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1Abstract—Multiple-input multiple-output (MIMO) 

techniques are foreseen to play a vital role in future 5G cellular 

networks. This paper presents a novel approach that employs 

genetic algorithm (GA) to estimate the sparse uplink MIMO 

channels using superimposed training sequence (SiT). At each 

transmitter (user) a training sequence is mathematically added 

with the data bits; thus, avoiding the overhead of dedicated 

frequency/time slots used for the training. On the receiver side 

(base station), signals received at all the receive antennas are 

jointly processed by employing the proposed method to obtain 

channels’ estimate. Then, a linear minimum mean square error 

(LMMSE) equalizer estimates the data sequences sent by 

transmitter. A computer simulation based performance 

analysis of the proposed method is presented, where 

performance evaluation is done using metrics of normalized 

channel mean square error (NCMSE), as well as, bit error rate 

(BER).  A comparative analysis of the proposed method with 

notable SiT least squares (SiT-LS) and SiT-LMMSE methods 

in the literature is conducted, which clearly demonstrates that 

the proposed method outperforms both the existing techniques. 

 
 Index Terms—Channel estimation; Equalization; MIMO; 

Genetic algorithms; Superimposed training. 

I. INTRODUCTION 

The wide spread usage of smart phones with data hungry 

applications has resulted in an enormous growth in the data 

traffic. It is foreseen that the data traffic in cellular 

communication networks will grow up to 500-folds by the 

year 2020 [1]. The scarcity of the available electromagnetic 

spectrum is a major impediment in meeting the demands for 

higher data rates, thus, posing serious challenges to the 

modern cellular networks. In order to meet these challenges, 

research community is exploring new solutions in terms of 

technologies and architectures for the future cellular 

communication networks. A vital solution to meet these 

challenges is to use the substantial millimetre wave 

(mmWave) spectrum, which is unoccupied and 

underutilized to a large extent [2]. Another prominent 

solution is the spatial reuse of the available electromagnetic 

spectrum by employing multiple transmit/receive antennas. 

Such multiple-input multiple-output (MIMO) systems have 

been incorporated in the modern cellular networks such as 
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LTE-Advanced. Massive MIMO, which employs a large 

number of antennas at the base station (BS), is a prospective 

technology for emerging cellular networks due to its 

magnificent gains in spectral and energy efficiency as 

compared to conventional MIMO systems [3], [4]. 

However, the acquisition of an accurate estimate of the 

channel state information (CSI) is of vital importance for 

harvesting the substantial advantages of Massive MIMO. 

Various empirical studies in the existing literature have 

established the fact that certain propagation environments 

lead to a channel impulse response (CIR) that exhibits a 

sparse structure in spatial, angular or delay domain. A sparse 

CIR is characterized by few dominant channel taps relative 

to the length of the channel. A sparse structured CIR is 

observed in communication environments such as 

aeronautical communications [5], underwater acoustic 

communications [6], and wideband high frequency 

communications [7]. It is established in [8] that MIMO 

communication channels tend to exhibit a joint sparsity and 

possess a common support. It is demonstrated in [9] that 

mmWave based communication systems also tend to have a 

sparse structured CIR. A prior available knowledge about 

the sparse nature of a communications channel can be 

effectively utilized for obtaining the estimate of CSI. 

In the existing literature, several blind, semiblind and 

training based channel estimation techniques have been 

proposed for MIMO communication systems – see e.g., 

[10]–[12]. However, recently channel estimation techniques 

which are based on the approach of superimposed training 

(SiT) have gained significant attention due to their certain 

advantages over the counterparts [13]–[16]. SiT based 

channel estimation techniques achieve enhanced spectral 

efficiency by evading the need for dedicated time/frequency 

slots allocation to the training sequence. In SiT based 

channel estimation techniques, a low power and periodic 

training sequence is mathematically added over the 

information sequence at the transmitter side. The periodic 

structure of the training sequence is exploited by the 

receiver to estimate CSI. A user sum-rate based comparison 

of time multiplexed and superimposed arrangement of pilots 

is conducted in a multi-cell scenario in [17], where it is 

demonstrated that SiT based pilot arrangement schemes are 

superior with inherent capability of mitigating pilot 

contamination in large-scale MIMO systems.  
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Genetic algorithms (GA) based optimization methods use 

