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1Abstract—This paper presents a cumulant-based method for
probabilistic load flow (PLF) analysis which incorporates
correlation between input random variables. Our approach can
approximate non-Gaussian variables of all kinds (e.g. different
load profiles or renewable power injections) accurately using
the Gaussian mixture model (GMM), which also facilitates the
computation of cumulants in a straightforward numerical way.
Multiple correlations can be easily handled by transforming
correlated variables into a combination of uncorrelated ones. To
reduce the deviations introduced by traditional series
expansions such as Edgeworth or Cornish-Fisher series, we use
C-type Gram-Charlier series instead, which can better predict
the probabilistic tail regions and have good convergence
property as well. The good performance of the proposed method
is verified using the IEEE 30 test system in terms of accuracy
and efficiency.

Index Terms—Probabilistic load flow; Gaussian mixture
model; Correlation; Gram-Charlier expansion.

I. INTRODUCTION

A surge of grid complexity associated with increasing level
of uncertainties, such as high penetration of
weather-dependent renewable energies (REs) and plug-in
hybrid electric vehicles (PEVs) has brought crucial
challenges to system planning and operation [1]–[3].
Moreover, correlation exists among REs in neighbouring
geographical areas and loads with the same social factors [4].
In order to accurately evaluate the variation of network
parameters such as node voltages or line flows, both the
uncertainty and correlation should be taken into account.

Probabilistic load flow, which incorporates dependence
between random variables, is an efficient tool in probabilistic
analysis as it enables a comprehensive assessment of system
working conditions, thus could inform system operators of the
weak points and potential crisis under various uncertainties
[5]. First proposed by Borkowska in 1974 [6], PLF has gained
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its popularity among researchers and much progress has been
made in recent years.

In general, PLF methods can be categorized into Monte
Carlo simulation (MCS) [7] and analytic methods [8], [9].
MCS is the most straightforward way of solving the problem
which involves repeated simulation to obtain probability
distribution of output variables, and is widely used in
large-sized systems since it proves to be
dimensional-independent [10]. Though the excessive CPU
time of MCS makes it less attractive, it serves as a benchmark
to evaluate the effectiveness of other PLF solutions for its
high accuracy and being easy to implement. Recently, with
the development of high-performance computing technology
[11] and advanced sampling techniques [12], the
computational burden of MCS has been reduced dramatically,
but it is still an ongoing research area.

Alternatively, analytic methods are more desirable in that
they are less computationally intensive and with acceptable
accuracy. In [13], the probability density function (PDF) of
output variables was obtained by a convolutional-based
method using simplified DC load flow. To accelerate the
time-consuming process of convolution, Fast Fourier
Transformation (FFT) was applied in [14], and Zhang et al.
[15] presented a cumulant method (CM) by combining the
cumulants of variables and Gram-Charlier expansion.
Although the use of different series expansions (e.g.
Edgeworth series, Cornish-Fisher series) show satisfactory
performance when input variables are Gaussian or
near-Gaussian, they may have serious convergence problems
and large deviations for non-Gaussian distributions [16].
Another prevalent proposal is the point estimate method
(PEM), which selects a set of quadrature points to estimate the
moments of output variables [17], [18]. However, the
computational time of PEM and its various versions is
proportional to the number of uncertain variables, making it
impractical in large-scale systems.

The dependency of loads and renewable power generation
must be considered and revealed in PLF solutions. In [19],
linear coefficient was used to measure the degree of linear
dependence between different distributed photovoltaic (PV)
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units. Rank correlation method, using Spearman or Kendall’s
correlation coefficients, could keep it invariant under strictly
increasing transformations [20]. To give a complete
representation of relationship between input variables, the
multivariate joint distribution was obtained from Copula
theory in [21]. The aforementioned techniques could generate
dependent random samples with given correlation, thus have
been widely used in MCS and PEM. However, there are few
analytic methods that take into account the correlation.
Reference [22] proposed a CM considering correlation
between load demands, with all load PDFs being Gaussian.
Though the Gaussian assumption could largely simplify the
modelling difficulty, sometimes the deviations are not
negligible due to the variety of load profiles and large
renewable injections.

