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1Abstract—Finite-difference time-domain is a numerical
method used for modelling of computational electrodynamics.
The method is resource intensive, especially regarding memory
usage. Multiple memory accesses are required per single
computation so memory bandwidth acts as a bottleneck limiting
the overall performance. Existing solutions use either fixed-
point or floating-point arithmetic, depending on the complexity
of the target platform, to model the data. Floating-point
requires less memory access but the computation is more
intensive due to the normalisation. Fixed-point is the opposite –
simple computation but with more memory access for the same
precision. The novelty of this paper is in the block floating-
point realization which is the middle ground between the two.
The approach is less compute intensive than the floating-point
solutions while using less memory than the fixed-point
realization. This makes the solution an alternative for bit-exact
platforms, such as field-programmable gate arrays. The results
are compared to both floating-point and fixed-point
implementations and the memory bandwidth and other
resources needed for targeted platform are calculated.

Index Terms—FDTD; FPGA; Block-floating point; Memory
management.

I. INTRODUCTION

Finite-difference time-domain (FDTD) is a powerful
algorithm for the modelling of the electromagnetic field. It
provides a direct time-domain solution of Maxwell’s curl
equations in differential form by discretizing both the
physical region and time interval by using a uniform grid
called the Yee grid, after its inventor [1]. The steps in the
algorithm are the following: first all fields are initialized to
0. Afterwards, the sources of electromagnetic fields are
introduced to the system. In the main loop of the algorithm
the electric field is calculated based on the magnetic field.
When the whole grid is updated, the magnetic field is
calculated based on the electric field which has changed
previously. Any objects inside the grid reflect or absorb the
waves in some quantity. This process goes through time until
we reach the desired iteration number. A special absorbing
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layer is added on the edge of the grid. This layer is called the
absorbing boundary conditions (ABC) and is used to
truncate the outgoing waves which would otherwise bounce
off the edges of the grid, to obtain more realistic results [2],
[3]. Some benefits of the FDTD algorithm are that it is good
for large scale simulations because it scales almost linearly,
works well for broadband and transient simulations and
naturally handles nonlinear behaviour. Some drawbacks of
the method are the not so efficient representation of curved
surfaces due to grid representation and inefficient
representation of highly resonant devices which require
much longer simulations [4]. The areas of application of the
FDTD include antenna design [5]–[7], optoelectronics [8]
mine detection [9], microwave tomography [10],
electromagnetic compatibility [11] and more.

Even though the method was introduced in the year 1966
[1], it was not widely used until the last decade due to
limited computing resources which could not provide
enough computation power to solve all the equations in time
[12]. As a memory intensive problem, it has sparked an
interest to many authors in the past in the field of
optimization. To improve the performance, the algorithm has
been successfully implemented on multi-core architectures
[13], with additional improvements being made by using
graphics processing units (GPUs) as accelerators [14], [15]
and field-programmable gate arrays (FPGAs) [16], [17].
Most recently, the trends among authors is using Open
Computing Language (OpenCL) in order to achieve a more
flexible and portable solution based on the FPGA [18], [19].

One of the issues some of these solutions face is that they
are based on the PC architecture which is compute oriented -
it can do multiple computing operations in the time frame of
one memory access, resulting in a lot of idle time for the
computing resources when memory intensive problems are
involved. The FDTD algorithm’s memory access to number
of operations ratio makes PC architectures suboptimal. To
cope with these issues, the authors proposed a solution based
on multiple FPGAs working in conjunction to achieve
maximal possible bandwidth [20]. The main feature of the
solution was its lower cost over-time due to low power
consumption and cheaper components when compared to
existing solutions. However, the performance of existing
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solutions could not be matched due to the far superior
bandwidth of the double data rate type five synchronous
graphics random-access memory (GDDR5 SDRAM) used in
GPUs when compared to the double data rate type three
random access memory (DDR3 SDRAM) modules the
authors did the analysis for. This is mostly due to the fact
that the GPUs have become a commodity because of their
widespread usage in PCs, providing a better price to
performance ratio. The idea that followed was to artificially
improve the memory bandwidth without using more
powerful FPGAs which would increase the cost and go
against the main philosophy of the solution, which is a
cheaper and more efficient solution. Therefore, the approach
the authors took was to optimize the memory usage which
came down to data compression. The goal was to use fewer
bits to represent the data while maintaining precision within
a specified threshold. This is the area where block-floating
point arithmetic comes into play.

