

important fact for multiple virtual networks functioning

together in the same physical network, is that new VPN

cannot be constructed independently. Also, the Quality of

Service (QoS) for data transmission over each virtual

network (sub-network) has to be maintained carefully.

Fig. 1. An example how we can construct the new virtual network using K-

shortest path algorithm and Prim’s Minimum spanning tree algorithm.

Source: authors.

Now, we are focused on the physical network with

existing virtual networks to enable the construction of a new

virtual network. Here, we talk about the resources (link

capacity) that are unused as remaining resources. The set of

nodes can be represented with V = {v1; …; vi;…; vN}. A link

between pair of nodes vi and vj is represented with eij and the

set of all links in the network is represented with E. The

remaining resources of each link eij is we
ij and the set of those

resources is represented with WE. In the process of the

network virtualization, we can represent the physical

network with G = (V; E; WE).

The user generates to a service provider a new traffic

demand for the construction of the new virtual network (Fig.

2). The request consists of information related to the nodes

{v∗1; …; v∗H} that should be the part of the new virtual

network and the amount l of the network resources (link

capacity). The service provider has to find out the optimal

configuration of the new virtual network to satisfy users’

demands.

Virtual Network Construction Technique,

Treating All VPNs Simultaneously

Srecko Krile1, *, Martin Medvecky2
1University of Dubrovnik, Electrical Engineering and Computing Department,

Cira Carica 4, 20000 Dubrovnik, Croatia
2Slovak University of Technology, Faculty of Electrical Engineering and Information Technology,

Institute of Multimedia Information and Communication Technologies,

Ilkovicova 3, 812 19 Bratislava, Slovakia

srecko.krile@unidu.hr

http://dx.doi.org/10.5755/j01.eie.26.2.22981

77

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

Fig. 2. An example of path migration as the crucial element of classical approach in VPN construction. Source: authors.

In Section II, we compare traffic routing technique with

virtual network construction, as both problems are very

similar. In Section III, we explain different methods used by

other authors mostly treated as the classical approach with

some improvements. In Section IV, we propose a new

approach with an algorithm based on flow permutations.

After that, in Section V, we validate it on some simple test-

examples. In Section VI, we explain a heuristic algorithm

appropriate for solving huge problems with many traffic

flows. The calculation of heuristic is divided into stages. In

Section VII, we talk about the network criticality/robustness

as an important measure to decide, which traffic solution is

better than another. Finally, in Section VIII, conclusions are

presented.

II. RELATION TO THE TRAFFIC ROUTING PROBLEM

Traffic routing problems in computing networks are

widespread in virtual network construction. Both are solved

mostly with algorithms based on the Shortest Path First

(SPF) approach. In traffic routing, it has to be done with

online algorithms that could be more demanding related to

the speed of calculation. Similar techniques are used in

distributed routing (e.g., Multi Protocol Label Switching –

MPLS) same as in centralized routing, e.g., in Software

Designed Networking (SDN). It means that virtual paths for

each traffic flow are defined only once, at the beginning of

service invocation, and stay unchanged until the service

ends. Of course, link state algorithms, e.g., Open Shortest

Path First (OSPF), Intermediate System to Intermediate

System (ISIS), take care of network capacity dynamically,

using the remaining capacity to construct (calculate) new

traffic path optimally. It functions well only if capacity on

the path is sufficient; that is the case in over-provisioned

networks. Also, the path splitting of existing flows can help,

but it is not allowed for specific services. Therefore, in the

condition of hard loaded networks working on the edge of

capacity, VPN construction could cause unbalanced network

and significant congestion problems [15]. It means that we

still have no sufficient routing technique for such hard traffic

load [23]. In that case, new traffic demand could be rejected,

no matter if existed traffic flows could be much better

routed.

In the paper [2], the authors proposed another routing

technique instead, one that takes care of all existing traffic

flows at the same time. It is based on classical SPF

algorithm, but in combination with permutations of all

existing traffic flows crossing the network simultaneously. In

that research, it is shown that such an approach can position

traffic paths more efficiently and decrease congestion

problems in a given network. However, such complicated

calculation is time-consuming, so we still cannot perform

such a technology online. Notably, it is hard to introduce it

in the networks with distributed routing (e.g., MPLS), where

many online algorithms work simultaneously in different

edge routers. Nowadays, the SPF technique applied to the

remaining network capacity is the only acceptable solution.

