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1Abstract—In the paper, a new construction technique for 

virtual network (e.g., Virtual Private Network (VPN)) based on 

flow permutation algorithm is proposed. In existing methods 

for creating virtual networks, whereby virtual networks are 

constructed one by one in time and the new virtual network can 

use only the remaining resources, it could be non-optimal. Our 

approach treats all traffic flows simultaneously and is capable 

of balancing the network much better than other existing 

techniques. As we show, the proposed new construction 

technique work well, even in the condition of hard loaded 

networks operating on the edge of capacity, i.e., in situations 

when traditional techniques could cause unbalanced network 

and significant congestion problems. For huge number of traffic 

flows, heuristic algorithm, whose complexity rises linearly, is 

evaluated. 

 

 Index Terms—Computer networks; Network topology; 

Virtual private networks; Routing protocols; Algorithms. 

I. INTRODUCTION 

This paper is concentrated on virtual networks (sub-

networks) constructed over a physical network. It means that 

we use a part of physical network resources (BW-

bandwidth) to enable service as Virtual Private Network 

(VPN) broadly offered from the service provider to the 

users. Link capacity between ending points (network nodes) 

has to be sufficient to enable services to the users, but the 

capacity utilization of the physical network has to be 

optimal. 

In the condition of the hard loaded network working on 

the edge of capacity, the existing techniques based on pure 

Shortest Path First (SPF) algorithms are not sufficient. In 

general, this problem is common with traffic routing. As it is 

an offline calculation, we can perform much more 

complicated computing techniques than for online traffic 

routing. We can say that each virtual sub-network (e.g., 

VPN) consists of a number of traffic flows connecting pairs 

of endpoints (nodes) in the customer network as we can see 

from the example shown in Fig. 1. The demanding 

throughput (BW) can be equal in the whole sub-network, but 

it is not necessary. Normally, on some links, the throughput 

has to be higher to satisfy aggregated traffic consisted of 
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many flows passing to the different locations. The most 

important fact for multiple virtual networks functioning 

together in the same physical network, is that  new VPN 

cannot be constructed independently. Also, the Quality of 

Service (QoS) for data transmission over each virtual 

network (sub-network) has to be maintained carefully. 

 
Fig. 1.  An example how we can construct the new virtual network using K-

shortest path algorithm and Prim’s Minimum spanning tree algorithm. 

Source: authors. 

Now, we are focused on the physical network with 

existing virtual networks to enable the construction of a new 

virtual network. Here, we talk about the resources (link 

capacity) that are unused as remaining resources. The set of 

nodes can be represented with V = {v1; …; vi;…; vN}. A link 

between pair of nodes vi and vj is represented with eij and the 

set of all links in the network is represented with E. The 

remaining resources of each link eij is we
ij and the set of those 

resources is represented with WE. In the process of the 

network virtualization, we can represent the physical 

network with G = (V; E; WE). 

The user generates to a service provider a new traffic 

demand for the construction of the new virtual network (Fig. 

2). The request consists of information related to the nodes 

{v∗1; …; v∗H} that should be the part of the new virtual 

network and the amount l of the network resources (link 

capacity). The service provider has to find out the optimal 

configuration of the new virtual network to satisfy users’ 

demands.
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Fig. 2.  An example of path migration as the crucial element of classical approach in VPN construction. Source: authors. 

In Section II, we compare traffic routing technique with 

virtual network construction, as both problems are very 

similar. In Section III, we explain different methods used by 

other authors mostly treated as the classical approach with 

some improvements. In Section IV, we propose a new 

approach with an algorithm based on flow permutations. 

After that, in Section V, we validate it on some simple test-

examples. In Section VI, we explain a heuristic algorithm 

appropriate for solving huge problems with many traffic 

flows. The calculation of heuristic is divided into stages. In 

Section VII, we talk about the network criticality/robustness 

as an important measure to decide, which traffic solution is 

better than another. Finally, in Section VIII, conclusions are 

presented. 

