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1Abstract—This paper presents the application of an 

artificial neural network with a genetic algorithm for 

identifying the selected specification parameters of a voltage-

controlled oscillator (VCO). In modern electronics, the 

complexity of the production process may cause errors in 

analogue and mixed-signal electronic circuits, and inaccuracies 

in this technological process have a direct impact on the 

specification parameters of a VCO. The modern market 

requires that the production process has to be as quick as 

possible, and therefore testing systems should be fast and have 

the highest efficiency of parameter identification. In the 

following paper, a genetic algorithm is used to optimise the 

number of output signal measurement points, which allows 

them to be identified by the specification parameters of the 

VCO that are selected by an artificial neural network. The 

proposed method is characterised by shortening the test time of 

the system while maintaining a high efficiency in the 

identification of the selected design specification parameters. 

 
 Index Terms—Voltage-controlled oscillator; Specification 

parameters; Identification; Genetic algorithm; Optimisation; 

Artificial neural network. 

I. INTRODUCTION 

Fault diagnosis of analogue circuits is an important and 

still relevant element for the design validation of electronic 

devices [1]–[5]. The problem of diagnosis is complex due to 

the large number of process variables, which can be altered 

during production. 

Fault diagnosis can be divided into two main sections: it 

includes detecting faulty circuits, locating faulty parameters 

and evaluating their values and determining whether  

a faulty parameter has drifted from its tolerance range but 

does not lead to any topological changes [6]. 

Analogue circuit testing can be divided into two 

categories: Fault Driven Testing (FDT), which detects faults 

in elements or Functional Test/Specification Driven Test 

(FT/SDT), where the functional behaviour of the circuit 

being tested is measured. In this case, the test should be 
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designed to gather all of the possible datasheet information. 

However, due to the easy availability of electronic circuits 

and the low cost of their execution, the testing of systems is 

aimed at checking the design specifications in order to check 

their compliance with the adopted assumptions [7]. 

In order to speed up the launch of a product to the market, 

the Simulation Before Test stage methodology (SBT) has 

been introduced. In the SBT approach, a testing procedure is 

created and a circuit under test (CUT) numerical 

implementation is used. All of the possible parametric 

deviations are simulated. The desired specification 

parameters of CUT are calculated for all of the simulations 

and a fault dictionary is created. On the production line, a 

manufactured circuit is tested using the same procedure and 

the CUT response is compared with the fault dictionary [7]. 

Nowadays, among the multiplicity of the test algorithms, 

most attention has been focused on the heuristic methods, 

evolutionary techniques, fuzzy logic, support vector 

machines and artificial neural networks [1]–[9]. 

While most of the works have been focused on the soft 

fault diagnosis of analogue circuits when only one 

parameter is faulty, fewer papers have been directed to 

multiple faults [8], [10]–[18]. This paper presents the use of 

an artificial neural network (ANN) to reduce the 

identification time of Voltage-Controlled Oscillator selected 

specification parameters. In the identification procedure 

(Fig. 1), the output signal samples of the generator are 

selected by the optimisation of the genetic algorithm (GA). 

The selected samples become the input for the artificial 

neural network. Based on the selected samples, the learned 

ANN determines the value of the selected specification 

parameters of the circuit under test (CUT). 

 
Fig. 1.  Testing idea. 
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The paper is organised as follows. In Section II, a model 

of a CUT-Voltage Controlled Oscillator is presented and the 

specification parameters are introduced. Section II also 

raises the issue of the imperfectness of production, where 

the parametric faults of CUT are described. Sections III and 

IV are devoted to the description of the genetic algorithm 

(Sec. III) and the artificial neural network (Sec. IV). Finally, 

the last section describes the results of the research in detail. 

II. CIRCUIT TESTING 

A. A Voltage-Controlled Oscillator 

Oscillator topologies are classified as tuned, ring and 

crystal oscillators. Tuned oscillators are implemented as LC 

or RC circuits. Ring oscillators are basically delay stages 

that are connected by positive feedback, which are easy to 

implement because of the simple integration of CMOS 

technology. LC oscillators occupy more space than their 

ring counterparts [19]–[21]. 

The circuit under test is a voltage-controlled oscillator 

(VCO) based on a ring oscillator topology. In the classical 

structure, a VCO contains the control input stage, the ring 

oscillator and the output buffer. The five-stage ring 

oscillator topology, which is based on NMOS and PMOS 

transistors, is presented in the Fig. 2. 