Of course, the introduction of artificial intelligence based on

traffic statistics can help a lot, but generally, we cannot

optimize the whole traffic jet. In centralized oriented routing

(e.g., Software Defined Networking (SDN)) with main

controller (e.g., Python-based software defined networking

(POX)), as we have in Open Flow networks, there is some

78

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

perspective to introduce such capable routing technique. In

that way, we could find out the optimal utilization of

network capacity for all existing traffic flows crossing the

network simultaneously [21], [22].

The main goal of this research is to show that the

application of such traffic routing algorithm can be a good

solution for the offline VPN construction taking care of all

existing traffic flows at the moment of introduction of the

new one traffic.

III. PREVIOUS WORK

In the paper [1], we have a survey of methods we can use

to design a new virtual network as an overview of some

papers [3]–[12]. Also, in papers [1] and [13] the new

solution of VPN sub-network construction is proposed. It is

based on the K-shortest path algorithm and Prim’s Minimum

spanning tree algorithm with some modification consisting

of adding techniques: the path splitting and the path

migration. It is the improvement of classical approach by

Kou-Markowsky-Berman (KMB) algorithm explained in the

paper [20]. The problem of KMB algorithm is that the

method does not consider the possibility of changes in the

virtual network that has been constructed. It means that it is

not possible to construct many virtual networks, one after

another or simultaneously. Fig. 1. shows how multiple

network topologies could be designed. For the first step, we

have to check all paths capable of satisfying the traffic flow

between requested nodes using Traffic Engineering (TE)

technique (e.g., bandwidth, number of hops). Typically, the

K-shortest path algorithm is used to find out alternative paths

without loops. As we can see from Fig. 1, a number of

possible paths does exist. The K-shortest path algorithm can

be seen as a variation of Dijkstra’s algorithm [24].

As shown in Fig. 1, for the requested nodes {v1; ...; vH},

H = 3, a number of graphs are constructed by using the K-

shortest path algorithm. That algorithm is based on pure

shortest path first (SPF) algorithm, e.g., Dijkstra algorithm.

With such a method, it is possible to find out the shortest

paths between the requested nodes and to construct the

virtual network in the starting physical network. Then Prim’s

Minimum spanning tree algorithm is applied. For the number

H of the requested nodes, we have KH(H − 1)/2 possible

paths and the number of different graph topologies is KH(H

− 1)/2.

The service provider has to check if one of the designated

topologies is acceptable. It means that it has to satisfy the

traffic demands connecting designated nodes with sufficient

link capacity. It is mostly related to the robustness of the

network [17], which is explained in chapter VII. As we can

see from Fig. 1 and Fig. 2, all proposed topologies have to

be without loops and multiple edges, so it means we have

Minimum Spanning Tree (MST) topology. In the case of

tree topology, we can measure how well a graph is

connected [19]. It is mostly related to the robustness of the

network [17], which is explained in Section VII. If all

offered topologies cannot satisfy the traffic demands, the

service provider has to perform the path splitting and path

migration that are explained in chapters 3.3 and 3.4 of the

paper [1]. As it is said in chapter 3.3, “The path splitting can

decrease the loss probability of user’s request by allowing

another topology. On the other hand, the path splitting may

trigger packet reordering in each virtual network because

multiple routes can be used between the source node and the

destination node. Therefore, users select whether the path

splitting is allowed or not.” In chapter 3.4, it is elaborated

that the path migration of the existing VPNs can solve the

problem efficiently, but it may decrease Quality of Service

(QoS) for the particular virtual network, especially if such a

technique of topology re-design, is time-consuming. In

addition, the path migration technique is not defined clearly

as we do not know what paths have to be changed.