stochastic search algorithms to efficiently reach an 

optimized solution which is in a big solution space. GAs 

model nature’s biological evolution, crossover and mutation 

processes to achieve a complex optimization objective 

function. When sufficient number of chromosomes are used, 

the GA has the advantage of not getting stuck in local 

minimas. GA based optimization algorithms are used in a 

variety of fields including channel estimation in wireless 

communications [20]. This paper utilises GA for channel 

estimation using SiT technique for a MIMO sparse 

multipath channels, which, to our knowledge, has not been 

done before. The main contributions of this paper are stated 

as under: 

1. An SiT based estimation technique is proposed for the 

frequency-selective sparse MIMO channels. 

2. GAs are exploited for the purpose of channel 

estimation and the impact of variations in population size 

of GAs on the performance of channel estimation is 

studied. 

3. Impact of variations in channels’ sparsity level and 

training to information power ratio on normalized channel 

mean square error (NCMSE) is thoroughly studied. 

4. A comprehensive comparison of the proposed 

technique with the existing least squares (LS) and linear 

minimum mean square error (LMMSE) estimation 

techniques is conducted. 

The rest of the paper is organized as follows: the 

multiuser MIMO communication system model is presented 

in Section II. The details of the proposed channel estimation 

technique, for sparse MIMO channels that utilizes GA, are 

presented in Section III. Section IV explains the LMMSE 

equalizer incorporated in the system model. Section V 

describes the performance analysis using the performed 

simulations. Section VI presents the conclusion of the paper. 

II. SYSTEM MODEL 

The details of the proposed system model are illustrated 

in Fig. 1 such that N denotes the mobile user terminals and 

M denotes the elements in receiving antenna array. The 

signals as transmitted by M users travels through the sparse 

MIMO channel.  L  denotes the number of resolvable 

multipaths in such channel, out of which Q  are non-zero 

paths. The Section III details the channel estimator (CE) 

block that uses the first order statistics [13], as well as GA 

based superimposed training sequence estimation. Once an 

estimate of the CIR is obtained, the training sequence’s 

contribution is removed from the resulting signal using 

training effect remover (TER) and then it is fed to equalizer. 

Subsequently, the transmitted information sequence is 

estimated using LMMSE equalizer. The transmitted 

information sequence for nth user, denoted by nb , is zero 

mean and mutually independent for each of the n users. The 

vector form of the information sequence is 

     
*

0 , 1 ,..., 1n n n nb b b k   b , while the known 

periodic training sequence is 

     
*

0 , 1 ,..., 1n n n nc c c k   c . The period of training 

sequence is denoted by P, such that    n nc k c k aP  , for 

integers a  and P . The information sequence with 

superimposed training sequence, denoted nx , is given as 

 . n n nx b c  (1) 

 
Fig. 1.  Block diagram of the proposed system model for multi-user MIMO 

communication systems. 

The transmitted signals nx  propagate through the sparse 

frequency-selective MIMO channels. After reception by mth 

antenna element, the CIR between user n and antenna m, can 

be denoted as 
*

0 1 1, ,.., L
nm nm nm nmh h h  

 
h . At time instant k, 

the signal received at antenna m, is expressed as 

      
1

1 0

,
N L

l
m nm n m

n l

y k h x k l k


 