The main contribution of the paper is to develop an
improved CM for PLF studies, which can conveniently handle
the correlated variables. It has made big progress by solving
the subsequent problems in original CM, such as a)
calculating the cumulants for non-Gaussian variables, b)
considering the dependency without sacrificing computation
speed, c) accelerating convergence rate, and d) avoiding
negative PDF values. To do this, the non-Gaussian variables
are first modelled with GMM, then numerical solution to
cumulants is proposed. Correlation matrix is decomposed to
modify the transformation matrices, followed by PDF
reconstructions using C-type Gram-Charlier series.

The rest of the paper is organized as follows. Section II
introduces the uncertainty modelling of GMM and its
reduction algorithm. Section III gives a numerical way of
computing cumulants of non-Gaussian variables and
approximates output PDFs with C-type Gram-Charlier series.
In Section IV, the computational procedure for PLF solution
is presented. Section V shows some test results and error
analysis, while concluding remarks are made in Section VI.

II. MODELLING NON-GAUSSIAN POWER INJECTIONS USING
GMM

A. Gaussian Mixture Distribution
A GMM can be viewed as a weighted sum of several

Gaussian distribution components, whose PDF, for
one-dimensional case, can be defined as [23]
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where i , i and i are the proportion, mean and standard
deviation of the ith component of the mixture, respectively.
The proportional coefficients must subject to the constraint
as:
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The ith Gaussian component is well-known as
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For determining the parameters of GMM, expectation
maximization (EM) algorithm is commonly used that one may
refer to [24]. The biggest advantage of GMM is that it could
approximate any PDF with just a few simple forms of
Gaussian components, making it convenient for further
applications. This is especially useful when a random variable
does not fit the typical distribution. Figure 1 illustrates the
example of wind power output modelled by GMM with five
components, from which the close resemblance of the shape
of discrete PDF and that of the GMM is noted.
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Fig. 1. GMM approximation of wind power output.

B. Reduction of Components
The accuracy of GMM is dependent on the number of its

components. If one starts from the simplest GMM (with only
2 or 3 components) and then increases the number of
components by running EM algorithm one at a time, it would
be both time-consuming and impractical. Instead, we
introduce a reduction method that reduces one component at a
time until the desired number of components is reached.

The method identifies a pair of components to be merged
that gives the minimal discrepancy from the original GMM. A
metric index, the integral square difference (ISD) defined in
[25] is used to quantify this difference. All combinations of
pairs need to be evaluated and once the pair of components i
and j are selected, they are merged to form a new Gaussian
component ij, and the parameters are determined as:
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III. PROBABILISTIC LOAD FLOW FORMULATION USING
IMPROVED CUMULANT METHOD

A. Cumulants of Non-Gaussian Input Variables
The vth moment of a random variable X, whose PDF
 f X is given, can be defined as
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where 1 m   is the mean of the random variable and is used
to calculate the central moment as follows

    ( ) .E X m x m f x dx 
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However, computing the integral of (7) or (8) is not trivial
especially when the random variable follows the
non-Gaussian distribution. A common practice is to transform
it to an equivalent normal variable, then (7) can be discretized
by Gaussian numerical integration as
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where  k
iw and  k

iX are determined as Gaussian-Hermite
weight and point, respectively.  and  are the mean and
standard deviation of the normal random variable. N is the
quadrature order (equal to the number of Gauss point).

The use of GMM modelling can avoid the issue of
equivalent normalization, which is a burden for the
computational procedure in terms of efficiency and accuracy.
Applying (9) to each Gaussian component, the weighted sum
of which is the statistical moment of non-Gaussian variable.
Since the relationship between cumulant and central moment
is deduced in [15], once the moment of a random variable is
known, cumulants of different orders can be obtained.