Therefore, that can be a very demanding task, especially for

the networks running on the edge of capacity. An example of

the path migration can be seen in Fig. 2. We can see that

traffic flow of VPN1 has to migrate to enable sufficient

remaining capacity on the link 2-4, so that VPN2 can be

efficiently constructed.

As we said before, the papers [1] and [13] explained the

improvement of well-known KMB algorithm. Such a

technique is capable of constructing many virtual networks

taking care of the robustness of the physical network [17],

[18]). We have to notice that the introduction of the K-

shortest path algorithm (pure SPF technique) ensures more

virtual designed topologies, but it lacks in relation to the

existing virtual sub-networks sharing the same physical

network. That means that it suffers from inefficient capacity

utilization. It could be the main reason that no acceptable

topologies are found. As the final result of that research, it is

concluded that the loss probability of such virtual network

construction significantly decreases if K is set to 2 or 3.

However, the processing time significantly rises. As we said

before, the situation is much worse in over-provisioned

networks. In the case the network capacity is close to the

edge of capacity, that technique suffers very much. Then, the

utilization of the path splitting and the path migration

techniques starts to be the factor of process degradation.

significantly increasing calculating time. Some extensions

and applications of such an approach are explained in [14]

and [16].

IV. A NEW APPROACH BASED ON SPF BASED ALGORITHM

WITH TRAFFIC FLOW PERMUTATION

As we said before, the virtual network construction is very

common with traffic routing problem. In the condition of

hard traffic, working on the edge of capacity, introduction of

a new traffic flow could cause unbalanced network and

significant congestion problems. The existing routing

methods based only on SPF algorithms cannot solve the

routing problem generally. We need a much more capable

technique to balance the physical network and utilize the

resources efficiently. Well-known SPF-based routing issues

are explained in paper [2]. Positioning of huge (elephant)

traffic flows and relatively much smaller flows in time order

(one after another) could cause the problem of optimal

exploitation of the network. Network balancing can be done

additionally by path migration, but such a technique is

demanding and time-consuming, so we try to avoid it with a

different approach.

79

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

We have similar problem in virtual network construction,

looking for the remaining physical network (remaining

capacities only), but it can be processed offline. The

proposed algorithm is based on SPF algorithm, but in

combination with permutations of all traffic flows crossing

the network simultaneously. The network can be balanced

much better and we can find out near-optimal solution, if it

exists. Of course, it is possible only if remaining resources

are sufficient, or in opposite, we can apply path splitting just

to balance the traffic. After the splitting of the problematic

flow, we have a similar approach, but routing has to be done

with one traffic flow more. So, we can formulate our task:

for simultaneous traffic flows (M) with a variety of

ingress/egress node pairs in the network of N nodes, we have

to examine each permutation of incoming flows. An

acceptable solution has to satisfy all traffic demands. For the

first step, we have to apply the shortest path technique for

each flow entering the empty network G. As we said before,

we can use Dijkstra algorithm, but for huge problems (a

large number of traffic flows), Floyd’s algorithm is more

efficient [26]. The complexity is O(N3). For a configuration

with a small number of links L (e.g., backbone or fat tree

shape), the complexity is closer to O(N2).

The pseudocode for such algorithm can be represented as

follows:
1. We have to calculate the shortest path for each traffic

flow M in an empty network. After serving that traffic

flow (eliminating the bandwidth on the path), we will get

a new network G’ with remaining capacity (for each flow

we have another G’).

2. After one flow is served, the algorithm starts with a

similar procedure 1., to find out the shortest path for the

next traffic flow (in network G’).

This procedure ends when all traffic flows (traffic load)

are satisfied. The branching tree of traffic flow permutations

is growing very fast, respectively how many flows still we

have to satisfy.

On the first step, we have M branches. After that, we have

M-1, M-2, M-3, etc. For each branching level, we have to

calculate a number of the shortest paths for a number of

traffic flows. It is clear that we have a large number of SPF

calculations in total. The final routing solution (permutation

of traffic flows) is acceptable only if all traffic flows are

accommodated successfully. We can say that the routing

solution is in firm correlation with the order of flows

entering the network.