II. RELATION TO THE TRAFFIC ROUTING PROBLEM 

Traffic routing problems in computing networks are 

widespread in virtual network construction. Both are solved 

mostly with algorithms based on the Shortest Path First 

(SPF) approach. In traffic routing, it has to be done with 

online algorithms that could be more demanding related to 

the speed of calculation. Similar techniques are used in 

distributed routing (e.g., Multi Protocol Label Switching – 

MPLS) same as in centralized routing, e.g., in Software 

Designed Networking (SDN). It means that virtual paths for 

each traffic flow are defined only once, at the beginning of 

service invocation, and stay unchanged until the service 

ends. Of course, link state algorithms, e.g., Open Shortest 

Path First (OSPF), Intermediate System to Intermediate 

System (ISIS), take care of network capacity dynamically, 

using the remaining capacity to construct (calculate) new 

traffic path optimally. It functions well only if capacity on 

the path is sufficient; that is the case in over-provisioned 

networks. Also, the path splitting of existing flows can help, 

but it is not allowed for specific services. Therefore, in the 

condition of hard loaded networks working on the edge of 

capacity, VPN construction could cause unbalanced network 

and significant congestion problems [15]. It means that we 

still have no sufficient routing technique for such hard traffic 

load [23]. In that case, new traffic demand could be rejected, 

no matter if existed traffic flows could be much better 

routed. 

In the paper [2], the authors proposed another routing 

technique instead, one that takes care of all existing traffic 

flows at the same time. It is based on classical SPF 

algorithm, but in combination with permutations of all 

existing traffic flows crossing the network simultaneously. In 

that research, it is shown that such an approach can position 

traffic paths more efficiently and decrease congestion 

problems in a given network. However, such complicated 

calculation is time-consuming, so we still cannot perform 

such a technology online. Notably, it is hard to introduce it 

in the networks with distributed routing (e.g., MPLS), where  

many online algorithms work simultaneously in different 

edge routers. Nowadays, the SPF technique applied to the 

remaining network capacity is the only acceptable solution. 

Of course, the introduction of artificial intelligence based on 

traffic statistics can help a lot, but generally, we cannot 

optimize the whole traffic jet. In centralized oriented routing 

(e.g., Software Defined Networking (SDN)) with main 

controller (e.g., Python-based software defined networking 

(POX)), as we have in Open Flow networks, there is some 
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perspective to introduce such capable routing technique. In 

that way, we could find out the optimal utilization of 

network capacity for all existing traffic flows crossing the 

network simultaneously [21], [22]. 

The main goal of this research is to show that the 

application of such traffic routing algorithm can be a good 

solution for the offline VPN construction taking care of all 

existing traffic flows at the moment of introduction of the 

new one traffic. 

III. PREVIOUS WORK 

In the paper [1], we have a survey of methods we can use 

to design a new virtual network as an overview of some 

papers [3]–[12]. Also, in papers [1] and [13] the new 

solution of VPN sub-network construction is proposed. It is 

based on the K-shortest path algorithm and Prim’s Minimum 

spanning tree algorithm with some modification consisting 

of adding techniques: the path splitting and the path 

migration. It is the improvement of classical approach by 

Kou-Markowsky-Berman (KMB) algorithm explained in the 

paper [20]. The problem of KMB algorithm is that the 

method does not consider the possibility of changes in the 

virtual network that has been constructed. It means that it is 

not possible to construct many virtual networks, one after 

another or simultaneously. Fig.  1. shows how multiple 

network topologies could be designed. For the first step, we 

have to check all paths capable of satisfying the traffic flow 

between requested nodes using Traffic Engineering (TE) 

technique (e.g., bandwidth, number of hops). Typically, the 

K-shortest path algorithm is used to find out alternative paths 

without loops. As we can see from Fig. 1, a number of 

possible paths does exist. The K-shortest path algorithm can 

be seen as a variation of Dijkstra’s algorithm [24]. 

As shown in Fig. 1, for the requested nodes {v1; ...; vH}, 

H = 3, a number of graphs are constructed by using the K-

shortest path algorithm. That algorithm is based on pure 

shortest path first (SPF) algorithm, e.g., Dijkstra algorithm. 