     (2) 

where  m k  represents additive white Gaussian noise 

(AWGN) on antenna m and at time instant k, with a variance 

of 
2
 . The overall instantaneous signal as captured by mth 

antenna array element at instant k is 

       
*

1 2,  , , Mk y k y k y k   y , and is calculated as 

      
1

0

1 ,
L

l

l

k k k




  Hy x η  (3) 

where l
H  is the channel matrix for lth delay tap with 

dimensions M N  

 

11 12 1

21 22 2

1 2

,

l l l
M

l l l
l M

l l l
N N NM

h h h

h h h

h h h

 
 
 

  
 
 

 

H  (4) 

while the parameters        
*

1 2, , , Mk k k k     η , 

and        
*

1 2, , ...,   .nk l x k l x k l x k l      x  After 

temporal sampling of the signal, vector representation is 

given by 

        
*

* * *1 , 2 , , ,k k L k L k      
 

y y y y  (5) 
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       ,k k k Hy x η  (6) 

where  kx  and  kη  can be represented as 

        
*

* * *1 , ,, 2 ,k k L k L k      
 

x x x x  (7) 

        * * *
*

1 , 2 , , .k k L k L k      
 

η η η η  (8) 

The convolution matrix H  of MIMO channels can be 

represented as 

 

0 1 1

0 1 1

0

0

L

L





 
 

  
 

 

H H H

H

H H H

. (9) 

III. PROPOSED GA BASED METHOD FOR SPARSE MIMO 

CHANNEL ESTIMATION 

An overview of received signals’ first-order statistics, 

exploited in the proposed work, is discussed in Section III-A 

and Section III-B. The conventional least squares based 

channel estimation is discussed in Section III-C while our 

proposed GA based channel estimation is detailed in the 

Section III-D.  

A. Superimposed Training Sequence Design 

A distinct cyclic frequency had been assigned to each 

mobile user. Let  nc k  be the training sequence of the nth 

mobile user.  P PN  denotes the training sequence period, 

such that .P Z  The training sequence  nc k  can be 

expressed as 

    
1

2 /
,

0

,
P

j i P k
n i n

i

c k c e






   (10) 

where k , 1j   . Furthermore 

    
1

2 /
,

0

1
.

P
j i P k

i n n
k

c c k e
P






   (11) 

The training sequence  nc k  has been chosen so that out 

of P coefficients, P  are not zero. Calculate  nc k  as 

expressed below 

   ,
1

'
,

0

,i n
P

j k
n i n

i

c k c e






   (12) 

where k ,  , 2 1 /i n iN n P    . The coefficients ,i nc  

are suitably chosen for 1 n N   and 0 1i P   . For the 

calculation of  nc k  a base sequence  0c k  is needed. P  

is the period of co(k), such that 

  
 1 2 /

, 0
0

1
.

P j i P k
i o

k

c c k e
P





   (13) 

The training sequence  1c k  with a period P, can be 

defined by repeating  0c k  N times. Now,  nc k  for the 

nth user can be calculated as 

       2 / 1
1 .

n

j P n k
n cc k c k e





  (14) 

B. First-Order Statistics of the Received Signal 

The signal received at th
k  time instant and th

m  element of 

receiver is represented by  my k , such that its statistical 

expectation is given as 

    , ,
1 1

'
,

1 0 0

,i n i n
N P L

j l j kl
m i n nm

n i l

E y k c h e e
 

 


  

 
  

 
    (15) 

where 1 2n n , and 
1 1 2 2, ,i n i n  . such that 

 1 2, 0,1, , 1i i P   . Defining the vector nmd  as, 

 

*

,0 ,1 , 1
, , ,nm nm nm nm P

d d d


 
 
  

d , such that ,nm id  can be 

represented by 

 ,
1

'
, ,

0

.i n
L

j ll
nm i i n nm

l

d c h e







     (16) 

Let  

*

,0 ,1 , 1
, ,ˆ ˆ,ˆˆ

nm nm nm nm P
d d d



 
 
  

d  be the mean-

square consistent estimate of nmd . To calculate the estimate 

ˆ
nmd , the coefficients can be computed as 

   ,
1

,
0

1ˆ ,i n
K

j k
nm i m

k

d y k e
K








   (17) 

where K  represents the total number of symbols received. 