B. Cumulants of Sum of Correlated Random Variables
The non-linear load flow equations can be linearized

around a working point as
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where W represents node power injections; X and Z are
state vector ( bus voltage magnitudes and angles) and output
vector (line active and reactive power), respectively; The
subscript ’0’ denotes the linearization point; 0S and 0T are
all sensitivity matrices. From (10), we can see that state
variable iX (or iZ ) is the linear sum of input power
injections. For independent random variables, we have the
conclusion that the cumulants of a sum are the sum of
cumulants [26]. Thus, the cumulants of iX (or iZ ) can be
easily obtained provided that input variables ( iW ) are
uncorrelated. In reality, however, dependency between loads
or renewable injections at adjacent locations is obvious. As a
consequence, we should first convert the correlated input
random variables to a combination of uncorrelated ones.
Suppose WC is a correlation coefficient matrix of input

random variable  T1, , , ,i nW W W W = . According to

[27], WC is symmetric and positive definite so that we could
decompose it through Cholesky decomposition

T ,W C LL (11)

where L is the lower triangular matrix. If A is an orthogonal
matrix that meets the requirement of transforming correlated
input random variables W into the uncorrelated ones, we
have

,Y = AW (12)

where  T1, , , ,i nY Y Y Y = are uncorrelated variables.

The correlation coefficient matrix of variables ,Y YC , is
an identity matrix I , which can be written as (13) based on
(11) and its definition
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Note that 1A L is indicated in (13). Then (12) can be
rewritten as

1 .Y L W (14)

In this way, the correlated input random variables W are
finally represented by the combination of uncorrelated
variables Y

.W LY (15)

The kth order cumulant of output variables is computed
according to (10) on the independence assumption as:
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where ( )
0
kS and ( )

0
kT are matrices whose elements are kth

power of those in 0S and 0T .
To incorporate correlation between input variables, the

sensitivity matrices 0S and 0T should be modified as 1S ,

1T by substituting (15) into (10), and (16) would be changed
accordingly as
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C. Approximation of Output Probability Distribution
A key problem in PLF study is how to effectively estimate

the distribution of output variables (bus voltage or line flow).
The A-type Gram-Charlier (AGC) series, given in (18), is a
prevalent approach to approximating output PDFs
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where ic is the ith series expansion coefficient, which can be
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determined by standard deviation and central moments of X.
 iH  represents the ith Hermite orthogonal polynomial.

0 ( )f x is the base function of standard normal PDF. Despite
the handiness of AGC method, it has known limitations such
as poor convergence, and might yield negative probability
densities in the tail region when skewness and kurtosis of X
are outside the set range. This is especially true with
large-scale renewable injections, which brings about more
uncertainties. Herein, we introduce the CGC series for
approximation, defined as
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where i is the ith series expansion coefficient. The
exponential form of CGC series in (19) could ensure the
probability densities of X to be non-negative and range from 0
to 1. Compared with AGC series, CGC is considered superior
not only in the convergence properties, but it gives better
approximation for PDFs that largely deviate from Gaussian.

For a given order k of CGC series expansion, the
approximation coefficients vector  1 2, , , k    can be
obtained by solving the linear equation
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If we arbitrary set the expansion order 4k  , the matrix
G and vector B could be derived as:
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Since G is symmetric, only upper diagonal elements are
displayed. Then the CDF of output variables can be calculated
by a numerical integral of (19).

IV. COMPUTATIONAL PROCEDURE

The computational procedure of the proposed method is
illustrated through flow chart in Fig. 2. Detailed steps
involved are discussed below.

Historical data of
demands for various
kinds of consumers

Historical
measurement of

wind and PV power

PDF of power injections
by GMM

Moments computation
by numerical integration

Cumulants of input variables

Cumulants of output variables

Approximation for output PDFs and
CDFs using C-type Gram-Charlier

expansion

END

Line and load data
of the network

Computation of sensitivity matrices S、T

Cholesky decomposition

Modified matrices 、 considering
correlation between input variables

T
W C GG

S T

Fig. 2. Flow chart of computational procedure for the proposed method.