With such a method, it is possible to find out the shortest 

paths between the requested nodes and to construct the 

virtual network in the starting physical network. Then Prim’s 

Minimum spanning tree algorithm is applied. For the number 

H of the requested nodes, we have KH(H − 1)/2 possible 

paths and the number of different graph topologies is KH(H 

− 1)/2. 

The service provider has to check if one of the designated 

topologies is acceptable. It means that it has to satisfy the 

traffic demands connecting designated nodes with sufficient 

link capacity. It is mostly related to the robustness of the 

network [17], which is explained in chapter VII. As we can 

see from Fig. 1 and Fig. 2, all proposed topologies have to 

be without loops and multiple edges, so it means we have 

Minimum Spanning Tree (MST) topology. In the case of 

tree topology, we can measure how well a graph is 

connected [19]. It is mostly related to the robustness of the 

network [17], which is explained in Section VII. If all 

offered topologies cannot satisfy the traffic demands, the 

service provider has to perform the path splitting and path 

migration that are explained in chapters 3.3 and 3.4 of the 

paper [1]. As it is said in chapter 3.3, “The path splitting can 

decrease the loss probability of user’s request by allowing 

another topology. On the other hand, the path splitting may 

trigger packet reordering in each virtual network because 

multiple routes can be used between the source node and the 

destination node. Therefore, users select whether the path 

splitting is allowed or not.” In chapter 3.4, it is elaborated 

that the path migration of the existing VPNs can solve the 

problem efficiently, but it may decrease Quality of Service 

(QoS) for the particular virtual network, especially if such a 

technique of topology re-design, is time-consuming. In 

addition, the path migration technique is not defined clearly 

as we do not know what paths have to be changed. 

Therefore, that can be a very demanding task, especially for 

the networks running on the edge of capacity. An example of 

the path migration can be seen in Fig. 2. We can see that 

traffic flow of VPN1 has to migrate to enable sufficient 

remaining capacity on the link 2-4, so that VPN2 can be 

efficiently constructed. 

As we said before, the papers [1] and [13] explained the 

improvement of well-known KMB algorithm. Such a 

technique is capable of constructing many virtual networks 

taking care of the robustness of the physical network [17], 

[18]). We have to notice that the introduction of the K-

shortest path algorithm (pure SPF technique) ensures more 

virtual designed topologies, but it lacks in relation to the 

existing virtual sub-networks sharing the same physical 

network. That means that it suffers from inefficient capacity 

utilization. It could be the main reason that no acceptable 

topologies are found. As the final result of that research, it is 

concluded that the loss probability of such virtual network 

construction significantly decreases if K is set to 2 or 3. 

However, the processing time significantly rises. As we said 

before, the situation is much worse in over-provisioned 

networks. In the case the network capacity is close to the 

edge of capacity, that technique suffers very much. Then, the 

utilization of the path splitting and the path migration 

techniques starts to be the factor of process degradation. 

significantly increasing calculating time. Some extensions 

and applications of such an approach are explained in [14] 

and [16]. 

IV. A NEW APPROACH BASED ON SPF BASED ALGORITHM 

WITH TRAFFIC FLOW PERMUTATION 

As we said before, the virtual network construction is very 

common with traffic routing problem. In the condition of 

hard traffic, working on the edge of capacity, introduction of 

a new traffic flow could cause unbalanced network and 

significant congestion problems. The existing routing 

methods based only on SPF algorithms cannot solve the 

routing problem generally. We need a much more capable 

technique to balance the physical network and utilize the 

resources efficiently. Well-known SPF-based routing issues 

are explained in paper [2]. Positioning of huge (elephant) 

traffic flows and relatively much smaller flows in time order 

(one after another) could cause the problem of optimal 

exploitation of the network. Network balancing can be done 

additionally by path migration, but such a technique is 

demanding and time-consuming, so we try to avoid it with a 

different approach. 