 
Fig. 2.  Five-stage voltage-controlled oscillator. 

The purpose of a voltage-controlled oscillator (VCO) is to 

generate an output signal (uout
i ) with an oscillation 

frequency that is proportional to the control voltage signal 

(uin
i ) [22]. Transistors NMOS M4 and PMOS M5 (Fig. 2) 

operate as inverters and create one structure of the oscillator. 

The inverter structure is repeated five times creating a five-

stage ring oscillator. 

B. Voltage-Controlled Oscillator Functional Parameters 

The functional identification of a circuit under test should 

be focused on measuring the different characteristics of the 

output signal for the stimuli being tested. The selected 

functional parameters affect the quality of the voltage-

controlled oscillator that is produced. According to the 

parametric errors of a VCO structure, a functional test 

should contain: 

 a frequency 𝑓𝑥(𝑢𝑖𝑛
𝑖 ) response for the input signal (𝑢𝑖𝑛

𝑖 ) 

[6], 

 a frequency tuning characteristic (𝑓𝑥(𝑉)), which 

expresses the relationship between the VCO operating 

frequency at the tuning voltage that is applied [21], 

 output power (PdBm), which is measured into a 50Ω load 

[21], 

 Pulling (Pull in dBr), which describes the frequency 

variation in any change of the output load [21], 

 phase noise (𝑃𝑁 in dBc/Hz), which describes the single 

sideband phase noise of the oscillator. It is composed of 

the noise close to the flicker noise and the noise measured 

at a spacing of a constant value [21], 

 VCO gain (KVCO), which is measured in (Hz/V), which 

describes any change in the frequency value due to a 

change in the input signal voltage [21], 

 frequency tuning range (𝑓𝑥𝑅), which is the difference 

between the maximum and minimum output signal 

frequency values [21]. 

As was mentioned above. voltage-controlled oscillator 

circuits are characterised by a frequency response, and 

therefore, it is important that the frequency of the designed 

generator for the applied voltage is within the desired range, 

therefore the circuit testing process starts with  

a frequency measurement (𝑓𝑥(𝑢𝑖𝑛
𝑖 )) for the testing voltage 

signal (𝑢𝑖𝑛
𝑖 ). 

Because the output of an oscillator is always attached to 

some load, which can affect the frequency of the VCO, it is 

also important to measure the output signal frequency as  

a function of the changing of the load of the CUT – Pulling 

of the VCO (𝑃𝑢𝑙𝑙𝑖). 

Finally, a voltage-controlled oscillator is also 

characterised by an output power (𝑃𝑑𝐵𝑚
𝑖 ) specification 

parameter. 

This paper is focused on identifying the 𝑓𝑥(𝑢𝑖𝑛
𝑖 ), 

𝑃𝑑𝐵𝑚
𝑖  and 𝑃𝑢𝑙𝑙𝑖  for each transistor parametric fault. The 

nominal values of 𝑓𝑥(𝑢𝑖𝑛
𝑖 ), 𝑃𝑑𝐵𝑚

𝑖  and 𝑃𝑢𝑙𝑙𝑖  for the nominal 

transistor parameter are presented in Table I. 

TABLE I. NOMINAL VALUES OF THE VCO SPECIFICATION 

PARAMETERS. 

 𝒇𝒙(𝒖𝒊𝒏
𝒊 ) [GHz] 𝑷𝒅𝑩𝒎

𝒊 [dBm] 𝑷𝒖𝒍𝒍𝒊[dBr] 

𝒖𝒊𝒏
𝟏  1.381 1.4003 -96.9 

𝒖𝒊𝒏
𝟐  0.387 1.447 -110.5 

𝒖𝒊𝒏
𝟑  2.583 1.463 -93.9 

𝒖𝒊𝒏
𝟒  3.009 1.487 -107.9 

C. Production Imperfectness 

As can be seen in the Fig. 2, the VCO presented in this 

paper is based on PMOS and NMOS transistors. Transistors 

can be parametrically damaged in many different ways 

during technological processes. The most frequent 

parametric damage at the production stage is a deviation of 

the photolithographic mask [23]–[24]. This kind of error 

affects the parametric values of the transistor structure – the 

width (W) and length (L) of a channel. A change to this 

parameter in turn has a significant impact on the transistor 

specification parameters (i.e. the amplification of the 

transistor), which has an effect on the specification 

parameters of the voltage-controlled oscillator. 

During computer analysis, the VCO is modelled using 

Spice software and the transistor fabrication process is 

modelled by width (W) and length (L). 

