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Abstract—Modelling and control by neural network of
hybrid electric vehicle traction system is presented in this
paper. The electric drive is composed by a battery bank and an
ultracapacitor connected in parallel through bidirectional DC
converters and a Brushless DC Motor driven by a three-phase
inverter. In the electric drive control loop is implemented a
NARMA neural network. The mechanical model comprises a
gearbox and a model of the road-wheel friction force and
vehicle aerodynamics. All the masses and inertia are expressed
relative to the rotor of the motor. The model is studied by
simulations with two driving cycles and an assessment of the
available energy from regenerative braking is performed. The
percentage of recycled energy from regenerative braking is
assessed.

Index  Terms—Electric  vehicle;  Neural
Regenerative braking; Ultracapacitor.

network;

1. INTRODUCTION

The main advantage of electric vehicles, compared to
internal combustion engine-driven vehicles is the fact that no
local pollution is produced by their propulsion system.
Although the main drawback of EVs is their autonomy —
with a fully charged battery they have an average range of up
to 200 km—250 km and the recharging process takes several
hours. However, the technology is trying to find a solution
for improvement of the abovementioned disadvantages.
Many authors propose fuel-cell powered hybrid electric
vehicles and real-time implementation of optimization
techniques for minimization of the vehicle operational cost
using dynamic programming, neural networks or fuzzy-logic
based control [1]-[6]. In particular, the control strategies
proposed in [4] and [5] use neural network for recognition
and prediction of the driving cycles to help reducing the
equivalent consumption of the vehicle propulsion system.
This paper is focused on the modelling and control of an
electric vehicle powered by a battery and supercapacitor. A
drawback of predictive-control implementations in most of
the studies is the uncertainty in user behaviour and in

Manuscript received 10 September, 2017; accepted 2 February, 2018.

This research is funded by the project ,,Gestion intelligente des flux
énergétiques dans des micro- et nano-réseaux” funded by Agence
Universitaire de la Francophonie and the Bulgarian National Fund for
Scientific Research.

23

particular the prediction of vehicle acceleration and speed
during driving. Therefore, in this study the neural network is
used for control of the electric motor. In this paper is
presented the modelling of a hybrid electric vehicle
propulsion system and control by a NARMA neural network
of the electric motor. The electric drive is composed by a
battery bank and an UltraCapacitor (UC) connected in
parallel through bidirectional DC converters. The Brushless
DC Motor is driven by a three-phase inverter. The power
split between the UC and the electric motor is performed by
hierarchical control algorithm that can be implemented into
a microcontroller in the vehicle. Such a realization has the
advantage of being less complex than predictive control
techniques and is less sensitive to the uncertainty in vehicle
usage. The mechanical model comprises a gearbox and a
model of the road-wheel friction force and vehicle
aerodynamics. All the masses and inertia are expressed
relative to the rotor of the electric machine. The electric
vehicle model is studied by simulations with two driving
cycles and an assessment of the available energy from
regenerative braking is performed. One of the driving cycles
used for simulations is an urban cycle with frequent
accelerations and stops and the other is a suburban cycle
without any stops.

II. CONTROL SYSTEM STRUCTURE

The energy flow diagram of the studied hybrid electric
vehicle structure is presented on Fig. 1. It consists of a
battery bank (BAT), which is the main power source and an
auxiliary source — an UC, serving as energy buffer for
acceleration or regenerative braking. Both sources are
connected to a DC bus through bidirectional DC-DC
converters. This type of hybrid structure is also known as a
parallel structure [7]-[9]. By driving, the electric motor can
be fed by the battery bank, by the ultracapacitor or by both
of them. Inversely, by regenerative braking, power generated
by the electrical machine can be fed into the battery bank,
into the UC or both. In the studied structure there are seven
options for the energy flows:

— The motor is powered by the battery, no power is

exchanged with the UC;

— The motor is powered by the battery. The UC is being
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charged by the battery;

— The battery and the UC are delivering power to the

motor. The UC is being discharged;

— The UC is supplying power to the motor. No power is

exchanged with the battery;

— No power is delivered to the motor (the vehicle is

standing still), the UC is being charged by the battery;

— The electric machine is generating power (regenerative

braking) and is charging the UC and the battery;

— The electric machine is generating power and is

charging the battery, no power is exchanged with the UC.