The complexity of our algorithm (calculating flow

permutations for each traffic flow as starting one) depends of

the number of SPF calculations and of the complexity of

Floyd’s algorithm. Instead of M! for total number of

permutations, we have the significant reduction of the total

number of SPF calculations when using Floyd’s algorithm:

1

1

!
1 .

()!

k M

k

M

M k

 






 (1)

Generally, there are more available flow permutations

capable to satisfy all traffic demands. Sometimes that

number is huge, sometimes it is very small or a unique

solution exists. The result is in firm correlation to the

networks robustness and it can be calculated [17]. It is

opposite to the network criticality (see Section VII). So, we

can compare network criticality (robustness) to decide what

available permutation is the best (the most perspective). In

over-provisioned networks, where the network criticality is

very low, the number of available permutations can be huge.

However, for networks working on the edge of the capacity,

there is a tiny number of available (acceptable) solutions. If

no available solution exists, the only way is to apply path

splitting and to try again. Therefore, in that case, we have

one more flow M + 1, and the procedure starts again. Such a

method is capable to find out the optimal construction of

VPNs with no need for extra modifications, especially not

by the technique of the path migration that is explained on

example in Fig. 2. We can see similar result in Fig. 3.

Fig. 3. An example from previous figure solved with algorithm based on

traffic flow permutations. Source: authors.

Today, in practice, service providers usually calculate

new VPN from the remaining network capacity, which could

be non-optimal or the superficial approach can degrade

services of the existing customers. In our approach, we

propose a new offline algorithm that is capable of

recalculating all existing VPNs (virtual sub-networks) in

relation to new VPN introduction. It leads to efficient

network exploitation eliminating points of congestion much

better than with the technique proposed in [1] or [13].

V. VERIFICATION OF NEW APPROACH TO TEST-EXAMPLES

An example in Fig. 2 is taken from [1] and efficiently

solved with a new approach. We just calculate the traffic

routing path solution for all traffic flows that serve the

demanding traffic (all VPNs). For virtual private network 1

(VPN1) defined with R (1, 2, 6; l1
3 = 20, m = 1, d = 1), we

have two flows connecting nodes 1, 2, and 6: flow1

(connecting nodes 1 and 2) and flow2 (connecting nodes 2

and 6) with demanding traffic between nodes l = 20. In a

new traffic demand (VPN2) defined with R (1, 3, 4; l2
3 = 20,

m = 1, d = 1), we have two adding flows connecting nodes 1,

3, and 4: flow 3 (1-3) and flow 4 (3-4), also with demanding

traffic l = 20.

So, we are calculating paths for all flows crossing the

network simultaneously. As we can see from the final result

on Fig. 3, the solution is the same as a result in Fig. 2.

However, path migration is not necessary.

At first, the flow2 (red color: links 2-5 and 5-6) should be

solved over links 2-4 and 4-6. But in that case, an acceptable

solution for flow4 (connecting nodes 3 and 4) does not exist.

80

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

Instead, an acceptable solution is shown on Fig. 3 and Fig. 4.

So, if we examine all possible flow permutations, the

optimal solution can be discovered.

The remaining network is shown on the bottom of Fig. 2

and in Fig. 3 (values in brackets).

Fig. 4. Four VPNs with respective traffic flows. In this routing solution, all

traffic demands between node pairs (7 traffic flows) are satisfied. Source:

authors.

For the next test-example, we can introduce another

virtual network - VPN3. Connecting nodes: 2, 3, 4, and 5.

VPN3 can be defined with R (2, 3, 4, 5; l3
4 = 10, m = 1, d =

1), where m = 1 means that path splitting is allowed and d =

1 means that path migration is allowed, too. If not, these

values are set to zero.

Traffic is realized with flows 5, 6, and 7. Demanding

traffic is the same between all neighbor nodes l = 10 forming

the VPN3. That means that each node of VPN generates

different traffic to all others (among couples), but the

overview of traffic amounts is not discussed in this paper.