For K  , consequently , , ˆnm i nm id d . Let ,  nm i , 

denote the error between ,nm id  and ,
ˆ
nm id . Hence, we can 

write 

 , , ,
ˆ .nm i nm i nm id d    (18) 

The error in estimation ,nm i  is a result of cumulative 

effect of additive noise, interference experienced due to 

superimposed information sequences transmitted by other 

users, as well as superimposed training sequences used on 

other channels. Writing (17) as vectors yields 

 ˆ ,nm n nm Cd h  (19) 

where   nC  is given as follows 
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   '
0, 1, 1 ,
' 'diag , , , ,nPn n n n

c c c


  C V  (20) 

where nV  can be calculated as 

 

   

1, 1,

1 , 1 ,

.

1 1 1

1

1

n n

n n

j j L

n

j j L

e e

e e
 

 

  

 

 

 
 
 

  
 
 
 

V  (21) 

C. Least Squares and LMMSE Based Channel Estimation 

Use (19) to calculate channel's least square estimate [20], 

as follows 

  
1

SiT LS * *ˆ ˆ .nm n n n nm


  C C Ch d  (22) 

In case of noise with non-zero mean, the channel can be 

calculated using the condition   1P L  , and removing 

,0
ˆ
nmd  from ˆ

nmd  and removing first row of   nC . An 

LMMSE based estimate of the sparse CIR vectors is given 

by 

 

 
 

1
SiT LMMSE * 2 1

* ˆ ,

ˆ
nm h n n HH

n nm d

 




   







C C

C

h R

d  (23) 

where HHR  is the channel covariance matrix and is 

assumed to be known at the receiver, d  is the mean of 

ˆ
nmd , and h  is the mean of the channel coefficients.  

D. Proposed GA Based Channel Estimation 

GAs are evolutionary search based techniques that have 

been frequently utilized to solve channel equalization and 

estimation problems in challenging wireless environments. 

This section presents a novel GA assisted algorithm that has 

been used for sparse multipath MIMO channels' estimation. 

It uses the first order statistics calculated from the received 

signal as well as the a priori information about channel’s 

sparsity. The estimation error ξ of the cost function is 

reduced using the compensation factor . GAs use 

stochastic search to find the near optimal solution in the 

entire solution space while at the same time minimizing the 

objective function given as: 

 ,
1

arg minnm nm

nm

h h
h

 subject to,  

 

2

2

2

,

1,

  

 


n nm nm

nm

C h d

h

 (23) 

where 
2

2
    ξ . Owing to sparsity of the channel, an 

1 norm  based objective function has been considered for 

minimization [21]. GA has a population size of   individual 

chromosomes where each chromosome corresponds to a 

solution vector in the solution space. At the start of GA, 

initial chromosome population ,0nmh  corresponds to 0th 

generation (i.e., og ), and can be generated randomly. An 

intelligent guess for the initial population ,0nmh  can be the 

SiT-LS estimate obtained in (1). The genetic algorithms are 

iterative in nature. The genetic algorithms successively 

employ the selection , crossover , and  mutation  operators 

to derive the population ,nm ih  of ,nm ig  (ith generation) from 

population , 1nm ih  of previous , 1nm ig  . The chromosomes 

in , 1nm ih  are evaluated sequentially one-by-one by using 

the fitness/objective function. Based upon this, evaluation 

chromosomes are sorted. Then stochastic uniform sampling 

method in selection  process is used to select the better 

performing chromosomes, called parent chromosomes. 