The control system selects the appropriate energy flows
configuration at any moment for proper system operation
and optimal use of the energy harvested from regenerative
braking. Identification of the system state and allocation of
the appropriate power references to the sources are subject
to several constraints: maximal charge and discharge current
of the battery, of the UC and their state of charge.

BLDC

saT () ocroc () pes () DS
DC/DC
ucC

Fig. 1. Energy flows diagram of the studied hybrid electric vehicle
structure.

The energy flows management and control of the power
converters are performed in two different time scales,
therefore the control system is implemented in two levels
(Fig. 2): the energy management system that allocates power
references to the converters operates at a scale of 0.1 s and
the power converter control systems operate at a timescale of
0.1 ms.

Four distinctive cases of system operation can be
considered: by vehicle acceleration, movement with constant
speed, regenerative braking and finally when the speed is
below a certain value — braking without recuperation.
Control of the power flows is performed according to the
state of charge of the battery and the UC and the constraints:

— Acceleration: power is delivered from the battery. The

UC is also supplying power if it is charged above a certain

voltage level Uycmin.

— Movement with constant speed: the vehicle is powered

by the battery. There is no power exchanged with the UC.

— Regenerative braking: power generated by the electric

machine is returned to the battery and respecting the

battery maximum charge current, the excess of power is
stored in the UC.

— Mechanical braking: when the vehicle speed falls below

a minimal threshold V., regenerative braking stops and

mechanical brakes are used.
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Energy management
- Identification of the mode: acceleration,
recuperation or movement with constant speed
-Distribution of power references

=

Control of the power converters
- Duty ratio setting and closed loop control

Level 1
Timescale 0.1s

Level 2
Timescale 0.1ms

Fig. 2. Hierarchical control structure of the studied system.

III. ELECTRIC MODEL OF THE SYSTEM

A. Bidirectional DC Converter Modelling

A synchronous DC converter (Fig. 3) is obtained from an
ordinary Buck converter by replacing the diode with another
switch. Both switches operate synchronously — at any
moment only one of them is closed and the other one is
open. This circuit is interesting also due to its possibility for
bidirectional operation (Buck converter in one direction and
Boost converter in the other) for energy storage systems and
electric wvehicles [10], [11]. The combination of a
synchronous DC-DC converter and the corresponding
control algorithm allows the achievement of highly efficient
bidirectional power conversion. In this study losses in
converters are neglected: an average model of the converters
is implemented. By using this modelling approach, operation
of the converters is expressed by their transfer function and
is invariant of the circuit parameters.

The equations describing the converter transfer function
operating in buck mode are:

2)

where D is the duty cycle, U, and I, are the output voltage
and current, U; and I; are the input voltage and current.

By regenerative braking the converter operates as a boost
converter and the equations are:

3)

(4)

Fig. 3. Synchronous DC-DC converter circuit.

B. Brushless DC (BLDC) Motor

The voltages and currents are expressed in a rotating
reference frame (d-q) [8]. The voltages are expressed by
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where 6 is the rotor position angle, e = p@ is the field
phasor angle and p = 1 is the number of pole pairs.
The two-axis currents are then expressed by:
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where w. = pw is the field angular velocity, @ is the rotor
angular velocity, @ is the permanent magnet flux, the active
resistance is R, Ly and L, are the equivalent inductances of
the windings (Lqs = L, = 8.5 mH).

Then the three-phase currents in a stationary reference
frame i,, i and i. are calculated by using the inverse Park
transformation
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And the current i, is
i.=—i, i,

The machine torque is expressed by the following
equation

T, =1,5p (i, +(Lg — Ly )iaiy ) (10)

C. Rotor Position Encoder and Decoder

Switching of the three-phase inverter is implemented by a
Hall Effect encoder and decoder. The encoder is composed
by three hall sensors (HS_A, B and C) — one for each stator
winding. As a result the rotor position and the appropriate
polarity of the voltages fed to the stator windings are
encoded as a binary number (Table I) which is then sent to
the rotor position decoder. The rotor position decoder does
exactly the inverse operation: based on the encoder readings
it sends signals to the driver circuits of the inverter and in
this way ensures adequate switching of the three phase
voltages.