We suppose the shape of the sub-network serving the

VPN3 can be different, but traffic demands should be

satisfied with three traffic flows: flow5 (connecting nodes 2

and 3), flow6 (connecting nodes 3 and 5), and flow7

(connecting nodes 4 and 5). Now, we are calculating all 7

flows simultaneously (all together). An acceptable solution

(flow permutation: 5, 7, 6, 4, 3, 2, 1) is shown in Fig. 4. In

this case, path splitting is not necessary.

In the examples above, it is obvious that more available

solutions (flow permutations) do exist. However, we can see

that no one acceptable solution exists if flow2 enters the

network first. It is caused by metric definition we use for

SPF calculations. Here, the link capacity (bandwidth-BW) is

the only criterion for routing decision. More explanation

about the proposed routing technique we can see from the

examples in Fig. 5 and Fig. 6.

Here, we have a network with 5 nodes and 4 VPNs plus

new one crossing the network simultaneously. At the

beginning, we calculate 7 traffic flows (4 VPNs for the first

step) and after that, we add another VPNs (4 flows more),

totally 11 flows.

(a)

(b)

(c)

Fig. 5. An example with the remaining network after utilization of four

VPNs: (a) new test network with five nodes and capacities between them;

(b) four VPNs are accomodated succesfully. All flows are marked with

different color; (c) an example from (b) and remaining network after

utilization of four VPNs. Source: authors.

An acceptable routing solution is ensured by flow

permutation: 3-7-6-5-4-2-1-9-11-10-8 (Fig. 6). For the case

shown in Fig. 5, many flow permutations are available

starting with flows 1(274), 2(0), 3(322), 4(212), 5(188),

6(192), and 7(212). For the example in Fig. 6, only eight (8)

flow permutations are available, all starting with flow3.

Fig. 6. Traffic situation after utilization of five VPNs, no free capacity

exists (remaining network is zero). Such solution we got by proposed

algorithm calculating all 11 flows simultaneously. In this case, the path

migration and path splitting are not necessary. Source: authors.

We can see that the proposed technique is very effective

and very clear to understand. Of course, too many flows are

the crucial limitation for the algorithm based on the exact

approach. One good thing is that network complexity

(number of nodes and branches) is not so critical. For the

case shown in Fig. 6, many flow permutations are available.

Looking statistically in most of the cases, the flow3 is served

first, because it is the huge one. If the flow2 is the first one,

we have no available solution. From examples above, we

can notice that flow3 (1-4) is crossing the network always by

the similar path. Thus, we expect that probability should be

81

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

better if we accommodate flow3 always on that way.

Possible we can calculate that problem without flow3, but

we have to reduce the capacity of the remaining network for

each link on the path for amount of flow3. So, we can

develop the heuristic using artificial intelligence to reduce

the calculation effort [25]. As it is shown in Fig. 7, the

problem with a large number of flows can be solved with a

special heuristic algorithm.

Fig. 7. A heuristic approach for huge problem with many traffic flows. The

calculation is divided into more stages. Each acceptable solution generates

a new remaining network as the starting network for the next stage. So, we

can choose the one with the lowest network criticality. Source: authors.

VI. HEURISTIC APPROACH

For the problem from Fig. 5, the number of potential

permutations is M! = 7! = 5040 and an appropriate number

of SPF calculations is huge (as a measure of complexity).

Because of specific configuration (L = 8 links), that number

falls to 3569 SPF calculations (1). For the example in Fig. 6,

we have a number of permutations M! = 11!, that is

extremely high for average computing power.

As we said before, the crucial limitation of the proposed

algorithm is the number of traffic flows. Now, we can

explore in detail what happens if the number of flows

increases. The complexity rises proportionally with M, but it

is firmly correlated to the number of links L too. For more

demanding problems (many traffic flows), we can apply

heuristic from Fig. 7. In that approach, the calculation is

divided into two or more stages. Also, it is recommended to

sort flows by amount. Huge (elephant) flows should be

processed first, before the small (mouse) flows.

