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1Abstract—When humans are listening to music they
perceive beats, rhythms and melodies. Music stimuli induce
motor system activities and it has a powerful emotion trigger
effect. Since music is a potential stimulus in
electroencephalogram based emotion research we supposed that
different kinds of songs are recognizable from
electroencephalogram signal. In this study we try to recognize
music-induced electroencephalogram responses with the
popular Neurosky Mindwave device. This paper describes the
test conditions and the efficiency of an artificial neural network
in combination with different data pre-processing techniques.
The final outcomes show the negative effect of frequency
decomposition and that the meditation level has more
significant effect on the recognition than a particular song.

Index Terms—Artificial neural networks; Brain-computer
interfaces; Digital filtering; Electroencephalography.

I. INTRODUCTION

Electroencephalogram (EEG) signal is voltage fluctuation
in the human brain which comes from the ionic current flow
within neurons. EEG signals have been used mainly for
neurological disorder detection and evaluation in clinical
environment. In the early stage of EEG research the
diagnosis is usually done by a clinical expert who is familiar
with brain rhythms. The vast majority of EEG related papers
deal with the application possibilities of EEG readers in
medical applications such as epileptic seizure and mental
disorder detection [1]. The advantages of modern
microelectromechanical technology made the EEG sensors
available for the whole research community and take the
measurements outside the special clinical environment.
Currently the Neurosky Mindwave headset is one of the most
popular and cheapest EEG readers on the market [2].

Nowadays the new machine learning (ML) methods
replaced the circumstantial visual inspection based EEG
analysis. Some different automated solutions already have
been suggested for medical and non-medical purposes.
According to the EEG processing task the ML algorithm
type can be different. For instance, the authors of [3] used
support vector machine (SVM) to emotional state
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classification. Amarasinghe et al. worked with artificial
neural network (ANN) and tried to recognize two patterns to
robot control [4]. Lin et al. used ANN to the classification of
four emotion categories which come from music stimuli [5].
In this work we also applied ANN because the results in [6]
demonstrated that a well-constructed ANN can outperform
other ML methods.

Music has a well-known impact on emotional states.
Already several neuroscientists investigated the connection
between music and EEG signals in different contexts [7].
The authors of [8] developed an automatic music rating
system from brainwaves where the output is like or dislike.
In [9] the researchers also described another music
recommendation program which utilizes the user’s emotional
states. In lots of woks scientists tried to recognize the six
elementary emotions (disgust, fear, sadness, anger, surprise
and happiness) via brainwaves. Almost in all earlier emotion
recognition articles the model training and testing were
performed with the subject’s self-reported emotions.
However this feedback can be unreliable in many cases
because emotions are not exact and change slowly [10].
Unlike other ML problems such as voice or image
recognition, in EEG classification there is uncertainty
between labels because it is rather difficult to decide that the
emotion was correctly determined and labeled. In addition
the wide overlap between emotion states causes
complications in classification. Therefore in this work we
tried to recognize the concrete songs from EEG signal
instead of emotional states. Our results also reveal the
capabilities of the Neurosky headset which can be useful in
later works.

II. BRAIN-COMPUTER INTERFACE

Currently the brain-compute interface (BCI) is an
outstanding research area where the goal is to create a
communication link between computer and human brain. It
provides a direct way to transform brainwaves into physical
effects without using muscles.

A widely used EEG reader is the single channel Neurosky
Mindwave Mobile headset. It consists of two dry-electrodes.
One of them is positioned on the forehead in the Fp1
position while the second one (an ear clip) ensures reference
point on the A1 position according to the 10-20 electrode
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system. An illustration about the sensor and its electrodes
locations can be seen on Fig. 1. The device provides non-
invasive and painless measurement up to 8 hours with a fully
charged AAA battery. Its sampling frequency is 512 Hz. The
output data contain 12-bit raw brainwaves (between 3 Hz–
100 Hz) and pre-determined attention and meditation levels
from the build-in eSense meter (discrete values between 0–
100). The communication between the computer and the
sensor takes place via Bluetooth connection with 57600
baud rate. This EEG reader already has been used for
control tasks where the attention level was the input of
controllers. For instance, in [11] and [12] the authors
controlled a toy car and a robot where their speed depended
on the average or a threshold attention level. To this study
we developed an own EEG signal acquisition framework in
the Processing programming environment. The software
establishes Bluetooth connection with the sensor a saves the
raw data into text files. The data have been collected from 5
volunteers aged between 14 and 52 years. They have been
informed about the purpose of the experiment and the
operation of the brainwave recording device. Each subject
sat comfortably in a chair in front of the computer in a silent
room. During data acquisition, the participants kept their
eyes closed and remained as motionless as possible. The
music pieces were 30 seconds long with 10 seconds wide
silence interval between each song without any stimulus for
relaxing and avoiding emotional contamination from
previous songs. The complete data set was divided into 20 %
test, 20 % validation and 60 % training data. The data
acquisition software, the collected data, list of songs and
other materials are freely available from the
http://irh.inf.unideb.hu/user/sutoj/eeg.php webpage after an
official request.