TABLE 1. HALL EFFECT ENCODER AND DECODER OPERATION.

HS A HS B HS C Va Vb Ve
0 0 0 0 0
0 0 1 -1 +1
0 1 0 -1 +1 0
0 1 1 1 +1
1 0 0 +1 -1
1 1 0 +1 -1
1 1 1 0 0

The voltages supplied to the stator windings are:
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Uy :UO Va>
up =UgVy, (1D
Ue =UO Ve,
and
Ugp =Up — Uy, (12)

Upe = U —Up.

IV. MECHANICAL MODEL OF THE SYSTEM

The mechanical stage of the motor and the total inertia of
the vehicle traction is expressed relative to the rotor (single-
mass mechanical model), according to the following
differential equations:

do 1
;Zj(—Tm-FTe—FCOr), (13)
L o (14)

where o is the rotor angular velocity, € is the rotor position
angle, J is the total inertia relative to the rotor, 7, is the
electromagnetic torque of the motor, F is the friction due to
the wheel-road contact and 7}, is the mechanical resistive
torque relative to the rotor.

The mechanical model of the closed-loop system in Fig. 4
comprises also the blocks “GearBox”, “Wheel” and
“Contact Road Wheel”. In these blocks the following
equations are used:

Wyoq = ko, (15)

T = KTy, (16)
Viheel =281 @ypeq 5 (17)
Tyheet = 1F, (18)

where £ is the gear ratio, Ve is the wheel velocity, Tineer 1S
the wheel torque, r is the wheel radius (» = 0,26 m) and F is
the traction force (Fig. 5). Calculation of the traction force is
performed in the block “Contact Road Wheel” according to
the procedure described in [11].

Fig. 4. Model of the closed-loop system in MATLAB.
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The relative disturbance in the wheel velocity is

0,55 for0<t<T/2,
d(t) = (19)

0,60 forT/2<t<T.

The mechanical disturbance is cyclic with period T =
0,1s.

This disturbance simulates flaws in the road surface. Then
the actual velocity of the wheel is

V1 =Viheerd- (20)
The relative velocity wheel-road is:
Va =Vivheet =V @2n
Vratio =——— 2. 22)
Vinew +10
The traction force in SI units acting on the wheel is
F=09F - (23)

where the relative traction force is Frario (Fig. 5).
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Fig. 5. Model of the road-wheel friction force.

ratio

V. CONTROLLER SYNTHESIS AND NUMERICAL RESULTS

A NARMA neural network (NN) is implemented in
MATLAB [12]-[15]. The implemented NN has two layers:
a non-linear and a linear layer. Training of the NN is
performed by batch data. The training data includes
simulated trajectories of the system with various time delays.

The plant identification process [14] is performed
according to the Plant Identification-NARMA-L2 tool in
MATLAB. For plant identification the closed-loop system
model (Fig. 4) is transformed into an open-loop system by
removing the NARMS-L2-controller. Then the NN is trained
by its input — amplification ratio and its target — the motor
angular velocity. The corresponding parameters of the NN
are presented on Fig. 6.

The mathematical function implemented by the NN model
is

y(k+1)= f(y(k),y(k =1),...,u(k=1),u(k —2),...)+

+g (y(k), y(k =1),..;u(k =1),u(k =2),..)u(k), (24)

where y is the model output, u is the control variable, fand g

are approximation functions, synthesized during the NN
training process.

The equation of the control function is then obtained by
solution of (23) with variable u(k)

u(k) =
_ Pk+D = £ (900, k=), ulk =D, u(k =2),...)
g(v(k), y(k=1),u(k =) u(k=2),..)

(25)

Therefore given the reference signal the system response
u(k) is calculated (24) by replacing y(k + 1) with the
reference signal y(k + 1).