Among these selected chromosomes, those having the 

lowest score pass without any change, as children 

chromosome to ,nm ih . While operators of crossover  or 

mutation  are employed on remaining parent chromosomes 

to generate the remaining children chromosomes in ,nm ih  

The crossover operation involves randomly combining two 

parent chromosomes to generate a child chromosome for 

,nm ig . While in mutation, an individual parent chromosome 

undergoes changes or mutation to generate a child 

chromosome mutation avoid the possibility of GA getting 

stuck in local minima. Hence, the possibility of prematurely 

converging to a suboptimal solution is reduced. Then, ,nm ih  

gets replaced by , 1nm ih . These steps are repeated 

iteratively to minimize the defined objective function, until a 

pre-set convergence criterion or the maximum number of 

generations ( ) are met. The pre-set convergence criteria 

can be defined as when the fitness values of objective 

function for two successive generations becomes less than 

 . Finally, the solution corresponding to the chromosome 

with least value of fitness gives nmh , i.e., the required 

sparse multipath channel’s estimate. 

IV. LMMSE EQUALIZER WITH THE PROPOSED TECHNIQUE 

The receiver knows the superimposed training sequence 

transmitted by each mobile user. At the receiver, CIR is 

convolved with the superimposed training sequence. So, 

before estimation of information sequence, the 

contamination caused by training sequence in the 

information sequence needs to be normalized. This 

elimination of training sequences’ effect at each receiver 

element is performed by training sequence effect remover 

block (Fig. 1), which can be expressed as follows 

      
1

1 0

,
N L

l
m m nm n

n l

y k y chk k l


 

     (24) 

where l
nmh  denotes the channel’s lth tap, as seen from nth 

mobile user towards the receiver’s mth antenna element. The 

GA based channel estimation technique has been detailed in 

the previous section. After removing training sequence's 

effect, the resulting signal is then provided to the equalizer 
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for computing the estimate of information sequence. Let 

 nw  be the optimal equalizer weight corresponding to the 

mth antenna element, and is estimated as [22]: subtraction 

  
    

1
2

1 1 1

* 2 ,ˆ

e

n n

m L L 




    

 HH I Hw  (25) 

where eL  represents the number of equalizer taps, I  is the 

identity matrix with dimensions e eL L ,   denotes the 

mapping delay, and 
i

H  represents the ith column of H . 

While H  denotes the convolutional matrix of dimensions 

 1e eL L L   . The estimated impulse response vectors of 

channels can be used to calculate nmH  as follows 

 

0 1

0 1

0 1

0 0 0

0 0 0
.

0 0 0

nm

L
nm nm nm

L
nm nm nm

L
nm nm nm

h h h

h h h

h h h



  
 
 

  
 
 

  

H

 (26) 

Subsequently, we can calculate H , the composite 

representation of MIMO channels’ convolutional matrices, 

as 

 

11 12 1

22 121

21

.

M

M

N NMN

 
 
 
 
 
  

H H H

H HH
H

H HH

 (27) 

The estimate of additive noise variance 2ˆn  can be 

obtained as given in [13]. Finally, the transmitted sequence 

of nth transmitter is calculated as 

    
1

1 0
, ,

LM e

n
m i

nm i mb k w y k i


 

    (28) 

where   nb  is the equalizer output, and it serves as the input 

of decision mapper, as explained in Fig. 1. The decision 

mapper then calculates the decoded symbols ˆ
nb , by 

mapping symbols in accordance with the selected 

modulation schemes. 

V. SIMULATION RESULTS 

This section conducts the performance analysis of SiT-

GA method based upon the results of performed computer 

simulations. In the simulation setup, the realization of 

channels nmh  are generated independently for each Monte 

Carlo run, while the channels’ sparsity level is kept fixed at 

  /Q L . 

