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1Abstract—The overall distortion of semilogarithmic A-law
quantizer is influenced by its support region, as well as
parameter A. Current solutions require numerical
determination of optimal support region and larger processing
time, i.e. simple closed-form solutions for finding optimal values
of these two parameters are not provided. In this paper,
iterative and closed-form solutions for determination of the
support region of semilogarithmic A-law quantizer for
Laplacian source, unite variance and a set of bit-rates
6 bits/sample−10 bits/sample are proposed. The performance of
proposed solutions is compared to the optimal numerical
results.

Index Terms—Support region; Quantizer; Semiloga rithmic
A-law.

I. INTRODUCTION

The constant development and growth of communication
networks created a need for further research in the area of
speech coding, in order to provide faster and better speech
signal transmission quality. Also, compression efficiency is
very important while considering energy assumption in the
modern systems [1]. Although G.711 standard, which
defines Pulse-Code Modulation (PCM), was adopted back in
1972 [2], it was actively amended in 2009 [3].

Companding quantizers represent an important
digitization tool, since they are able to achieve near-constant
quality of reconstructed signal for a wide range of input
signal's variances, when quantizing non-stationary signals.
The reconstructed signal quality obtained by using such
technique is not very sensitive to changes of statistical
parameters of the input signal and this is achieved by
introducing logarithmic compression function. However, this
idealization is very hard for exact implementation. By now,
different modifications of logarithmic function, practically
applicable, have been developed. Two solutions have been
standardized in G.711: semilogarithmic compressor
function, widely known as A-law (applied in Europe) and
quasilogaritmic compressor function, widely known as µ-law
(applied in USA and Japan) [4].
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The quality of quantization is measured by calculating
distortion value or signal-to-quantization-noise ratio
(SQNR). These measures are highly dependent on the
number of quantization levels and the width of quanitizer’s
support region [4], [5].

While the number of quantization levels depends directly
on the desired bit-rate, determination of optimal support
region is much more complex. The significance of support
region for Laplacian source and optimal compandor was
already discussed in [6], [7]. Furthermore, analysis and
determination of support region for quasilogarithmic
quantizers and the same source were presented in [8]. It can
be noticed that optimal design is usually performed for the
unite variance [8], whereas the more complex solutions
incorporate adaptation [9] or dual-stage quantization [10].
Moreover, support region represents an important design
parameter of vector quantizers, as well as quantizers
exploited for other signal sources such as Gaussian, Rayligh
and Gamma.

In this paper, we provide an iterative and a closed-form
solutions for support region determination of A-law
semilogarithmic quantizer for Laplacian source and a set of
bit-rates 6 bits/sample−10 bits/sample. It was shown that
differences between the proposed solutions for finding
optimal parameters and numerically obtained optimal
solution are almost negligible.

The paper is organized as follows. In the chapter two, A-
law quantizer is described and its distortion is presented.
The third chapter features the optimal numeric values for the
support region threshold, as well as the A constant. In the
fourth chapter, the proposed iterative and closed-form
solutions are presented and compared with numerical results.
Lastly, the conclusions and further research aims are stated.

II. DESIGN OF SEMILOGARITHMIC A-LAW QUANTIZER

Semilogaritmic compressor function consists of linear and
logarithmic part and it is given with the following equation
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Parameter xmax represents maximal allowed amplitude of
quantizer, i.e. support region, while parameter A impacts the
border between linear and logaritmic parts and its value is
adopted to be 87.6 in PCM telephone systems in Europe [4].

In the rest of the paper, it will be assumed that amplitudes
of the input signal are represented by Laplacian probability
density function (PDF), which is a good representation for
speech samples [4]
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For simplicity, it will also be assumed that the value of
parameter σ, i.e. standard deviation, is 1.