Block-floating point (BFP) arithmetic is a way of
emulating floating-point arithmetic by using fixed-point.
Unlike the standard floating-point, where every element has
its own exponent and fraction, in BFP an entire block of
numbers has a mutual exponent. The elements within the
block are represented by their respective mantissas which
are scaled according to the mutual exponent which is
calculated based on the highest value.

When measuring the performance of a particular number
representation, several characteristics are important. One of
them is the dynamic range which is the ratio between the
smallest and largest number that can be represented. The
second characteristic is precision which defines the
resolution or the measure of detail. When numbers are
concerned, precision defines how close two consequent
numbers are - the smaller this gap is, the better the precision.
For the same word length, floating-point numbers have a
better dynamic range whereas fixed-point representation has
greater precision. The third characteristic worth mentioning
is complexity. Fixed-point arithmetic is much simpler when
compared to floating-point because it does not involve
normalization. Adding two fixed-point numbers is no
different from adding two integers. Floating-point arithmetic
on the other hand requires shifting of the mantissa based on
the exponent before adding two values. This results in
floating-point arithmetic being more complex, requiring
more transistors to do the computations which further
increases the cost. So choosing the best representation for
the data is an optimisation problem on its own - how to find
the optimal ratio of dynamic range and precision while
keeping the costs at the lowest value.

The benefit of using BFP is that it allows more aggressive
scaling with a single block exponent while at the same time
retaining a greater dynamic range in the output compared to
typical fixed-point. Also, when compared to standard single
precision floating-point, it requires fewer normalization
operations because a single exponent is mutual for more
elements. The important factor here is the size of the
problem and the size of each block. The bigger the block
and the problem, the more memory bandwidth is “saved” but
with a certain lack in precision.

BFP provides a good trade off between complexity and

dynamic range, making it an efficient number representation
format in some cases [21]. It is most commonly used in
algorithms which are suited for fixed-point processors such
as DSPs but require or benefit from additional dynamic
range in certain areas. One such application is the Fast
Fourier Transform (FFT) and other algorithms based on it
[22]–[24]. Other areas include neural networks [25], matrix
multiplication [26], digital filters [27], [28], communication
systems [29] and more.

II. SOLUTION

In order to use the BFP several adjustments to the existing
algorithm had to be made. The first step was the profiling of
the algorithm where all the variables and matrices were
monitored to pinpoint the most extreme values. Afterwards
scaling factors have been introduced so that all the values
would fit into the range [-1, 1]. This was required in order to
avoid any overflows when switching from single precision
32bit floating-point to fixed-point. The results showed that
by making this change, no significant errors were
introduced. Despite the satisfying results, the overall
performance increase was too small to make a change so the
next step was to introduce the data compression.

Experiments showed that the minimal number of bits
which could be used to represent the data elements was 16.
However, there were two main issues with this type of
solution. The first is the significant loss of precision due to
insufficient dynamic range. The second problem was that
even though the results could fit into 16 bits, the
intermediate values used during the computation could not
which caused overflows. A more extreme scaling factor was
introduced but it deteriorated the precision even further. In
the end a 24bit fixed point solution was chosen as a starting
point. This reduced memory usage by 25 % with a decrease
in precision of around 5 % which was acceptable.

The next step was to see if a custom data representation
could yield better results and so block floating-point was
introduced. Due to the nature of travelling electromagnetic
waves (especially the large spatial sampling rate), the Yee
grid could be divided into smaller blocks called tiles with
similar values within the tile as shown in Fig. 1. This made it
possible to determine the mutual exponent for the tile which
then allowed a more aggressive scaling.