79



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 26, NO. 2, 2020 

We have similar problem in virtual network construction, 

looking for the remaining physical network (remaining 

capacities only), but it can be processed offline. The 

proposed algorithm is based on SPF algorithm, but in 

combination with permutations of all traffic flows crossing 

the network simultaneously. The network can be balanced 

much better and we can find out near-optimal solution, if it 

exists. Of course, it is possible only if remaining resources 

are sufficient, or in opposite, we can apply path splitting just 

to balance the traffic. After the splitting of the problematic 

flow, we have a similar approach, but routing has to be done 

with one traffic flow more. So, we can formulate our task: 

for simultaneous traffic flows (M) with a variety of 

ingress/egress node pairs in the network of N nodes, we have 

to examine each permutation of incoming flows. An 

acceptable solution has to satisfy all traffic demands. For the 

first step, we have to apply the shortest path technique for 

each flow entering the empty network G. As we said before, 

we can use Dijkstra algorithm, but for huge problems (a 

large number of traffic flows), Floyd’s algorithm is more 

efficient [26]. The complexity is O(N3). For a configuration 

with a small number of links L (e.g., backbone or fat tree 

shape), the complexity is closer to O(N2). 

The pseudocode for such algorithm can be represented as 

follows: 
1. We have to calculate the shortest path for each traffic 

flow M in an empty network. After serving that traffic 

flow (eliminating the bandwidth on the path), we will get 

a new network G’ with remaining capacity (for each flow 

we have another G’).  

2. After one flow is served, the algorithm starts with a 

similar procedure 1., to find out the shortest path for the 

next traffic flow (in network G’). 

This procedure ends when all traffic flows (traffic load) 

are satisfied. The branching tree of traffic flow permutations 

is growing very fast, respectively how many flows still we 

have to satisfy. 

On the first step, we have M branches. After that, we have 

M-1, M-2, M-3, etc. For each branching level, we have to 

calculate a number of the shortest paths for a number of 

traffic flows. It is clear that we have a large number of SPF 

calculations in total. The final routing solution (permutation 

of traffic flows) is acceptable only if all traffic flows are 

accommodated successfully. We can say that the routing 

solution is in firm correlation with the order of flows 

entering the network.  

The complexity of our algorithm (calculating flow 

permutations for each traffic flow as starting one) depends of 

the number of SPF calculations and of the complexity of 

Floyd’s algorithm. Instead of M! for total number of 

permutations, we have the significant reduction of the total 

number of SPF calculations when using Floyd’s algorithm: 

 
1

1

!
1 .

( )!

k M

k

M

M k

 






  (1) 

Generally, there are more available flow permutations 

capable to satisfy all traffic demands. Sometimes that 

number is huge, sometimes it is very small or a unique 

solution exists. The result is in firm correlation to the 

networks robustness and it can be calculated [17]. It is 

opposite to the network criticality (see Section VII). So, we 

can compare network criticality (robustness) to decide what 

available permutation is the best (the most perspective). In 

over-provisioned networks, where the network criticality is 

very low, the number of available permutations can be huge. 

However, for networks working on the edge of the capacity, 

there is a tiny number of available (acceptable) solutions. If 

no available solution exists, the only way is to apply path 

splitting and to try again. Therefore, in that case, we have 

one more flow M + 1, and the procedure starts again. Such a 

method is capable to find out the optimal construction of 

VPNs with no need for extra modifications, especially not 

by the technique of the path migration that is explained on 

example in Fig. 2. We can see similar result in Fig. 3.  

 
Fig. 3.  An example from previous figure solved with algorithm based on 

traffic flow permutations. Source: authors. 

Today, in practice, service providers usually calculate 

new VPN from the remaining network capacity, which could 

be non-optimal or the superficial approach can degrade 

services of the existing customers. In our approach, we 

propose a new offline algorithm that is capable of 

recalculating all existing VPNs (virtual sub-networks) in 

relation to new VPN introduction. It leads to efficient 

network exploitation eliminating points of congestion much 

better than with the technique proposed in [1] or [13]. 