The overall distortion is given as a sum of granular and
overload distortion

.tot g ovD D D  (3)

Granular distortion can be represented as the sum of 1gD

and 2gD which are calculated by using the following

equations:
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Solving the equations, the final expressions are:
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Overload distortion is given by the following expressions:
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III. NUMERICAL RESULTS FOR FINDING OPTIMAL SUPPORT
REGION

Value of the parameter maxx strongly influences the
value of total distortion. By increasing it, higher values of
granular distortion are obtained, but on the other hand
overload distortion decreases. The parameter A has also
important impact on the performance of quantizer. Higher

values of this parameter ensure better robustness of the
quantizer regarding change of variance. However, increase
of parameter A leads to decrease of maximum SQNR.
Optimal values for these parameters are numerically
calculated using MATLAB. It was assumed that parameter A
takes integer values between 1 and 100 and parameter maxx
takes values from the set {0.01* | 1,2...1000}X k k  . For
some fixed number of quantization levels, total distortion is
calculated for all combinations of parameters A and maxx
using (3), (6), (7) and (9). Values giving smallest distortion
are considered as optimal and they are presented in Table I,
whereas SQNR is calculated using the following equation
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In Fig. 1, maximal SQNR ratio is shown for a various
values of parameter A and the total number of quantization
levels N, using numerically obtained optimal values of
support region and unite variance 2.

Fig. 1. Maximal SQNR depending on the value of the parameter A for
various numbers of quantization levels.

IV. ITERATIVE PROCEDURE FOR FINDING SUPPORT REGION

The optimal support region value could be determined by
finding a point in which partial derivative of the total
distortion is equal to zero, i.e. by solving

max
0.tot

d D
dx

 (11)

However, the solution from (11) is not a closed-form. One
of the possible general approaches for solving this equation
is by finding a suitable iterative function [11]. By solving
(11), it can be seen that a few solutions can be formed.
However, as the main goal is to provide a simple solution
which converges quickly, we propose a solution of a form

( 1) ( )( )i ix g x  . As closed-form solutions are not provided
in the literature, we have decided to analyse determination of
optimal support region by applying iterative procedure for
the solution obtained from (11)
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where
( )
max2( ) 2

1 max2( )
ixiC x e .

Since it could be expected that optimal support value
depends on both, the number of quantization levels and the
parameter A, our goals include determination of optimal
initial value for iterative procedure, denoted with

(0)
maxinx x , as well as estimation of required number of

iterations. For such task, we exploit a stop-criterion defined
with

( 1) ( ) 3
max max( ) ( ) 5 10 dB.i iSQNR x SQNR x    (13)

Fig. 2 shows SQNR for the value of iteratively calculated
maxx depending on the number of iterations, for a various

values of parameters N and inx . Furthermore, it was chosen
the case of A = 20 considering it as a near-optimal for a
discussed set of bit-rates.

By observing Fig. 2, it can be unambiguously seen that for
all observed system configurations near-optimal SQNR
value is achieved after the first iteration. However, it should
be noted that SQNR is strongly dependent on the choice of
initial value, inx , of iterative procedure. For values 8inx  ,
near-optimal SQNR is achieved without applying iterative
algorithm. This feature is discussed in the rest of the paper in
order to provide the closed-form solution defined with
following equation
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In the process of proposing the closed-form solution, we
have excluded parameter C1 from (12), as the results are not
highly-dependent.

System performance for initial values of optimal support
region, 8inx  and 10inx  , is shown in Table I and
Table II, respectively.

Fig. 2. SQNR for the iteratively calculated support region and various
values of initial support range and number of quantization levels.

The system performance is provided for various values of
parameter A and number of quantization levels N. Besides
the performance of the proposed system, we have also
shown the results obtained numerically for the optimal
support region.

As the second measure of quality, we have observed
relative errors between optimal support region and the
proposed one, as well as between corresponding values of
SQNRs, which are defined as follows:
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where 1,2.i 
In (15) and (16) i = 1 refers to the iterative procedures

whereas i = 2 refers to the closed-form solutions, while “sp”
denotes errors related to the support region calculation and
“sq” denotes values related to SQNR calculation.

TABLE I. SYSTEM PERFORMANCE ( 8inx  ).