The NN structure is chosen and trained properly
according to the results in Fig. 7 — the plant output
corresponds to the NARMA NN output.

With the closed-loop system model (Fig. 4) numerical
results are obtained. A similar closed-loop system with PI
controller instead and NN controller is realized in [14].
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Fig. 6. Parameters of the NARMA-L2 neural network.
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Fig. 7. Results from the NN training: a) input signal; b) model output; c)
error and; d) NN output.
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Simulation results demonstrate that the NN control
achieves better robustness and less overshoot than PI control
by the same velocity reference. The model is also tested with
a torque disturbance added to the motor load, modelled by
(17). By equal initial conditions, the NN control achieves
shorter duration of the transients and better dynamic
response. Another advantage of the NN control is less
deviation from the reference signal (Fig. 8). A comparison
between PI and NARMA control of this system are
presented on Table II. Fine tuning of the PI controller for the
actual parameters of the model could lead to better results,
but it could hardly outperform the NN-based control.
Furthermore, the PI controller is sensitive to changes in the
system model (i.e. simulations of a vehicle with different
mass or aerodynamics) and requires repetitive fine tuning of
the controller. Therefore, another advantage of the NN

control is that training and tuning are performed
automatically.
TABLE IIl. COMPARISON BETWEEN PID AND NARMA CONTROL.
Transner}t response Overshoot
time
PI-controller 0.05s 300 rpm
NARMA Controller 0.0ls 30 rpm
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Fig. 8. Motor angular speed with: a) NN controller and; b)with PI
controller.

The presented system model is used for simulations of
two typical driving profiles: the first includes a typical city
driving profile with numerous accelerations and stops and
the second, called “suburban” comprises driving outside the
city (Fig. 9).

Both driving cycles are used for simulations of three
electric vehicles defined by their mass, frontal area S and
drag coefficient C, (Table III).

TABLE IlII. PARAMETERS OF THE SIMULATED VEHICLES.

Ve{\l;(l:le mkg | S m? G m Averai::n range,
1 900 1,5 0,35 50 45
2 1200 2 0,32 110 70
3 1500 2,5 0,3 140 90

VI. DISCUSSION

An estimation of the recycled energy due to regenerative
braking is presented in Fig. 10. Simulation results
demonstrate that in a city driving cycle the percentage of
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recycled energy is greater than the suburban cycle due to the
often accelerations and stops. Vehicle 1 has a top speed
below the minimum allowed speed on motorway, therefore
only vehicles 2 and 3 are simulated with HWFET cycle. The
percentage of recycled energy of all three vehicles in the
CSHVR cycle are similar. A correlation between vehicle
mass and the percentage of recycled energy is visible.
Although, simulation results demonstrate that recycled
energy percentage is mainly dependent on the driving cycle
and less dependent on vehicle parameters: in the urban
driving cycle the percentage of recycled energy of all three
vehicles is in the range of 35 %—40 %. In the suburban cycle
also the percentages of both simulated vehicles are similar.

(®)
Fig. 9. Vehicle speed in: a) city driving cycle (CSHVR) and; b) suburban
cycle (HWFET).
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VII. CONCLUSIONS

Modelling and control by neural network of hybrid
electric vehicle traction system is presented in this paper.
The electric drive is composed by a 48 V battery bank, a
bidirectional DC converter and Brushless DC Motor driven
by a three-phase inverter. In the electric drive control loop is
implemented a NARMA neural network. The mechanical
model comprises a gearbox, differential and a model of the
road-wheel friction force and vehicle aerodynamics. All the
masses and inertia are expressed relative units converted to
the rotor of the electric machine. Simulation results
demonstrate proper operation of the electric drive control
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system.

The electric vehicle model is studied by simulations with

two driving cycles and an assessment of the available energy
from regenerative braking is performed. The percentage of
recycled energy in the city driving cycle is greater than the
suburban cycle and is also proportional to the vehicle mass.
Furthermore, simulation results demonstrate that recycled
energy percentage is mainly dependent on the driving cycle
and less dependent on vehicle parameters.
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