Step 1: Model the probabilistic distributions of all the load
demands and renewable energy output using GMM with
availability of historical measurement and statistical analysis.
Component reduction is performed if required.

Step 2: Compute the raw and central moments of 1st to 4th
order for different types of power injections. The
corresponded cumulants can be obtained as well.

Step 3: Input line and load data of the network, then
determine the linearized point of load flow equation and
initial sensitivity matrices by Newton method.

Step 4: Transform correlated input random variables into
the combination of uncorrelated ones using Cholesky
decomposition, and modify the sensitivity matrices.

Step 5: Approximate the PDF and CDF of each bus voltage
and line flow using CGC series, whose expansion coefficients
are computed from linear algebraic operation of moments.

V. CASE STUDY

The proposed analytic PLF method has been applied to the
IEEE 30 test system, in order to evaluate its general
performance. The main results were compared to those of
MCS with 10000 samples and corresponding error analysis
was also carried out.

Most of the data involved were provided in [28], and we
modified the system by adding two wind farms at buses 25
and 29 (100 MW and 80 MW, respectively). It is assumed that
each wind farm is controlled such that the power factor is kept
constant at 0.95 p.u. GMM parameters of PDFs used to model
the wind power output are presented in Table I, all the data
given are in p.u.
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TABLE I. GMM PARAMETERS OF ACTIVE WIND POWER INJECTIONS (P.U.).

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
P25 0.22 0.36 0.45 0.73 0.95 0.07 0.14 0.12 0.11 0.05 0.3 0.2 0.2 0.2 0.1
P29 0.16 0.23 0.35 0.54 0.76 0.04 0.09 0.10 0.10 0.03 0.2 0.2 0.2 0.2 0.2

TABLE II. GMM PARAMETERS OF THE LOAD ACTIVE POWER (P.U.).

1 2 3 1 2 3 1 2 3
P4 -0.072 -0.080 - 0.058 0.046 - 0.6 0.4 -
P7 -0.250 -0.198 - 0.025 0.030 - 0.5 0.5 -
P21 -0.172 -0.183 -0.160 0.016 0.023 0.008 0.4 0.3 0.3

Three typical profiles of load demands are also
approximated by GMM at buses 4, 7 and 21, shown in
Table II. The demand of remaining buses (not presented in
Table II) are assumed to be Gaussian random variables, with
standard deviation fixed at 5 % of the mean value. The loads
are generally classified into two groups. Group1 consists of
real power demands 15P , 23P and 24P , which has the
correlation coefficient 0.7  , and the others (group 2)
including 16P to 22P , has a correlation factor of 0.5  .
The correlation between outputs of two wind farms are strong
( 0.8  ), while they are considered independent of the load
demand. The programs were implemented with Matlab 2014b
on a PC with Intel core i5 3.0 GHz and 3 GB of RAM.

The proposed method, original CM and MCS are applied to
estimate the PDFs of bus voltage and line flow. The original
CM mentioned here was explicitly explained in [29], with
AGC series and not considering the correlation. Taking bus
25 and line 10-17 as an example, we compared the results
( 25U and 10 17Q  ) of the three methods in Fig. 3.
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-100 0 100
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F
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Proposed
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(b)
Fig. 3. PDF comparison of bus voltage and line flow: a) voltage magnitude
of bus 25; (b) reactive power of line 10–17.

It can be seen that some negative PDF values appear in the

tail regions of both pictures using the original CM. This is
often the case when large-scale renewable energy injected,
increasing skewness and kurtosis of the output variables.
Large deviations could also be found in original CM, if MCS
is taken as the best reference, while the error of the proposed
method is negligible.

Figure 4 gives the CDFs of 25U and 10 17Q  , which
corresponds to the PDFs in Fig. 3. As is expected, the
Y-coordinate values can go beyond the range of 0-1. To
demonstrate the accuracy of the proposed method
quantitatively, we used the average root mean square (ARMS)
metric [30] as a comparative check. ARMS is a measure of the
deviation & error of the model, and is defined as

 21 Candidate MCS
ARMS ,

N
i ii

N
 


 (26)

where Candidatei is the ith CDF value using the candidate
method, and MCSi is the corresponding Monte Carlo point.
N is the total number of selected points, N = 100 was chosen in
this paper.
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Original CM

(b)
Fig. 4. CDF comparison of bus voltage and line flow: a) voltage magnitude
of bus 25; b) reactive power of line 10–17.