For the next test-example (Fig. 8), we will use the same

network structure as in Fig. 6, but we will double the link

capacity. For example, the link 1-2 has capacity 15 in both

directions. In addition, we added more VPNs and now we

have 14 flows in total. For example, traffic flow 3 (1-4) is

doubled. So, if we have M = 14, we can divide calculation

into stages. On first stage, we calculate for 7 flows (flow1–

flow7). As a result, we will get a number of available routing

solutions (flow permutations). For each of them, we have a

new remaining network G’, so we can start the new

procedure again - the second stage (for 7 flows more: flow8–

flow14). In the research, we got many different final

solutions. For solution from Fig. 8, we had approximately 12

000 SPF calculations (1st stage 4189 + 2nd stage 7556).

Fig. 8. A number of VPNs consisted of 14 flows are successfully

accommodated. An available solution represented with flow permutations

is 3-7-6-5-4-2-1-8-14-13-12-11-10-9. Source: authors.

As it said before, after the first stages (for each flow), we

will get the new remaining network for each available

solution (acceptable flow permutation). So, we can compare

the criticality of each remaining network (3). It is

recommended to choose the new starting network with the

highest network robustness (the smallest criticality). It is the

key element of heuristic to increase the chances of an

acceptable final solution. We can see one of them in Fig. 8.

For further testing, we can change the number of

bidirectional links L from 8 to 10 to see the influence on the

calculation effort. In the network from Fig. 8, we can add

links 1-4 and 2-3 with capacity increments (adding

bandwidth, e.g., 5, 10, 15, 20). From Fig. 9, we can see that

the number of SPF calculations rises as we extend the

capacity, but the increase is not strongly dependent of L.

Fig. 9. Algorithm complexity, for example from Fig. 8, in relation to

adding capacity on the bidirectional links 1-4 and 2-3. The heuristic

algorithm is divided into two stages significantly reducing the complexity.

Source: authors.

82

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

It is obvious that the best efficiency (the smallest calculation

effort) appears if the network works close to the capacity

limit. We can find more information about similar testing in

[2].

The algorithm complexity is related to the number of SPF

calculations increasing the computational time. However,

that number grows linearly with L (number of links) and M

(number of flows). If some adding flow overlaps with the

existing flows (the same ingress and egress node), we can

aggregate them in one, so we can significantly reduce the

complexity.

VII. CALCULATING THE NETWORK

ROBUSTNESS/CRITICALITY

Generally, we have more feasible (acceptable) routing

solutions, that means there are more than one acceptable

flow permutation for a given traffic load. Better to say: more

path solutions can satisfy a given network load. Sometimes,

it is critical to decide what solution is better than another.

That measure is the robustness of the remaining network

(remaining capacity) and it can be calculated [17]. The

network criticality is opposite to the network robustness. If

the network capacity decreases, the robustness of the

network grows and the criticality falls down.

For the test network, we have graph G shown in Fig. 10.

Fig. 10. Starting network G with six traffic flows. Optimal routing solution

(flow permutation) is 3-1-4-5-6-2. Source: authors.

Table I represents the weighted adjacency matrix with the

link capacity of the remaining network and it is denoted with

G′ (Table I). Starting capacity is shown in brackets. The

weighted adjacency matrix is denoted as W′, where weights

are related to the capacity shortage. With D′, we denoted the

diagonal matrix, which is consisted from the sum of each

column of the matrix W′.

TABLE I. THE REMAINING NETWORK.

Node 1 2 3 4

1 0 10(10) 5(20) 0(20)

2 5(10) 0 0 0(15)

3 15(20) 0 0 5(15)

4 20(20) 15(15) 10(15) 0

With L′, we denoted a new Laplacian matrix

 L′ = D′ − W′. (2)

The network criticality ′ is calculated as follows

 τ′ = 2N′ × Tr(L′+). (3)

As it is said in [17], “N′ denotes the number of nodes in

G′, Tr(L′+) means a trace of matrix L′+, and L′+ is the

pseudoinverse matrix of L′.”

Here, we have a symmetrical test network with the same

capacity in both directions. Starting criticality is τ’ = 0.5358.

In Fig. 10, we have a solution for six traffic flows and it

means that traffic flow permutation 3-1-4-5-6-2 (order of

flows) entering the network is an acceptable solution. All

flows are successfully served and free capacity still exists.