The nominal values of W and L in NMOS (N) and PMOS 

(P) are defined , , ,N N P P
nom nom nom nomW L W L . The maximum 

range for the W and L parameter was set to: 
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/ / / / / /
min max

/ / / / / /
min max

; , ; ,

; , ; .

N P N P N P N P N P N P
nom nom

N P N P N P N P N P N P
nom nom

W W W W W W

L L L L L L

    


   

 (1) 

The transistor nominal range is represented by: 

 

/ / / / /

/ / / / /

; ,

; ,

N P N P N P N P N P
nom nom W nom W

N P N P N P N P N P
nom nom L nom L

W W t W t

L L t L t

    


   

 (2) 

where tW
N, tW

P, tL
N, tL

P are the tolerance ranges. 

To analyse a large number of photolithographic mask 

deviations, a number of Monte Carlo analyses with uniform 

distributions were created (MC runs). 

To increase the accuracy of the analysis of the CUT, the 

parametric damage to the NMOS and PMOS was divided 

into Y subranges. Let Y represent the width or length and 

𝑌𝑛𝑜𝑚 be the nominal values, the new subrange middle value 

𝑌𝑚𝑖𝑑 is described as 

 ,mid nom
i i iY Y t   (3) 

where  0.88,0.94,1,1.06,1.12,1.18it  . 

Using the above, each 𝑌𝑚𝑖𝑑 is defined 

 
/ /; .mid nom N P nom N P

i i i L i i LY Y t t Y t t      (4) 

D. Simulation Profile 

The aim of the proposed method presented in this paper is 

to identify the selected specification parameters of a VCO in 

case of NMOS and PMOS transistor parametric faults. For 

the transistors from Fig. 2, the nominal parameter represents 

50 nm and was set to [24]: 

 

0.5 ,

50 ,

1 ,

50 .

N
nom

N
nom

P
nom

P
nom

W u

L n

W u

L n

 

 







 (5) 

𝑀𝑐 = 500 Monte Carlo analysis was generated for each 

simulated set, and the tolerances for each simulation was set 

as 

 3%.N P N P
W W L Lt t t t     (6) 

At the simulation stage, four-step functions were 

considered: 𝑢𝑖𝑛
1 =  𝑢𝑖𝑛

1 ∙ 1(𝑡), 𝑢𝑖𝑛
2 =  𝑢𝑖𝑛

2 ∙ 1(𝑡), 𝑢𝑖𝑛
3 =  𝑢𝑖𝑛

3 ∙

1(𝑡) and 𝑢𝑖𝑛
4 =  𝑢𝑖𝑛

4 ∙ 1(𝑡), where 𝑢𝑖𝑛
1 =  0.8𝑉, 𝑢𝑖𝑛

2 =  1𝑉, 

𝑢𝑖𝑛
3 =  1.2𝑉, 𝑢𝑖𝑛

4 =  1.5𝑉, for all 𝑢𝑖𝑛, the rising time (𝑡𝑖𝑚𝑒𝑟) 

was equal - 𝑡𝑖𝑚𝑒𝑟= 0.1ns. The exemplary response for 

transistors 𝑌3
𝑚𝑖𝑑 (continuous line) and 𝑌4

𝑚𝑖𝑑  (dotted line) is 

presented in Fig. 3. 

III. GENETIC ALGORITHM 

In order to solve a given optimisation problem, a genetic 

algorithm (GA) was used. The GA has proven to be robust 

and acceptably quick for problems of multi-parameter 

optimisation [24].  

 
Fig. 3.  Circuit response for 𝑌4

𝑚𝑖𝑑 (continuous line) and 𝑌5
𝑚𝑖𝑑 (dotted line). 

However, as with all of the heuristic methods, there is no 

formal proof of its global convergence, and therefore no 

guarantee that solution that is found is definitely the optimal 

one [25] The classic elitist GA with the schema shown in the 

(Fig. 4) was used [25]. 

 
Fig. 4.  Block diagram of the genetic algorithm (an elitist model) that was 

used [21]. 

In the proposed GA, the population size (PS) is constant. 

Each individual contains a single linear chromosome, which 

is a vector of genes (Vg) that is coded as bits and represents 

a particular solution. The length of the chromosome is  

a trade-off between the accuracy of the solution (bit 

resolution) and the processing time of the genetic algorithm. 