Iterative procedure Closed-form solution Optimal solution Support rel. error SQNR rel. error
N A xmax1 NoI SQNR1 [dB] xmax2 SQNR2 [dB] xmax SQNR [dB] 1sp[%] 2 sp [%] 1 sq [%] 2 sq [%]

64

10 6.9321 2 29.4371 6.7851 29.4328 6.9156 29.4371 0.23859 1.88704 0 0.01461
20 7.7702 1 28.6214 7.8140 28.6214 7.7889 28.6215 0.24009 0.32225 3.49E-4 3.49E-4
50 8.9178 1 27.0425 9.3536 27.0422 9.0630 27.0426 1.60212 3.20644 3.70E-4 0.00148

87.6 9.1681 1 26.1230 10.3570 26.1238 9.8773 26.1240 7.1801 4.85659 0.00383 7.66E-4

128

10 7.7582 1 35.1454 7.7654 35.1455 7.7855 35.1456 0.35065 0.25817 5.69E-4 2.85E-4
20 8.7504 1 34.5656 8.7942 34.5651 8.6771 34.5660 0.84475 1.34953 0.00116 0.0026
50 9.8980 1 33.0547 10.3339 33.0541 10.0017 33.0548 1.03682 3.32144 3.03E-4 0.00212

87.6 10.1484 1 32.1414 11.3373 32.1423 10.8672 32.1425 6.6144 4.32586 0.00342 6.22E-4

256

10 8.7385 1 40.8260 8.7456 40.8257 8.6575 40.8278 0.9356 1.01761 0.00441 0.00514
20 9.7307 1 40.4983 9.7745 40.4972 9.5532 40.5005 1.85802 2.3165 0.00543 0.00815
50 10.8783 1 39.0661 11.3142 39.0649 10.8947 39.0661 0.15053 3.8505 0 0.00307

87.6 11.1286 1 38.1599 12.3175 38.1605 11.7766 38.1610 5.50244 4.59301 0.00288 0.00131

512

10 9.5184 2 46.4865 9.7259 46.4769 9.5377 46.4866 0.20235 1.97322 2.15E-4 0.02087
20 10.7109 1 46.4178 10.7548 46.4160 10.4320 46.4235 2.6735 3.09433 0.01228 0.01616
50 11.8585 1 45.0761 12.2944 45.0742 11.7802 45.0761 0.66467 4.36495 0 0.00422

87.6 12.1089 1 44.1783 13.2978 44.1785 12.6692 44.1791 4.42254 4.96164 0.00181 0.00136

1024

10 10.4009 2 52.1269 10.7061 52.1058 10.4269 52.1271 0.24936 2.67769 3.84E-4 0.04086
20 11.2799 2 52.3346 11.7350 52.3212 11.3175 52.3347 0.33223 3.68898 1.91E-4 0.0258
50 12.8388 1 51.0844 13.2747 51.0818 12.6682 51.0847 1.34668 4.78758 5.87E-4 0.00568

87.6 13.0892 1 50.1963 14.2780 50.1960 13.5612 50.1969 3.48052 5.28567 0.0012 0.00179
Average 1.2 1.996298 3.10695 0.001969 0.007862
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TABLE II. SYSTEM PERFORMANCE ( 10inx  ).

Iterative procedure Closed-form solution Optimal solution Support rel. error SQNR rel. error
N A xmax1 NoI SQNR1 [dB] xmax2 SQNR2 [dB] xmax SQNR [dB] 1sp[%] 2 sp [%] 1 sq [%] 2 sq [%]

64

10 6.9582 2 29.4367 6.5489 29.3992 6.9156 29.4371 0.616 5.3025 0.00136 0.12875
20 7.5403 1 28.6176 7.5431 28.6177 7.7889 28.6215 3.19172 3.15577 0.01363 0.01328
50 9.0215 1 27.0426 9.0572 27.0426 9.0630 27.0426 0.45791 0.064 0 0