However, it is obvious that network criticality should be

much higher than for an empty network. Now, the value by

(3) is τ′ = 1.111. Therefore, the network robustness is much

weaker (lower) than before.

VIII. CONCLUSIONS

For virtual network construction, we need a capable tool if

we want to utilize the network capacity optimally. Existing

techniques use pure SPF-based algorithms looking for an

optimal path from the remaining network. If we observe

some congestion caused by existing VPNs (their flows), the

path splitting and path migration techniques are necessary.

However, such techniques are very complicated and time-

consuming with no guaranty that optimal solution will be

discovered. That happens very often if the networks work on

the edge of capacity. The proposed approach of virtual

network construction combines SPF routing algorithm with

traffic flow permutations, so path migration technique is not

needed. The effectiveness of the proposed method has been

tested on some examples. Generally, we can say that the

proposed algorithm is very robust for large networks (huge

number of nodes), but it has limitation for a large number of

traffic flows crossing the network simultaneously. In that

case, we can use the heuristic algorithm, which complexity

rises linearly.

The calculation can be divided into more stages, each

stage for a limited number of flows supported by network

robustness calculation. Statistically, we can choose the most

important flows to be processed first, which could be very

important for good results of such a heuristic approach. In

addition, the calculation of the network robustness enables

searching for the best solution (traffic flow permutation), as

appropriate starting network for the next stage. The new

technique based on traffic flow permutation shows excellent

performances for virtual network construction as we perform

it offline.

CONFLICTS OF INTEREST

The authors declare that they have no conflicts of interest.

REFERENCES

[1] Y. Urayama and T. Tachibana, “Virtual network construction for

robust physical networks”, International Journal of Communication

Systems, vol. 30, no.1, 2015.

[2] S. Krile, M. Rakús, and F. Schindler, “Centralized routing algorithm

based on flow permutations”, in Proc. of 39th International

Conference on Telecommunications and Signal Processing (TSP’16),

Vienna, 2016, pp. 68–73. DOI: 10.1109/TSP.2016.7760831.

[3] A. Nakao, “Network virtualization as the foundation for enabling new

network architectures and applications”, IEICE Transactions on

Communications, vol. E93.B, no. 3, pp. 454–457, 2010. DOI:

83

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020

10.1587/transcom.E93.B.454.

[4] J. Turner and D. Taylor, “Diversifying the internet”, in Proc. of IEEE

Global Telecommunications Conference (GLOBECOM '05), 2005.

DOI: 10.1109/GLOCOM.2005.1577741.

[5] L. Peterson, T. Anderson, D. Culler, and T. Roscoe, “A blueprint for

introducing disruptive technology into the internet”, ACM

SIGCOMM Computer Communication Review, vol. 33, no. 1, pp.

59–64, 2003. DOI: 10.1145/774763.774772.

[6] Z. Zhang, X. Cheng, S. Su, Y. Wang, K. Shuang, and Y. Luo, “A

unified enhanced particle swarm optimization-based virtual network

embedding algorithm”, International Journal of Communication

Systems, vol. 26, no. 8, pp. 1054–1073, 2013. DOI:

10.1002/dac.1399.

[7] W. Deng, F. Liu, H. Jin, X. Liao, and H. Liu, “Reliability-aware

server consolidation for balancing energy-lifetime tradeoff in

virtualized cloud datacenters”, International Journal of

Communication Systems, vol. 27, no. 4, pp. 623–642, 2014. DOI:

10.1002/dac.2687.

[8] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network

resources to virtual network components”, in Proc. of 25th IEEE

International Conference on Computer Communications (IEEE

INFOCOM 2006), 2006, pp. 1–12. DOI:

10.1109/INFOCOM.2006.322.

[9] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual

network embedding: Substrate support for path splitting and

migration”, ACM SIGCOMM Computer Communication Review, vol.

38, no. 2, pp. 17–29, 2008. DOI: 10.1145/1355734.1355737.

[10] J. He, Z. S. Rui, Y. Li, C. Y. Lee, J. Rexford, and M. Chiang,

“DaVinci: Dynamically adaptive virtual networks for a customized

internet”, in Proc. of the 2008 ACM Conference on Emerging

Network Experiment and Technology (CoNext 2008), 2008. DOI:

10.1145/1544012.1544027.