V. VERIFICATION OF NEW APPROACH TO TEST-EXAMPLES 

An example in Fig. 2 is taken from [1] and efficiently 

solved with a new approach. We just calculate the  traffic 

routing path solution for all traffic flows that serve the 

demanding traffic (all VPNs). For virtual private network 1 

(VPN1) defined with R (1, 2, 6; l1
3 = 20, m = 1, d = 1), we 

have two flows connecting nodes 1, 2, and 6: flow1 

(connecting nodes 1 and 2) and flow2 (connecting nodes 2 

and 6) with demanding traffic between nodes l = 20. In a 

new traffic demand (VPN2) defined with R (1, 3, 4; l2
3 = 20, 

m = 1, d = 1), we have two adding flows connecting nodes 1, 

3, and 4: flow 3 (1-3) and flow 4 (3-4), also with demanding 

traffic l = 20.  

So, we are calculating paths for all flows crossing the 

network simultaneously. As we can see from the final result 

on Fig. 3, the solution is the same as a result in Fig. 2. 

However, path migration is not necessary. 

At first, the flow2 (red color: links 2-5 and 5-6) should be 

solved over links 2-4 and 4-6. But in that case, an acceptable 

solution for flow4 (connecting nodes 3 and 4) does not exist. 
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Instead, an acceptable solution is shown on Fig. 3 and Fig. 4. 

So, if we examine all possible flow permutations, the 

optimal solution can be discovered. 

The remaining network is shown on the bottom of Fig. 2 

and in Fig. 3 (values in brackets). 

 
Fig. 4.  Four VPNs with respective traffic flows. In this routing solution, all 

traffic demands between node pairs (7 traffic flows) are satisfied. Source: 

authors. 

For the next test-example, we can introduce another 

virtual network - VPN3. Connecting nodes: 2, 3, 4, and 5. 

VPN3 can be defined with R (2, 3, 4, 5; l3
4 = 10, m = 1, d = 

1), where m = 1 means that path splitting is allowed and d = 

1 means that path migration is allowed, too. If not, these 

values are set to zero. 

Traffic is realized with flows 5, 6, and 7. Demanding 

traffic is the same between all neighbor nodes l = 10 forming 

the VPN3. That means that each node of VPN generates 

different traffic to all others (among couples), but the 

overview of traffic amounts is not discussed in this paper. 

We suppose the shape of the sub-network serving the 

VPN3 can be different, but traffic demands should be 

satisfied with three traffic flows: flow5 (connecting nodes 2 

and 3), flow6 (connecting nodes 3 and 5), and flow7 

(connecting nodes 4 and 5). Now, we are calculating all 7 

flows simultaneously (all together). An acceptable solution 

(flow permutation: 5, 7, 6, 4, 3, 2, 1) is shown in Fig. 4. In 

this case, path splitting is not necessary.  

In the examples above, it is obvious that more available 

solutions (flow permutations) do exist. However, we can see 

that no one acceptable solution exists if flow2 enters the 

network first. It is caused by metric definition we use for 

SPF calculations. Here, the link capacity (bandwidth-BW) is 

the only criterion for routing decision. More explanation 

about the proposed routing technique we can see from the 

examples in Fig. 5 and Fig. 6.  

Here, we have a network with 5 nodes and 4 VPNs plus 

new one crossing the network simultaneously. At the 

beginning, we calculate 7 traffic flows (4 VPNs for the first 

step) and after that, we add another VPNs (4 flows more), 

totally 11 flows.  

 
(a) 

 
(b) 

 
(c) 

Fig. 5.  An example with the remaining network after utilization of four 

VPNs: (a) new test network with five nodes and capacities between them; 

(b) four VPNs are accomodated succesfully. All flows are marked with 

different color; (c) an example from (b) and remaining network after 

utilization of four VPNs. Source: authors. 

An acceptable routing solution is ensured by flow 

permutation: 3-7-6-5-4-2-1-9-11-10-8 (Fig. 6). For the case 

shown in Fig. 5, many flow permutations are available 

starting with flows 1(274), 2(0), 3(322), 4(212), 5(188), 

6(192), and 7(212). For the example in Fig. 6, only eight (8) 

flow permutations are available, all starting with flow3. 

 
Fig. 6.  Traffic situation after utilization of five VPNs, no free capacity 

exists (remaining network is zero). Such solution we got by proposed 

algorithm calculating all 11 flows simultaneously. In this case, the path 

migration and path splitting are not necessary. Source: authors. 

