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1Abstract—In this work, we investigate the possibility of
employing sparse reconstruction framework for the separation
of cardiac and respiratory signal components from the
bioimpedance measurements. The signal decomposition is
complicated by the nonstationarity of the signal and
overlapping of their spectra. The signal has a harmonic
structure, which is sparse in the spectral domain. We approach
the problem by considering a dictionary with integrated
wideband elements describing spectral components of the
considered signal. The parameter estimation task is solved by
the means of sparse reconstruction where solving the
optimization problem returns a sparse vector of relevant
dictionary atoms.

Index Terms—Electrical bioimpedance; Cardiac and
respiratory components; Parameter estimation; Sparse
reconstruction; Wideband dictionary.

I. INTRODUCTION

Electrical bioimpedance (EBI) measurements based
applications for medical signal monitoring can provide
interesting alternative to the conventional approaches due to
noninvasiveness and cost-effectiveness. EBI measurements
can characterize different properties of the human tissues
and structures as well as various physiological dynamic
processes in the human body, e.g. respiration and cardiac
activities [1]. Medical applications can utilize EBI signal to
analyze cardiac activities from simple heart-rate monitors [2]
up to more sophisticated estimation of the cardiac output [3],
[4] or central aortic blood pressure waveform [5]. EBI-
based, noninvasive, continuous cardiac output monitoring
can have several clinical applications in cardiology,
emergency care, anesthesiology [3].

Extraction and separation of the cardiac and/or respiratory
signal(s) is challenging; as these two signal components can
vary significantly in time and frequency domains, they can
have overlapping spectra and can be accompanied by severe
noise, disturbances and artefacts. Respiratory and motion-
based signal components can be considered as noise signals
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if one is only interested in the cardiac component. However,
it is more interesting to try to extract both the cardiac and
respiratory signals. Different approaches to this problem
have been proposed in the recent literature including
adaptive filtering [6], adaptive phase-locked loop [7],
method based on the signal shape-locked-loop decomposer
solution [8], principal and independent component analysis
[9] and artificial neural networks [10]. These proposed
methods are quite sophisticated; however, they either require
considerable amount of fine-tuning and computational
resources (neural networks) or require some time for
converging to an optimal solution and exhibit low robustness
to changes in the parameters of the signal (adaptive filters).
Considering the variety of the proposed solutions, it is
interesting to note that there is still no clearly established
method available for extraction and separation of cardiac
and respiration signal components, partly due to the
problems mentioned above, but also partly due to the
variations in the anatomy and physiology of human beings
and their behaviour at various times and in physical and
mental situations.

In this work, we are looking at employing a sparse signal
processing technique for reconstructing respiratory and
cardiac signals from EBI measurements (Fig. 1 shows an
example of the EBI signal). The notion of sparsity usually
implies that a signal is sparse in some domain (has only a
few number of significant components). It has been noted
that a large number of common applications results in
signals that may be well approximated using a sparse
reconstruction framework, and this area has seen increase in
interest from the scientific community (see, e.g., [11], [12]
and the references therein). A large part of these works has
focused on convex algorithms that make use of different
sparsity inducing penalties, which result in solutions that are
well represented using only few elements from some (usually
known) dictionary matrix, D. If the dictionary is
appropriately chosen, it can be shown that even very limited
measurements allow for an accurate signal reconstruction
[13], [14]. We propose to reconstruct the relevant
components of the EBI signal by considering wideband
dictionary elements introduced in [15], [16]. These elements
are formed as bands of frequencies covering the entire
spectrum of interest.
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Fig. 1. Example of a waveform of an electrical bioimpedance
measurements.

By refining the estimate through iteratively zooming into
active parts of the spectra, the proposed algorithm is able to
estimate signal parameters and reconstruct the signal without
any prior knowledge.

II. SPARSE RECONSTRUCTION

The signal model for the considered EBI measurements
can be written as

( ) ( ) ( ) ( ),C Ry t s t s t e t   (1)

where sC(t) is the cardiac component, sR(t) respiratory
component and e(t) additive noise. We start with the
assumption that both the cardiac and the respiratory
components in the EBI signal are well approximated by a
sum of sinusoids. Considering discrete-time signal consisting
of N samples, we can then reformulate (1) as
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where K denotes the number of sources and Lk the number of
sinusoids for the kth source. Furthermore, fk denotes the kth
fundamental frequency and βk,l the complex amplitude
corresponding to the lth harmonic of the kth fundamental
frequency, respectively, tn the nth sample time, and ϵn the
additive noise at time tn. In the problem at hand K is known
as we deal only with two sources. Hence, for reconstructing
each source signal we can tackle the problem of estimating
the frequencies fk, for k = 1, ..., Lk, of a measured signal yn.
The classical sparse formulation of this estimation problem,
as presented in [17], considers the LASSO minimization
[18]
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where ˆ
pf for p = 1, …, P denotes the kP L candidate

frequencies in the dictionary, D , typically selected to be
closely spaced to allow for minimal grid mismatch, and ( )T
the transpose. The penalty on the 1-norm of x will ensure
that the found solution, x̂ , will be sparse, with λ denoting a
user parameter governing the desired sparsity level of the
solution. The desired frequencies, as well as their order, are
then found as the non-zero elements in x̂ . In this work we
are limiting our approach to the use of LASSO
minimization; however, in the literature there exist several
well-known methods of solving undetermined system of
linear equations (e.g. basis pursuit [19], orthogonal matching
pursuit [20], etc.).