87.6 10.0000 0 26.1240 10.0526 26.1240 9.8773 26.1240 1.24224 1.77478 0 0

128

10 7.8184 2 35.1453 7.5291 35.1262 7.7855 35.1456 0.42258 3.2933 8.54E-4 0.0552
20 8.6952 2 34.5660 8.5234 34.5643 8.6771 34.5660 0.2086 1.77133 0 0.00492
50 10.0000 0 33.0548 10.0375 33.0548 10.0017 33.0548 0.017 0.35794 0 0

87.6 10.0000 0 32.1407 11.0328 32.1425 10.8672 32.1425 7.97998 1.52385 0.0056 0

256

10 8.6754 2 40.8277 8.5094 40.8212 8.6575 40.8278 0.20676 1.71066 2.45E-4 0.01617
20 9.5008 1 40.5003 9.5037 40.5003 9.5532 40.5005 0.54851 0.51815 4.94E-4 4.94E-4
50 10.9821 1 39.0661 11.0177 39.0660 10.8947 39.0661 0.80222 1.12899 0 2.56E-4

87.6 11.8482 1 38.1610 12.0131 38.1609 11.7766 38.1610 0.60799 2.00822 0 2.62E-4

512

10 9.4892 1 46.4859 9.4897 46.4859 9.5377 46.4866 0.50851 0.50327 0.00151 0.00151
20 10.4811 1 46.4234 10.4839 46.4233 10.4320 46.4235 0.47067 0.49751 2.15E-4 4.31E-4
50 11.9623 1 45.0759 11.9980 45.0758 11.7802 45.0761 1.54581 1.84887 4.44E-4 6.66E-4

87.6 12.8285 1 44.1791 12.9933 44.1789 12.6692 44.1791 1.25738 2.55817 0 4.53E-4

1024

10 10.4694 1 52.1265 10.4699 52.1265 10.4269 52.1271 0.4076 0.41239 0.00115 0.00115
20 11.4613 1 52.3329 11.4642 52.3329 11.3175 52.3347 1.2706 1.29622 0.00344 0.00344
50 12.9426 1 51.0840 12.9783 51.0839 12.6682 51.0847 2.16605 2.44786 0.00137 0.00157

87.6 13.8087 1 50.1968 13.9736 50.1966 13.5612 50.1969 1.82506 3.04103 1.99E-4 5.98E-4
Average 1.05 1.28766 1.760741 0.001526 0.011458

Data presented in Table I and Table II suggest that the
required number of iterations (NoI) for activating previously
defined stop-criterion is lower in the case of 10inx  .
Moreover, calculated relative errors show that the average
relative errors of the observed configurations are less in all
cases for the optimal support determination using 10inx  .
Furthermore, the obtained results for SQNR are very close to
the optimal solution which exploits numerically determined

maxx . The average relative errors between SQNR of the
proposed system (both iteratively determined and exploiting
closed-form solution) and the optimal solution are much less
than 0.1 % which is almost negligible.

Taking into consideration previous discussion, it could be
summed up that the case of 10inx  provides more precise
results for both iterative and closed-form determination.
Based on that, we propose a closed-form solution for
determination of the support region of semilogarithmic
A-law quantizer for Laplacian source for a set of bit-rates
6 bits/sample−10 bits/sample (which corresponds to the set
of 64−1024 quantization levels)

2 2

max 2
1 0.21ln .
2 (1 ln ) (1 exp( 14.14 / ))

closed form N Ax
A A

 

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(17)

V. CONCLUSIONS

In this paper, performance of semilogarithmic quantizer
for Laplacian source was analysed. The analysis is
performed for a set of values of the parameter A (10, 20, 50
and 87.6) and the set of bit-rates
(6 bits/sample−10 bits/sample). The main contributions of
the paper include proposing iterative solution for
determining optimal support region as well as the asymptotic
formula as a closed-form solution based on the analysis of
the performance of iterative formula. The accuracy of the

proposed solutions is compared with the optimal numerical
solution using both relative errors between achieved SQNRs
and support region values. It was demonstrated that the
average relative errors between achieved SQNRs and the
optimal solution are much less than 0.1 %, which can be
considered as negligible and satisfactory for practical
implementations.
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