We can see that the proposed technique is very effective 

and very clear to understand. Of course, too many flows are 

the crucial limitation for the algorithm based on the exact 

approach. One good thing is that network complexity 

(number of nodes and branches) is not so critical. For the 

case shown in Fig. 6, many flow permutations are available. 

Looking statistically in most of the cases, the flow3 is served 

first, because it is the huge one. If the flow2 is the first one, 

we have no available solution. From examples above, we 

can notice that flow3 (1-4) is crossing the network always by 

the similar path. Thus, we expect that probability should be 
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better if we accommodate flow3 always on that way. 

Possible we can calculate that problem without flow3, but 

we have to reduce the capacity of the remaining network for 

each link on the path for amount of flow3. So, we can 

develop the heuristic using artificial intelligence to reduce 

the calculation effort [25]. As it is shown in Fig. 7, the 

problem with a large number of flows can be solved with a 

special heuristic algorithm. 

 
Fig. 7.  A heuristic approach for huge problem with many traffic flows. The 

calculation is divided into more stages. Each acceptable solution generates 

a new remaining network as the starting network for the next stage. So, we 

can choose the one with the lowest network criticality. Source: authors. 

VI. HEURISTIC APPROACH 

For the problem from Fig. 5, the number of potential 

permutations is M! = 7! = 5040 and an appropriate number 

of SPF calculations is huge (as a measure of complexity). 

Because of specific configuration (L = 8 links), that number 

falls to 3569 SPF calculations (1). For the example in Fig. 6, 

we have a number of permutations M! = 11!, that is 

extremely high for average computing power. 

As we said before, the crucial limitation of the proposed 

algorithm is the number of traffic flows. Now, we can 

explore in detail what happens if the number of flows 

increases. The complexity rises proportionally with M, but it 

is firmly correlated to the number of links L too. For more 

demanding problems (many traffic flows), we can apply 

heuristic from Fig. 7. In that approach, the calculation is 

divided into two or more stages. Also, it is recommended to 

sort flows by amount. Huge (elephant) flows should be 

processed first, before the small (mouse) flows. 

For the next test-example (Fig. 8), we will use the same 

network structure as in Fig. 6, but we will double the link 

capacity. For example, the link 1-2 has capacity 15 in both 

directions. In addition, we added more VPNs and now we 

have 14 flows in total. For example, traffic flow 3 (1-4) is 

doubled. So, if we have M = 14, we can divide calculation 

into stages. On first stage, we calculate for 7 flows (flow1–

flow7). As a result, we will get a number of available routing 

solutions (flow permutations). For each of them, we have a 

new remaining network G’, so we can start the new 

procedure again - the second stage (for 7 flows more: flow8–

flow14). In the research, we got many different final 

solutions. For solution from Fig. 8, we had approximately 12 

000 SPF calculations (1st stage 4189 + 2nd stage 7556). 

 
Fig. 8.  A number of VPNs consisted of 14 flows are successfully 

accommodated. An available solution represented with flow permutations 

is 3-7-6-5-4-2-1-8-14-13-12-11-10-9. Source: authors. 

As it said before, after the first stages (for each flow), we 

will get the new remaining network for each available 

solution (acceptable flow permutation). So, we can compare 

the criticality of each remaining network (3). It is 

recommended to choose the new starting network with the 

highest network robustness (the smallest criticality). It is the 

key element of heuristic to increase the chances of an 

acceptable final solution. We can see one of them in Fig. 8. 

For further testing, we can change the number of 

bidirectional links L from 8 to 10 to see the influence on the 

calculation effort. In the network from Fig. 8, we can add 

links 1-4 and 2-3 with capacity increments (adding 

bandwidth, e.g., 5, 10, 15, 20). From Fig. 9, we can see that 

the number of SPF calculations rises as we extend the 

capacity, but the increase is not strongly dependent of L.  

 
Fig. 9.  Algorithm complexity, for example from Fig. 8, in relation to 

adding capacity on the bidirectional links 1-4 and 2-3. The heuristic 

algorithm is divided into two stages significantly reducing the complexity. 