Fig. 1. Block floating-point layout.

The next task was to figure out how big should the tiles be
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without losing on precision by scaling them all in regard to
the element with the most extreme value. If the division of
the grid is too fine (having many tiles), the number of
operations needed to find an exponent for each of the tiles
will make the algorithm last longer and use up more
memory. The most extreme case is when the tiles have the
dimension of 1 × 1 which creates the equivalent of a grid
with all floating-points. On the other hand, if the tiles are too
large, some elements will not be represented precisely and
the loss of precision will accumulate over time giving worse
results as the simulation runs further. The optimal solution
lies somewhere in between the extremes.

The most challenging aspect of switching to BFP was tile
management. A new square tile is formed from elements
from two matrices – one that holds the 16 bit fixed-point
values which represent the mantissas and the other smaller
matrix that contains the exponents as 8bit integers for each
tile. If we examine the case where the tile size is 4 × 4, the
fixed-point matrix has the dimension of 64 × 64, whereas the
exponent matrix has 16 × 16 cells. First, the 4 × 4 tile of the
fixed-point matrix is read and all values are expanded to
24 bit fixed-point and scaled by the exponent which
corresponds to that tile. This process was named unpacking.
Once the tile is unpacked, it is used in all the calculations
and at the end a reverse process happens called packing.
During this process a new exponent is calculated based on
the elements in the tile and the values are written down in
the final form which again is 16 bit. A logarithm with the
base 2 is applied to the maximal value within the tile and
then a ceiling function determines the value of the exponent.
Afterwards, this value is stored in the matrix which holds the
exponents. The fixed-point matrix is then scaled with the
newly calculated exponent and written to the fixed-point
matrix. A simplified algorithm is given bellow.
...
for tj in 1:num_of_tiles_y_axis

for ti in 1: num_of_tiles_x_axis
# unpacking
for jj in 1:tile_size

for ii in 1:tile_size
j = ((tj - 1) << tile_shift_x) + jj
i = ((ti - 1) << tile_shift _y) + ii
X_tile[ii,jj] = from_block(X_bf[i,j], block_exp)

end
end

do_the_calculations() #calculations

#packing
for jj in 1: tile_size

for ii in 1: tile_size
j = ((tj - 1) << tile_shift _x) + jj
i = ((ti - 1) << tile_shift _y) + ii
X_bf[i,j] = to_block(X_tile[ii,jj], block_exp)

end
end

end
end
…

The ti, tj, ii, and jj are counters used to manoeuvre around
the grid. The values in the outer for loops (ti and tj) move

through all the tiles, whereas the values in the inner loops (jj
and ii) move within a single tile. The i and j variables are
used to index the entire fixed-point grid. The X_tile is the
temporary matrix used for calculations, and the X_bf is the
matrix which is correspondent to the tile which is currently
being worked on. Block_exp is the exponent which
corresponds to the current tile. Some equations used in the
algorithm require values which are located in the tiles not
updated yet. To cope with this issue, the algorithm was
divided into two phases and special data structures had to be
introduced. During the first phase all tiles which would be
needed for the second phase are calculated and written back.
Special boundary cases which occur on the edge of each tile
are handled by the so called bands which represent only a
one-dimensional array that has the same length as the tile
side as shown in Fig. 2.

These additional structures use up extra bandwidth and
produce some overhead and so does the additional phase.
However, they are necessary in order to reduce the internal
memory needed for the proper functioning of the algorithm.
Both are included in the final performance overview. For the
tiles on the border of the grid there is another special
boundary case. Because their neighbouring tiles are in fact
outside of the grid, this is modelled by assuming that they
have all zeros, and these zeros are used when updating the
values of these elements. Once the entire grid has been
updated, the last step is to measure the values in certain parts
of the grid to be used for visualisation.

Fig. 2. Additional data structures needed for tile management.