Deviating from the classical estimation method where the
dictionary consists of closely spaced sinusoids, we propose
exploiting integrated wideband dictionary elements in D
[15], [16], such that each element is formed over the band
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as the resulting dictionary elements cover the band of
frequencies from fb to fb+1, for b = 1, …, B1, the entire
spectrum may be formed with 1B P , where B1 denotes
the (initial) number of wideband dictionary elements. This
approach coupled with iterative zooming into the active part
of the spectra results in decreased computational complexity
and improved estimation performance. For the in-depth
discussion on the use and benefits of wideband dictionary
elements based dictionaries we refer the reader to the
comprehensive analysis in [16].

The resulting solution to the minimization in (3), x̂ , can
be further used to reconstruct an approximation of the initial
EBI waveform as

ˆ ˆ ˆ ,C C R R y D x D x (8)

where CD and RD denote dictionaries, while ˆCx and ˆ Rx
denote solutions to the LASSO minimization for cardiac and
respiratory components respectively.

III. THE PROPOSED ALGORITHM

We approach our analysis of the bioimpedance data by
selecting two time windows tc and tr, corresponding to the
cardiac and the respiratory component respectively. Ideally
we would like the time window to be close to the period of
the analysed signal. A reasonable assumption for the rest rate
of an adult is around 50–90 heartbeats per minute (bpm) for
the cardiac component, which corresponds approximately to
the heart rate with the frequency of 0.83...1.5 Hz; and
around 10–18 breaths per minute for the respiratory
component, which corresponds approximately to the
respiratory rate with the frequency of 0.16...0.30 Hz.
Correspondingly, we assign the time windows to be tc = 1.5
seconds and tr = 6.25 seconds. The respiratory component is
reconstructed from the EBI data that is filtered through a
512-tap low-pass filter with cut-off frequency fLP = 0.4 Hz
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and the cardiac component is reconstructed from the EBI
data that is filtered through a 512-tap band-pass filter with
fBP1 = 0.7 Hz and fBP2 = 3 Hz. For each component we
continue in a similar manner by analysing data for each time
window. We solve the LASSO minimization in (3) using the
initial dictionary D1 with B1 number of elements constructed
according to (7). Next, we discard the inactive bands of the
spectra and solve the minimization task again now using the
dictionary D2 with B2 on parts of the spectra which were
active in the first estimation step. By discarding inactive
bands, we reduce the amount of computations required. In
our experience, a two-step iterative zooming procedure
(coupled with the proper choice of number of elements in
the both dictionaries) is enough to achieve reasonable
estimation precision; however, this choice is rather arbitrary.
After the final estimation step, the algorithm returns a sparse
vector which corresponds to the dictionary elements which
fit the data in the best way. By extracting the fundamental
frequency (first significant peak) from the vector, we get the
corresponding rate of cardiac or respiratory part of the signal
respectively. Then we move the window further on with an
overlap of 50% with the previous data block. LASSO is
solved through the alternating direction method of
multipliers (ADMM) [21], derivation of the solution is
presented in [15], [16], [22] and we refer the interested
reader to description therein.

It has to be noted that using general LASSO formulation
has a common weakness known as f0 vs. f0/2 ambiguity [22]
(here f0 denotes the fundamental frequency). In some cases,
the optimal solution to the minimization problem is going to
be described similarly well (or even in a better way) by
dictionary elements with fundamental frequency at half the
actual frequency. As every other harmonic component in this
solution will coincide with the actual signal component, then
the algorithm returns f0/2 as fundamental frequency of the
analysed signal. The problem is illustrated in the Fig. 2. The
actual fundamental frequency of the cardiac signal as
represented by ECG spectra is located at 0.83 Hz. From the
estimated signal spectra the first significant peak can be
found at 0.44 Hz and second at 0.93 Hz. It is clear that in
this particular case the algorithm returned the fit with
harmonic structure with fundamental frequency at f0/2 the
actual one.

Fig. 2. Half fundamental frequency problem (magnitudes of ECG
harmonics were chosen arbitrarily to show the location of the harmonics
and do not reflect the actual values of the signal).

The currently proposed solution works reliably for the
measurements where the cardiac component of the EBI
signal lies in the frequency range of 0.8 Hz to 1.4 Hz,
corresponding to 48 to 84 heartbeats per minute. In this case
f0/2 frequency lies well below the normal heart-rate of the
human beings and can therefore be detected as wrong
estimate and corrected accordingly. However, with the heart-
rate values above this range, f0/2 frequency will yield an
estimate which falls in the range which can be considered to
lie in the normal heartbeat range and therefore requires
additional processing in terms of signal-tracking, which will
exclude abrupt changes in the continuous estimation process.
Proper remedy to this sort of situation can be found in the
form of solutions which promote block-sparsity [22], [23],
where the dictionary has an internal block structure and the
final solution has to be block-sparse (i.e. use only few blocks
to describe the solution).