The positions of non-zero values in the CIR vector are 

drawn from a uniform distribution. While a zero-man 

Gaussian distribution with  1/ 1M L   variance, is used to 

draw the values of non-zero channel taps. The channels 

from a particular user terminal to all the receive antenna 

elements are assumed to possess a common support (non-

zero tap positions) because of the small antenna separations 

at the receiver. Binary phase shift keying (BPSK) modulated 

data symbols are assumed to be uniformly distributed with 

zero mean and variance 2
b , and are generated 

independently for each user (transmitter) and for each 

Monte Carlo run. At each receive antennas element, the 

signal-to-noise ratio (SNR) is specified as the ratio of power 

of received signal to the power of AWGN; where it is 

assumed that received SNR at each antenna is equal. The 

impact of population size on the MSE and BER performance 

of proposed method can be seen in Fig. 2(a) and Fig. 2(b), 

respectively. It is evident that increasing the population size 

results in an improvement in both MSE and BER 

performance; however, the rate of increase in marginal for 

population size higher than  4L . The effect of channels’ 

sparsity level on MSE performance is plotted in Fig. 3(a). 

The performance of proposed method is observed to 

improve with an increase in channels’ sparsity. The impact 

of increase in training to information power ratio in MSE 

performance of the proposed method is plotted in Fig. 3(b). 

An increase in power of the training sequence compared to 

the information sequence results in an improvement in the 

accuracy of channel estimate calculated at the receiver. 

However, relative decrease in the power of information 

sequence beyond 2 2/ 0.6c b    leads to a decrease in BER 

performance of the system. The usefulness of proposed 

method is demonstrated through the comparison of the 

proposed SiT-GA method with notable channel estimation 

methods named as SiT-LS and SiT-LMMSE. The NCMSE 

and BER are the performance metrics used for this 

comparison in Fig. 4. For an SNR of 10dB  and channels’ 

sparsity level of / 6 /14Q L  , an improvement of 7.93 dB  

and 5 dB in MSE performance by the proposed SiT-GA 

method compared to SiT-LS and SiT-LMMSE, respectively, 

as can be observed in Fig. 4(a).  

 
                              (a)                                                           (b) 

Fig. 2.  The impact of population size and SNR on the NCMSE 

performance (a); The impact of population size and SNR on BER 

performance ( 310K  , 4N  , 0  , / 4 /14Q L  , 0.001  , 

15eL  , 300  , 310 runsMonte  ) (b). 

For a BER of 110  and channels’ sparsity level of 

/ 6 /14Q L  , the proposed method provides an 

approximate SNR gain of 3 dB  and 2 dB as compared to 
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SiT-LS and SiT-LMMSE methods.  

 
                               (a)                                                         (b) 

Fig. 3.  The effect of channel sparsity level and SNR on NCMSE 

performance, for  
2 2/ 0.2c b    (a); the effect of training-to-information 

power ratio on NCMSE performance, for / 4 /14Q L  . ( 4M  , 

4N  , 5L  , 300  , 0.001  , and 310 runsMonte  ) 

(b). 

 
                                (a)                                                        (b) 

Fig. 4.  NCMSE based performance comparison of the proposed method 

with SiT-LS [13] and SiT-LMMSE (a); BER based performance 

comparison of the proposed method with SiT-LS [13] and SiT-LMMSE. 

( 310K  ,   3M  , 3N  , / 6 /14Q L  , 300  , 3L  , 

2 2/ 0.25c b   , 0.001   ,   15eL  , and 310 runsMonte  ) (b). 

It is also evident that the gain offered by the proposed 

method in MSE and BER performance, further increases for 

high degree of channel sparsity. It is thus established that the 

proposed method promises an improved quality of service 

(QoS) by offering significant improvement in accuracy of 

channels’ estimate and retrieved information. 