III. METHOD

Traditionally, brainwaves can be decomposed into
particular frequency bands. Each band relates to special
feelings. A summary about frequency bands can be seen in
Table I. The frequency bands are slightly distinct in different
articles [13], [14].

TABLE I. EEG FREQUENCY BANDS.
Band Frequency interval Related feelings

Delta (δ) 0.5 Hz–4 Hz Deep sleep
Theta (θ) 4 Hz–8 Hz Calm and relaxed mood
Alfa (α) 8 Hz–13 Hz Awake relaxation
Beta (β) 13 Hz–30 Hz Excitement and boredom

Gamma (γ) 30 Hz–100 Hz Visual stimuli

Frequency decomposition is a generally accepted
technique in music stimuli analysis independently of the
application type. However, the influence of music on the
individual bands is not clear. For example, Fachner and
Stegemann demonstrated that an increasing tendency can be
observed in the frontal θ power during pleasant music
listening [15]. The authors of [8] showed that an increase
can be seen in γ and in frontal θ band power during music
perception which depends on pleasant and unpleasant sounds
while Sun et al. claimed that different music styles influence
EEG bands differently because the energy magnitude and

intensity are varying due to the music type [7]. Therefore we
separated the frequency bands and investigated them
independently of each other.

(a) (b)
Fig. 1. The Mindwave headset (a) and its electrodes location (b).

Every change in the EEG signal which is not directly
influenced by the brain potential difference is called artifact.
The real signal which comes from the brain activity is
significantly distorted by several known artifacts such as
power line frequency, electrostatic interference, pulse,
breathing, lid, eye and muscle movements, etc. [2]. The
interfering noises can be more than 10 times stronger than
the real brain activity. In addition eye movement is one of
the major noise sources in recordings.

Probably the most obvious strategy for dealing with noisy
data is the digital filtering. The Neurosky sensor already has
an embedded band pass filter (3 Hz–100 Hz band). At first
we used the whole band without frequency interval
subdivision. Later the frequency bands from Table I have
been separated. Since the δ band is suppressed by the
device’s built-in band pass filter, it was ignored. To the band
separation finite impulse response (FIR) filters have been
used with Hamming window. FIR filters do not cause phase
shift and they are predominantly used in EEG signal
processing [15]. The filter size has been determined by (1)
where fs is the sampling frequency, fl and fu are the lower and
upper cut off frequencies and N is the window size (nearest
odd number). According to it the filter size to θ, α, β and γ
filters are 423, 339, 101 and 25 respectively. The frequency
response of filters can be seen on Fig. 2. Additional
information about FIR filter design can be found in [16]. In
order to reduce muscle artifacts, participants had to remain
in one place
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Most ML solutions follow a general machine learning
chain. It consists of data acquisition, segmentation, feature
extraction, classifier training and classification stages. In our
case the signal is a single channel, discretized data flow. The
data is divided into small pieces or in other words into
windows. The window is the base of the training and
classification phases because the entire information content
from the window feeds the ML algorithm. In this work the
window size was 3 seconds, 5 seconds and 10 seconds long
with approximately 99 % overlap between adjacent windows
in training phase and without overlap in the classification
phase. By the wide overlap we achieved a richer training
data set.

With feature extraction we try to take out the useful
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characteristic of raw signal. With an appropriate feature set
the classifier model will be simpler and its performance will
be better [6]. In this study the features have been extracted
from the time and frequency domains as in [17] where the
authors collected the most relevant feature extraction
methods to the human activity recognition problem.
Although activity and music stimuli recognition have two
different objectives, many similarities exist between them.
The used features can be found in Table II.

Fig. 2. Frequency responses of filters.

TABLE II. USED FEATURES.
Domain Feature

Time

Mean
Standard deviation

Mean absolute deviation
Root mean square
Interquartile range

75’th percentile
Kurtosis

Signal magnitude area
Max-min difference
Zero crossing rate

Frequency

Spectral energy
Spectral entropy
Spectral centroid

Principal frequency

Each feature was normalized with the standard scaler (2)
where Fu and Fn indicate the initial and normalized feature
matrices while σj and µj are the standard deviation and mean
of the jth feature type. Normalization makes features equally
important
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The ANN design is based on [6] where the authors
compared three ANN structures with different activation and
error functions. Their result showed that an ANN with mean
square error function, L2 regularization and two layers with
tangent and linear activation functions can be a good choice
in several ML problems. The main hyper-parameters of the
network such as the regularization strength (ν), initial
learning rate (ϕ0) and the learning decay tendency (τ), were

randomly drawn from the (3) exponential scale

 -4,-1
0 , , 10 ,U   (3)

where U refers to the uniform distribution.
The additional network parameters were the following:
 Neurons on the hidden layer: 50;
 Training algorithm: gradient descent with 0.15
momentum and 10 samples mini batch;
 Initial bias and weights: bias values were 0 while
weights came from the (4) distribution

i 10, ,


 
  
 

W (4)

where Wi indicates the weight matrix and η denotes the
number of inputs on the ith layer;
 Learning decay tendency: exponential according to (5)

-
0e ,   (5)

where τ is the decay factor, ϕ0 is the initial learning rate
and ε refers to the epoch counter.