Table III shows the mean and maximum ARMS of all kinds
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of output variables obtained from the proposed method and
original CM. Not surprisingly, The ARMS deviations with the
proposed method are comparatively smaller, most of which
are less than 1 %, even for the maximum values, showing
large improvement compared with original CM.

TABLE III. ARMS OF OUTPUT VARIABLES IN IEEE 30 SYSTEM.

Output variables
ARMS/% (Mean/Max)

Original CM Proposed

Voltage magnitude 1.32/2.55 0.37/0.64

Voltage angle 1.93/2.65 0.54/0.88

Line flow (real) 0.92/1.36 0.24/0.59

Line flow (reactive) 4.70/6.25 1.07/1.48

To evaluate the influence of correlation between the wind
outputs that may have on the system operation, the average of
mean and standard deviation of bus voltage and line flow were
investigated with the correlation factor  ranging from 0
(independent) to 1 (completely correlated). As shown in
Fig. 5, the average expected values are hardly influenced by
the correlation of wind power, while there is a good linearity
for standard deviation and the correlation factor. The
fluctuation of system operation status would thus be
intensified as the increase of  ， making it prone to
violating the limit and diminishing the system security.

ρ
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μ 
/p

.u
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(a)
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σ
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.u
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σ
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3.6x10-3

4.4x10-3

(d)
Fig. 5. Relationship between system operation parameters and wind power
correlation coefficient: a) the average of expected value of bus voltage; b) the
average of standard deviation of bus voltage; c) the average of expected
value of line real power; d) the average of standard deviation of line real
power.

TABLE IV. COMPUTATION TIME COMPARISON OF THE THREE
METHODS.

CPU time/s
IEEE 30 IEEE 57 IEEE 118

MCS 386.2 402.8 434.1
Original CM 1.49 2.35 6.76

Proposed 8.40 12.13 18.42

Finally, we compared the performance of the methods
(MCS, original CM and proposed) in terms of the run time.
Table IV lists the results tested in three different-sized
systems. It is concluded that both the proposed method and
original CM can significantly reduce the computational
burden in PLF analysis compared with MCS, while their
execution time goes up steadily as the size of network grows.
Note that additional time is needed for proposed method than
original CM due to the GMM modeling and correlation
processing. However, this process is so fast that the overall
time consumption is still reasonable.

VI. CONCLUSIONS

In this paper, an improved analytic approach to PLF studies
based on CM was proposed. This method could overcome the
deficiencies of the original CM such as cumbersome
computation of cumulants with non-Gaussian random
variables, and not being able to manipulate the correlation.
The IEEE 30 test system was used to verify the correctness
and effectiveness of the proposed method, and the following
features can be summarized as

1) The GMM used in this paper can accurately model the
intermittent and multimodal nature of wind power distribution
with specific parameters estimated iteratively for each
mixture component. This model can also simplify the problem
of cumulant calculation in a numerical way with its Gaussian
components.

2) The correlation of input power injections is taken into
account by representing correlated random variables in a
linear sum of the uncorrelated ones so that the precondition of
cumulant arithmetic could be satisfied. The influence of wind
correlation on the expected value of output variables remains
nearly unchanged but is proportional to the standard
deviation.

3) The PDFs (or CDFs) of outputs reconstructed by CGC
series expansion are very close to those obtained from MCS
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with 10000 samples, particularly in the tail regions, with the
average of ARMS less than 1 %.

4) Compared with MCS, the computational efficiency is
enhanced by up to 40 times without sacrificing much of the
accuracy, making it possible for some practical applications
such as online power flow analysis, risk assessment, and so
forth.
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