Source: authors. 
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It is obvious that the best efficiency (the smallest calculation 

effort) appears if the network works close to the capacity 

limit. We can find more information about similar testing in 

[2]. 

The algorithm complexity is related to the number of SPF 

calculations increasing the computational time. However, 

that number grows linearly with L (number of links) and M 

(number of flows). If some adding flow overlaps with the 

existing flows (the same ingress and egress node), we can 

aggregate them in one, so we can significantly reduce the 

complexity. 

VII. CALCULATING THE NETWORK 

ROBUSTNESS/CRITICALITY 

Generally, we have more feasible (acceptable) routing 

solutions, that means there are more than one acceptable 

flow permutation for a given traffic load. Better to say: more 

path solutions can satisfy a given network load. Sometimes, 

it is critical to decide what solution is better than another. 

That measure is the robustness of the remaining network 

(remaining capacity) and it can be calculated [17]. The 

network criticality is opposite to the network robustness. If 

the network capacity decreases, the robustness of the 

network grows and the criticality falls down. 

For the test network, we have graph G shown in Fig. 10.  

 
Fig. 10.  Starting network G with six traffic flows. Optimal routing solution 

(flow permutation) is 3-1-4-5-6-2. Source: authors. 

 

Table I represents the weighted adjacency matrix with the 

link capacity of the remaining network and it is denoted with 

G′ (Table I). Starting capacity is shown in brackets. The 

weighted adjacency matrix is denoted as W′, where weights 

are related to the capacity shortage. With D′, we denoted the 

diagonal matrix, which is consisted from the sum of each 

column of the matrix W′. 

TABLE I. THE REMAINING NETWORK. 

Node 1 2 3 4 

1 0 10(10) 5(20) 0(20) 

2 5(10) 0 0 0(15) 

3 15(20) 0 0 5(15) 

4 20(20) 15(15) 10(15) 0 

With L′, we denoted a new Laplacian matrix 

 L′ = D′ − W′. (2) 

The network criticality ′ is calculated as follows 

 τ′ = 2N′ × Tr(L′+). (3) 

As it is said in [17], “N′ denotes the number of nodes in 

G′, Tr(L′+) means a trace of matrix L′+, and L′+ is the 

pseudoinverse matrix of L′.” 

Here, we have a symmetrical test network with the same 

capacity in both directions. Starting criticality is τ’ = 0.5358. 

 

In Fig. 10, we have a solution for six traffic flows and it 

means that traffic flow permutation 3-1-4-5-6-2 (order of 

flows) entering the network is an acceptable solution. All 

flows are successfully served and free capacity still exists. 

However, it is obvious that network criticality should be 

much higher than for an empty network. Now, the value by 

(3) is τ′ = 1.111. Therefore, the network robustness is much 

weaker (lower) than before. 

VIII. CONCLUSIONS 

For virtual network construction, we need a capable tool if 

we want to utilize the network capacity optimally. Existing 

techniques use pure SPF-based algorithms looking for an 

optimal path from the remaining network. If we observe 

some congestion caused by existing VPNs (their flows), the 

path splitting and path migration techniques are necessary. 

However, such techniques are very complicated and time-

consuming with no guaranty that optimal solution will be 

discovered. That happens very often if the networks work on 

the edge of capacity. The proposed approach of virtual 

network construction combines SPF routing algorithm with 

traffic flow permutations, so path migration technique is not 

needed. The effectiveness of the proposed method has been 

tested on some examples. Generally, we can say that the 

proposed algorithm is very robust for large networks (huge 

number of nodes), but it has limitation for a large number of 

traffic flows crossing the network simultaneously. In that 

case, we can use the heuristic algorithm, which complexity 

rises linearly. 

The calculation can be divided into more stages, each 

stage for a limited number of flows supported by network 

robustness calculation. Statistically, we can choose the most 

important flows to be processed first, which could be very 

important for good results of such a heuristic approach. In 

addition, the calculation of the network robustness enables 

searching for the best solution (traffic flow permutation), as 

appropriate starting network for the next stage. The new 

technique based on traffic flow permutation shows excellent 

performances for virtual network construction as we perform 

it offline. 
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