IV. RESULTS

At the beginning of the investigation the effect of
frequency decomposition has been tested with 5 seconds
wide window size. At first features from Table II have been
extracted from the original 3 Hz–100 Hz signal and they
were the input of the ANN. Thereafter the 3 Hz–100 Hz
range has been divided into its bands with the above
described FIR filters and the features from the individual
bands were the new input of the network. As an example, a
segment of the original signal and its frequency decomposed
versions can be seen on Fig. 3. Finally, the features from the
individual bands have been concatenated (θ-γ bands) and the
extended feature vectors (with 56 elements) were the
information source of the classifier. The results can be seen
in Table III where each value is the best result after 100
trials.

Fig. 3. The original signal and its filtered versions.
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TABLE III. HIGHEST RECOGNITION RATES AFTER 100 TRIALS.
Test 1. Sub. 2. Sub. 3. Sub. 4. Sub. 5. Sub.

5 s: θ band 24.5 % 24.5 % 24.6 % 25.1 % 21.7 %
5 s: α band 26.5 % 23.2 % 23.3 % 24.9 % 21.4 %
5 s: β band 24.7 % 25.3 % 26.2 % 26.8 % 25.8 %
5 s: γ band 30.7 % 34.0 % 28.5 % 28.0 % 29.7 %

5 s: θ-γ bands 35.9 % 36.0 % 34.4 % 34.2 % 32.2 %
5 s: 3 Hz–100 Hz 35.5 % 35.2 % 31.6 % 32.8 % 33.9 %
3 s: 3 Hz–100 Hz 31.3 % 33.6 % 31.0 % 30.3 % 31.6 %

10 s: 3 Hz –100 Hz 36.9 % 34.6 % 38.0 % 36.4 % 35.1 %

TABLE IV. CONFUSION MATRIX.
Song 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

1. 4 3 12 14 10 9 14 4 19 15
2. 5 17 8 8 7 18 4 7 9 20
3. 1 10 17 2 8 7 6 15 17 12
4. 0 2 9 20 4 4 9 1 11 9
5. 3 4 6 1 39 10 3 5 8 19
6. 0 2 3 2 3 49 4 9 14 11
7. 1 3 4 7 6 8 43 7 10 10
8. 1 3 4 4 2 13 5 40 12 14
9. 0 6 1 1 6 15 8 5 56 17

10. 0 2 2 3 4 4 11 1 17 68

Surprisingly the frequency band decomposition caused
performance degradation because neither features from the
individual bands nor joint features from all bands were more
efficient than features from the entire 3 Hz–100 Hz band.
Usually the narrow θ and α bands produced small
recognition rates while the widest γ band contains the most
useful information from the four bands. The joint features
from θ – γ improved the accuracy but this extension was not
as efficient as we expected.

In the following step the effect of window size expansion
and reduction have been examined without frequency
decomposition. In the first case the window size was
3 seconds while in the second case the size was 10 seconds.
The results also can be seen in Table III. The narrower
window decreased the recognition rate but the wider window
caused significant improvement. Since the highest
recognition rate was more than 35 % which is significantly
higher than the 10 % chance probability, we supposed that
some kind of patter might exist in the EEG data. To find
patterns, the confusion matrices to each subject also have
been examined. As an example Table IV contains the
confusion matrix of the first subject.

Confusion matrices show a very interesting correlation
between elapsed time and recognition rate improvement.
Actually we can conclude that the recognition accuracy is
related to the relaxation level instead of the stimulation
effect of a concrete music.

V. CONCLUSIONS

This paper described a novel music stimuli recognition
approach which does not require any feedback from users.
The results showed that the recognition of a concrete song
from the EEG signal is very difficult. In spite of the week
accuracy, two interesting conclusions can be drawn from the
measurements. Firstly, the popular frequency decomposition
approach which has been used in several earlier articles such
as in [7] and [10] caused accuracy loss. Secondly, the most
important conclusion comes from the confusion matrices.

They show that the recognition rate is discontinuously
increasing with the elapsed time. Based on this observation
we suppose that recognition depends on the relaxation state
rather than the real effect of music. We did not find any
mention about it in previous papers. Perhaps the Neurosky
Mindwave headset causes this phenomenon. In order to
investigate this hypothesis the next step toward this research
direction is to test multi-channel EEG readers such as the
Emotive EPOC headset which measures EEG activity from
14 points on the head.
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