The principle of locality also comes into play. The next
tile to be processed is always close in the memory so spatial
locality is satisfied. This kind of predictable behaviour
enables performance optimizations for techniques such as
pre-fetching, pipelining and burst memory reading.
Temporal locality condition is not achieved because the data
will not be reused in a time frame short enough so the
applicability of caching is very limited and was thus
discarded.

III. RESULTS

The Yee grid was modelled by a 64 × 64 matrix with the
simulation running for 150 iterations. To find the optimal
solution, the tile size varied from 2 × 2 to 32 × 32. The
exponent was always an 8bit integer while the number of bits
used to represent the fraction ranged from 10 to 14, with the
remaining 6 to 2 bits being used for the integer part of the
number. In the end, 14 bits were used to represent the
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fraction. So a total of 24 bits were used represent the data to
have the best comparison with the 24 bit purely fixed-point
solution. In order to measure the memory bandwidth, the
number of bits per matrix was used as defined in (1)

16 8.Sum Size Num    (1)

where Sum is the total number of bits, Size is the size of the
tile (for example 4 × 4) and it is multiplied by 16 because
those are fixed-point values. Num is the number of tiles
which are needed to cover the entire Yee grid and it is
multiplied by 8 because each exponent is represented by a
single 8 bit integer. The differences between the sizes of the
matrices are indicative of the difference between the actual
bandwidth needed.

The other metric used to measure the performance along
with the memory usage was precision. It was calculated by
using the mean absolute relative percent difference of the Ez
field (the value of the electric field oriented towards the z
axis). First the error itself is defined as follows
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The value is 0 if both x and y are 0 to avoid division by 0,
otherwise it is defined as shown above. The precision is
calculated by going through an array of matrices each
containing the value of the Ez field for every iteration. In the
end, this sum is divided by the number of iterations (iters in
the formula) and the size of the matrices (Nx and Ny being
the dimensions) to form the median absolute value of the
error which was explained in (2). L1 and L2 are the values
from the initial floating-point and final block floating-point
version of the solution
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This type of relative error (3) takes into account how big
the difference in the values measured is when compared to
the absolute value. When multiplied by 100, it becomes a
relative percentage error. For instance, if the difference
between the observed values is 0.1 where one value is 0.5
and the other 0.6, that is considered as a bigger error than if
the difference in the value is 10 and the observed values are
550 and 560. The reasoning behind this choice it that the
authors believe it provides a better perspective of the
performance of the solution. The performance expressed in
precision and memory bandwidth for several tile sizes is
given in Table I.

The initial 32bit floating-point solution is considered to be
the benchmark. Its relative error is 0 because it does not
differ from itself and it requires the biggest amount of
memory regardless of the size of the grid and number of
iterations, so for illustrating purposes it needs 100 % of the
memory bandwidth. The 1st improved solution which used
24 bit fixed-point arithmetic uses up 25 % less bandwidth

because each element in the Yee grid is represented by 24
bits instead of 32. In other words 75 % of the benchmark
bandwidth is required for the solution to work. Using the
equation for bandwidth (1) we have calculated which
amount of the initial bandwidth used for the benchmark is
needed for the block floating-point solutions. The table
shows only around 50 % of the memory is needed when
compared to the initial solution. This is almost the same
result as when using 16 bit fixed-point solution but with an
error 2-6 times smaller, depending on the size of the tile.
This shows that the BFP can be used in situations where
memory usage needs to be as small as possible but without
sacrificing the precision too much.

TABLE I. TILE SIZE, NUMBER OF TILES IN THE GRIDAND
PERFORMANCE.

Tile size Number of
tiles

Relative error
[%]

Memory
bandwidth

[%]
2 × 2 1024 3.59 56.25
4 × 4 256 3.79 51.56
8 × 8 64 5.84 50.39

16 × 16 16 10.10 50.10
32 × 32 4 12.92 50.02

These calculations show a promising result but this kind
of solution is not the best option for the standard PC
architecture. This is due to the granularity of the data CPUs
and GPUs use which is usually in chunks of 8, 16, 32 or
larger. So there is no way of really benefiting from saving a
few bits for every data element, unlike when working with
an FPGA.