VI. CONCLUSIONS 

A GA based method for estimation of sparse MIMO 

channels using superimposed training sequence has been 

proposed. It has been established that for a channels’ 

sparsity level of Q/L = 6/14 and training-to-information 

power ratio of 
2 2  / 0.25c b   , the proposed channel 

estimation method outperforms the existing SiT-LS and SiT-

LMMSE techniques with a gain of about 7.93 dB and 5 dB 

in NCMSE at an SNR of 10 dB. Similarly, for a BER of  

10-1, a performance gain of 3 dB and 2 dB in SNR has been 

observed over the existing SiT-LS and SiT-LMMSE 

techniques, respectively. Moreover, it has been also 

established that the increased sparsity level of the MIMO 

channels leads to a further improvement in NCMSE of the 

proposed technique. Furthermore, it is observed that 

increasing the training-to-information power ratio results in 

an improvement in the channel estimate. However, 

allocating more power to the training sequence causes 

reduction in SINR at the receiver. Therefore, an optimal 

value of the training power needs to be chosen.  

ACKNOWLEDGMENT 

The authors would like to acknowledge the travel grant 

support by Higher Education Commission (HEC) Pakistan 

to attend the conference. 

REFERENCES 

[1] T. N. Nan, S. Nagata, A. Benjebbour, Y. Kishiyama, T. Hai, 
S. Xiaodong, Y. Ning, L. Nan, “Trends in small cell enhancements in 

LTE advanced”, IEEE Commun. Mag., vol. 51, no. 2, p. 98–105, 

2013. DOI: 10.1109/MCOM.2013.6461192. 
[2] R. Haines, W. H. Chin, Z. Fan, “Emerging technologies and research 

challenges for 5G wireless networks”, IEEE Wireless Commun., 

vol. 21, no. 2, pp. 106–112, 2014. DOI: 10.1109/ 
MWC.2014.6812298. 

[3] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, 

O. Edfors, F. Tufvesson, “Scaling up MIMO: Opportunities and 
challenges with very large arrays”, IEEE Signal Process. Mag., 

vol. 30, no. 1, pp. 40–60, 2013. DOI: 10.1109/MSP.2011.2178495. 

[4] E. Larsson, O. Edfors, F. Tufvesson, T. Marzetta, “Massive MIMO 
for next generation wireless systems”, IEEE Commun. Mag., vol. 52, 

no. 2, pp. 186–195, 2014. DOI: 10.1109/MCOM .2014.6736761. 

[5] F. K. Lee, P. J. McLane, “Design of nonuniformly spaced tapped 
delay-line equalizers for sparse multipath channels”, IEEE Trans. on 

Commun., vol. 52, pp. 530–535, 2004. DOI: 10.1109/TCOMM. 

2004.826351. 
[6] Z. Jun-yi, W.-x. Meng, J. Shi-lou, “Sparse underwater acoustic 

OFDM channel estimation based on superimposed training”, J. of 

Marine Science and Application, vol. 8, no. 1, pp. 65–70, 2009. DOI: 
10.1007/s11804-009-8015-2. 

[7] J. Ying, J. Zhong, M. Zhao, Y. Cai, “Turbo equalization based on 

compressive sensing channel estimation in wideband HF systems”, in 
Int. Conf. on Wireless Commun. Signal Process., 2013. DOI: 

10.1109/WCSP.2013.6677272. 
[8] Y. Barbotin, A. Hormati, S. Rangan, M. Vetterli, “Estimation of 

sparse MIMO channels with common support”, IEEE Trans. on 

Commun., vol. 60, no. 12, pp. 3705–3716, 2012. DOI: 
10.1109/TCOMM.2012.091112.110439. 

[9] A. Alkhateeb, O. E. Ayach, G. Leus, R. W. Heath, “Channel 

estimation and hybrid precoding for millimeter wave cellular 
systems”, IEEE J. of Sel. Topics in Signal Process., vol. 8, no. 5, 

pp. 831–846, 2014. DOI: 10.1109/JSTSP.2014.2334278. 