[11] J. Lischka and H. Karl, “A virtual network mapping algorithm based

on subgraph isomorphism detection” in Proc. of the 1st ACM

SIGCOMM Workshop on Virtualized Infrastructure Systems and

Architectures (VISA 2009), 2009. DOI: 10.1145/1592648.1592662.

[12] M. Mori, T. Tachibana, K. Hirata, and K. Sugimoto, “A proposed

topology design and admission control approach for improved

network robustness in network virtualization”, in Proc. of 2011 IEEE

Global Telecommunications Conference - GLOBECOM 2011, 2011.

DOI: 10.1109/GLOCOM.2011.6134260.

[13] Y. Urayama and T. Tachibana, “Virtual network construction with k-

shortest path algorithm and prim’s MST algorithm for robust physical

network”, in Proc. of the International MultiConference of

Engineers and Computer Scientists (IMECS 2014), 2014.

[14] Y. Urayama, H. Tsubota, and T. Tachibana, “Virtual network

construction scheduling based on network criticality for robust

physical networks”, in Proc. of 2015 IEEE International Conference

on Consumer Electronics, Taiwan, 2015. DOI: 10.1109/ICCE-

TW.2015.7217007.

[15] J. Duan, Z. Guo, and Y. Yang, “Cost efficient and performance

guaranteed virtual network embedding in multicast fat-tree DCNs”, in

Proc. of 2015 IEEE Conference on Computer Communications

(INFOCOM), 2015, vol. 2015, pp. 136–144. DOI:

10.1109/INFOCOM.2015.7218376.

[16] Y. Urayama and T. Tachibana, “Rapid topology design based on

shortest path betweenness for virtual network construction”, IERI

Procedia, vol. 10, pp. 105–111, 2014. DOI:

10.1016/j.ieri.2014.09.098.

[17] A. Tizghadam and A. Leon-Garcia, “Autonomic traffic engineering

for network robustness”, IEEE Journal on Selected Areas in

Communication, vol. 28, no. 1, pp. 1–12, 2010. DOI:

10.1109/JSAC.2010.100105.

[18] A. H. Dekker and B. D. Colbert, “Network robustness and graph

topology”, in Proc. of 27th Australasian Computer Science

Conference (ACSC 2004), 2004, pp. 359–368.

[19] M. Filder, “Algebraic connectivity of graphs”, Czechoslovak

Mathematical Journal, vol. 23, no. 2, pp. 298–305, 1973.

[20] L. Kou, G. Markowsky, and L. Berman, “A fast algorithm for Steiner

trees”, Acta Informatica, vol. 15, no. 2, pp. 141–145, 1981. DOI:

10.1007/BF00288961.

[21] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and J. Rexford,

“NetScope: Traffic engineering for IP networks”, IEEE Network

Magazine, vol. 14, no. 2, pp. 11–19, 2000. DOI: 10.1109/65.826367.

[22] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.

Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling

innovation in campus networks”, ACM SIGCOMM Computer

Communication Review, vol. 38, no. 2, pp. 69–74, 2008. DOI:

10.1145/1355734.1355746.

[23] A. Meddeb, “Building cost-effective lower layer VPNs: The

ILEC/CLEC dilemma”, International Journal of Communication

Systems, vol. 23, no. 11, pp. 1405–1430, 2009. DOI:

10.1002/dac.1114.

[24] J. Y. Yen, “Finding the k-shortest loopless paths in a network”,

Management Science, vol. 17, pp. 712–716, 1971. DOI:

10.1287/mnsc.17.11.712.

[25] Z. Li and R. Wang, “Multipath routing algorithm based on traffic

prediction in wireless mesh network”, Communications and

Networks, vol. 1, no. 2, pp. 82–90, 2009. DOI:

10.4236/cn.2009.12013.

[26] Case Study: “Shortest-Path Algorithms”. [Online]. Available:

http://www.mcs.anl.gov/~itf/dbpp/text/node35.html#algdij1

84