Another interesting characteristic of the algorithm is the
ratio of reads and writes and also the ratio of total memory
accesses when compared to the number of operations
(additions and multiplications). When using the 8 × 8 tile,
the number of writes per iteration is 7224, while the number
of reads is 20152, so almost 3 times as more. This difference
is a good indicator of the large amount of data needed for
computation. An even better perspective is given once all the
operations (additions and multiplications) are included.
Together, the additions and multiplications amount to the
ratio of 0.58 operations per single byte of data, for the 8 × 8
tile size. If we approximate the GPUs FLOPS (floating-point
operations per second) with the bandwidth we see just how
little compute potential of the GPU is used. Here are the
specs of the now average, graphics card such as an AMD
Radeon R7 265. According to the manufacturer, this GPU
achieves 1843.2 GFLOPS with the maximal theoretical
bandwidth of 179.2 GB/s. If we divide the two we get the
ratio of 10.28 FLOPS per byte which is 17 times more than
that the algorithm needs. If we move further up the market
price and see the specs of a high end GPU such as the
GeForce GTX 1070, we see that the result is even worse in
terms of effective computation power. The GTX 1070
achieves 7816.4 GFLOPS with the theoretical bandwidth
reaching 256 GB/s, making the ratio 30.52 FLOPS per byte
which is over 50 times of that which is needed for the
algorithm. The operation per byte ratio of the algorithm is
just far below of that the GPU can achieve which makes
them not the optimal choice when it comes to power
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efficiency (a big part of the logic remains idle). This is a
confirmation that the FDTD is a memory intensive problem.

The main advantage of the FPGA in this case is that it is
very well suited for bit-exact operation, having no bits being
unused. Custom buses can be configured to have just the
right width. To utilize spatial locality, data can be read from
the memory in bursts, saving precious time. Instead of
reading the data elements 1 by 1, the entire of 64 elements is
read during a single access.

For a real world use case, an FPGA from the previous
research [19] which was deemed optimal for memory usage
can be used. It is the XC7A15T-1FGG484C from Xilinx,
Artix 7 family. When calculations are compared with the
specs from the manufacturer’s data sheet, we can see that
even this low end FPGA is suited for the job. According to
our assumptions, all the bandwidth of the FPGA could be
effectively used. As far as computation power is concerned,
less than 70 % of the DSP slices are required. Even more
importantly, the DSP frequency needed to perform all the
operations in 20 milliseconds is around 20 MHz–25 MHz
which is a lot less when compared to the working
frequencies of modern GPUs. This way the power
consumption is greatly reduced which is one of the virtues of
an FPGA solution. The BRAM usage depends mostly on the
tile size and is around 26 % when using 8 × 8 tiles. Smaller
values are not a problem because they only require slightly
more external memory without increasing the number of
operations because they are dependant on the size of the Yee
grid. But even the next in line which is the 16 × 16 tile
would fill up the entire internal memory. In conclusion, an
FPGA solution should in theory be a lower costing viable
alternative if the goal is efficient memory usage and power
consumption.

IV. CONCLUSIONS

The novelty presented in this paper is using the block
floating-point arithmetic in an area where it is not usually
applied. By using BFP the performance of the FDTD
algorithm was improved by better memory utilization
(requiring almost 50 % less memory with a relative error of
around 5 %–6 %) than those of existing PC based solutions.
The authors have tackled the fundamental issue of the
problem which is intensive memory usage. The results
presented show a viable alternative for bit-exact platforms
such as FPGAs and provide a good foundation for future
research on the subject.

Future work branches off in two directions – optimizing
the algorithm and implementing the solution in some
hardware description language. The algorithm could be
improved with the optimization techniques as explained in
chapter 2 such as pre-fetching, pipelining etc. On the other
hand, as a follow up on previous research, a custom board
with low-end FPGAs could be made to fully test the limit of
the approach in order to draw final conclusions.
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