[10] S. Shahbazpanahi, A. B. Gershman, J. H. Manton, “Closed-form blind 
MIMO channel estimation for orthogonal space-time block codes”, 

IEEE Trans. on Signal Process., vol. 53, no. 12, pp. 4506–4517, 

2005. DOI: 10.1109/TSP.2005.859331. 
[11] Y. Zeng, A. R. Leyman, T. S. Ng, “Joint semiblind frequency offset 

and channel estimation for multiuser MIMO-OFDM uplink”, IEEE 

Trans. on Commun., vol. 55, no. 12, pp. 2270–2278, 2005. DOI: 
10.1109/TCOMM.2007.910637. 

[12] C. Fragouli, N. Al-Dhahir, W. Turin, “Training-based channel 

estimation for multiple-antenna broadband transmissions”, IEEE 
Trans. on Wireless Commun., vol. 2, no. 2, pp. 384–391, 2003. DOI: 

10.1109/TWC.2003.809454.  

[13] S. He, J. K. Tugnait, X. Meng, “On superimposed training for MIMO 
channel estimation and symbol detection”, IEEE Trans. on Signal 

Process., vol. 55, no. 6, pp. 3007–3021, 2007. DOI: 

10.1109/TSP.2007.893941. 
[14] S. J. Nawaz, K. I. Ahmed, M. N. Patwary, N. M. Khan, 

“Superimposed training-based compressed sensing of sparse 

multipath channels”, IET Commun., vol. 18, no. 6, pp. 3150–3156, 
2012. DOI: 10.1049/iet-com.2012.0162. 

[15] B. Mansoor, S. J. Nawaz, B. Amin, S. K. Sharma, M. N. Patwary, 

“Superimposed training based estimation of sparse MIMO channels 
for emerging wireless networks”, in 23rd Int. Conf. on Telecommun. 

(ICT 2016), 2016. DOI: 10.1109/ICT.2016.7500477. 

[16] B. Mansoor, S. J. Nawaz, S. M. Gulfam, “Massive-MIMO sparse 

uplink channel estimation using implicit training and compressed 

sensing”, Applied Sciences, vol. 7, no. 1, 2017. DOI: 

10.3390/app7010063. 

80



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 24, NO. 6, 2018 

 

[17] K. Upadhya, S. A. Vorobyov, M. Vehkapera, “Superimposed pilots 

are superior for mitigating pilot contamination in massive MIMO”, 

IEEE Trans. on Signal Process., vol. 65, no. 11, pp. 2917–2932, 

2017. DOI: 10.1109/TSP.2017.2675859. 

[18] K. Yen, L. Hanzo, “Genetic algorithm assisted joint multiuser symbol 

detection and fading channel estimation for synchronous CDMA 
systems”, IEEE J. on Sel. Areas in Commun., vol. 19, no. 6, pp. 985–

998, 2001. DOI: 10.1109/49.926355. 

[19] M. Jiang, J. Akhtman, L. Hanzo, “Iterative joint channel estimation 
and multi-user detection for multiple-antenna aided OFDM systems”, 

IEEE Trans. on Wireless Commun., vol. 6, no. 8, pp. 2904–2914, 

2007. DOI: 10.1109/TWC.2007.05817. 

[20] E. J. Candes, T. Tao, “Decoding by linear programming”, IEEE 

Trans. Inf. Tech., vol. 51, no. 12, pp. 4203–4215, 2005. DOI: 

10.1109/TIT.2005.858979.  

[21] W. U. Bajwa, J. Haupt, A. M. Sayeed, R. Nowak, “Compressed 

channel sensing: a new approach to estimating sparse multipath 

channels”, in Proc. IEEE, vol. 98, no. 6, pp. 1058–1076, 2010. DOI: 
10.1109/JPROC.2010.2042415. 

[22] S. Chen, A. Livingstone, L. Hanzo, “Minimum bit-error rate design 

for space-time equalization-multiuser detection”, IEEE Trans. 
Commun., vol. 54, no. 5, pp. 824–832, 2006. DOI: 

10.1109/JPROC.2010.2042415. 

 

81