IV. RECONSTRUCTION OF THE SIGNAL

In our experiments for testing the proposed method, we
used the collection of EBI signals recorded in clinical
conditions. The EBI measurements were taken by using a
CircMon device (JR Medical Ltd, Estonia) operating at a
frequency of 30 kHz and having a tetrapolar configuration of
electrodes (together eight standard ECG electrodes on hands
and feet). Initially the EBI signal is sampled at a rate of 1
kHz and is further decimated to 200 Hz using a 5-point
averaging filter. All the simulations and analysis in this work
were conducted in the MATLAB environment.

For the reconstruction, we have chosen to use a two-step
estimation with B1 = 100 dictionary elements in the first
estimation run and B2 = 50 dictionary elements in the second
refining run. This choice results in the final resolution of
0.01 Hz. The component reconstruction is carried out by
multiplying the solution x̂ found by LASSO with the
dictionary D for each time window tc or tr. We can interpret
the reconstructed block as a weighted sum of relevant
dictionary elements. Figure 3 shows the separated
respiratory and cardiac parts of the signal. As the
reconstruction is done piecewise block by block, the breaks
can be noted on reconstructed signal (especially on the
respiratory component in Fig. 3). This can be mitigated by
employing smoothing moving average filter for example.
Fig. 4 shows the original EBI data and reconstructed EBI
data which consists of reconstructed respiratory and cardiac
components. In Fig. 5 we show the resulting fundamental
frequency estimate of the cardiac signal component. We
compare the result of the proposed method with the ground-
truth, which is the frequency that is extracted from the ECG
measurement done at the same time as EBI measurements.
As we can see from the figure, the resulting estimate follows
the actual frequency of the cardiac component closely and
mean-square error (MSE) as compared to ECG
measurements is 0.0007.

Direct comparison with other algorithms is complicated
by two factors. First, different authors use different metrics
to evaluate efficacy of their approach. For example,
classification metrics in [9], stroke volume estimation
accuracy in [6] and in [10], visual comparison of original
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and reconstructed waveforms in [6] and [8]. Second and
more important is the fact that different authors use different
datasets (usually collected by their research group) and their
measurements are not available for the wider research
community, possibly due to privacy and ethical constraints
related to the patient data. Authors tend to concentrate more
on considering how their approach is able to capture the
phenomena they are investigating. In our work the proposed
algorithm is evaluated on 8 different EBI datasets measuring
different levels of activity for different subjects.

(a)

(b)
Fig. 3. Separated respiratory (a) and cardiac (b) signal components.

Fig. 4. Impedance signal as reconstructed from the sum of the separated
cardiac and respiratory parts, compared to the original impedance signal.

For each set we have evaluated the proposed algorithm
based on two MSE-s. Reconstruction MSE denoted as MSER
(9) is calculated by comparing original EBI waveform with
the waveform that is reconstructed from two separated signal
components according to (8)
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where ny and ˆny denote the nth sample of the EBI signal
and reconstructed signal, respectively. Frequency estimation
MSE denoted as MSEF (10) is calculated by comparing
frequency estimate of cardiac component with the ECG
measurements which were collected simultaneously with the
corresponding EBI dataset
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where mf denotes ground truth frequency and ˆ
mf

frequency estimated by the proposed method. M is the
number of blocks for which the frequency estimate is
calculated and depends on the length of the recorded signal,
time window tc and window overlapping factor. Here we
considered ECG measurements as the ground truth for the
comparison. Results are presented in Table I.

Fig. 5. Cardiac component frequency estimate compared to the frequency
estimate as measured from ECG signal.

TABLE I. MEAN SQUARE ERRORS FOR RECONSTRUCTION OF EBI
SIGNALS AND FREQUENCY ESTIMATE OF CORRESPONDING

CARDIAC COMPONENT.
EBI dataset name Duration MSER MSEF

02ecg 107s 2.16e-06 0.00129
06ecg 37s 5.09e-06 0.00120
07ecg 67s 3.75e-06 0.00658
08ecg 23s 2.97e-05 0.00335
12ecg 117s 1.13e-06 0.00251
17ecg 24s 3.88e-06 0.00752

101ecg 103s 1.04e-05 0.00540
102ecg 82s 3.90e-06 0.00060

V. CONCLUSIONS

In this work we have presented a novel method for
separating cardiac and respiratory components from the
electrical bioimpedance measurements. Signal components
are recovered by the means of sparse reconstruction using
the dictionary consisting of wideband elements. The
proposed approach is able to reliably reconstruct both signal
components and track fundamental frequency of cardiac
component with high precision. Although the algorithm is
not robust to the f0 vs. f0/2 ambiguity problem, relevant post-
processing techniques provide a temporary remedy, while
the planned extension to the proposed algorithm with the use
of block-sparse dictionary structure should provide the
necessary robustness in the future.
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