The evolution loop is built from the following steps 

(Fig. 4): 

1. Initialization – using random values, 

2. elite individuals, where the unique individuals are 

saved. This step prevents the best solutions that have been 

found so far from being destroyed in the next genetic 

operations (i.e. crossover), 

3. parent selection, which is based on a binary 

tournament. Two individuals are randomly selected (with 

return) from the main population. The one with the lower 

(better) value of fitness is copied to the population of 

parents, 

4. reproduction (single-point crossover) is applied to the 

randomly selected pairs of parents and the offspring 

population is created, 

5. the succession population of offspring replaces the old 

main population, 

6. mutation, the negation of each gene using probability, 

7. the elite is restored into the main population (randomly 

selected individuals are replaced in order to maintain a 

constant population size). A random overwrite does not 

introduce any evolutionary pressure, 

8. the new population is evaluated and the fitness of an 

individual is calculated, 

9. stop criterion – GA stops and returns the solution that 

was found after a specified number of iterations. 
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The proposed genetic algorithm was used to find the 

global minima of each of the selected specification 

parameters. The GA algorithm was created with the 

following parameters: 

1. initial population as being uniformly random, 

2. selection operator as a binary tournament with 

repetition, 

3. crossover as a single-point, 

4. succession: complete, 

5. mutation as a uniform with a mutation probability for  

a single gene set to 0.01, 

6. elite saving as one or more individuals with the best 

fitness and a unique genotype, 

7. PS was set to 100 individuals, 

8. size of the parent and offspring populations is equal in 

size to the main population, 

9. stop criterion where the maximal number of 

generations (iterations) is equal 50. 

The main optimisation goal is to reduce the testing time. 

This can be done by reducing the number of measurement 

samples (Sample) and shortening the length of the vectors 

of the measurement samples (𝑆𝑢𝑜𝑢𝑡
). Each 𝑆𝑢𝑜𝑢𝑡

 is created by 

s selected indexes 𝑤 from the vector Sample. In order to 

shorten the chromosome, a seven-bit resolution of binary 

vector 𝐵 was selected. Then, every second index 𝑤 from the 

vector Sample could be selected, which is sufficient. 

Therefore, each 𝑤 is calculated as 

 2 1,w b    (8) 

where 𝑏 = 𝑔𝑟𝑎𝑦𝑑𝑒𝑐𝑜𝑑𝑒(𝐵) and 𝑏𝜖{0,1,2, … ,127} and 

𝑤𝜖{1,3, … ,255}. 

Each binary vector 𝐵 encodes a single index 𝑤. The 

chromosome length is calculated as 𝑆𝑢𝑜𝑢𝑡
∙ 𝐵. 

 
Fig. 5.  Chromosome coding indices of the samples using seven bits 

(genes). 

The progress of the genetic algorithm that was run is 

presented in (Fig. 6).  

 
Fig. 6.  Fitness progress of GA evolution. 

The average fitness of the population decreased, which is 

the desirable behaviour. The individuals that represented 

bad solutions, where high performance values ≡ low fitness, 

died during the evolution process. The individuals that 

represented good solutions, where low performance values ≡ 

high fitness had a greater survival probability, reproduced 

and propagated in the population. 

The generalization ability of the ANN overlap the GA 

elitism can be seen, e.g. in the Fig. 6, Fig. 15. Therefore, the 

GA progress was not significant. In such a case, the 

application of elitism in the GA algorithm is of a weaker 

importance. However, the ANN performance can even be 

different for exactly the same inputs (measurement samples) 

and the GA may work better for a different fitness function. 

IV. ARTIFICIAL NEURAL NETWORK 

In the presented paper, an artificial neural network (ANN) 

with the genetic algorithm was used to identify the selected 

VCO specification parameters frequency (𝑓𝑥(𝑢𝑖𝑛
𝑖 )), output 

power (𝑃𝑑𝐵𝑚
𝑖 ) and pulling (𝑃𝑢𝑙𝑙𝑖) for selected stimuli). The 

presented ANN is described as follows 

 { , , },ANN in l out  (9) 

where in represents the ANN inputs and out represents the 

ANN outputs. The l variable is described as 

 { 1,..., },al l N   (10) 

where 𝑙𝑎 describes the number of neurons in the a-th layer. 

The number of ANN inputs (in) depends on the number 

of (uout
i ) samples and is equal 𝑆𝑢𝑜𝑢𝑡

 and the number of ANN 

outputs (out) depends on the number of the specification 

parameters to be identified and is equal 𝐼𝑉𝐶𝑂 . 

For the following ANN, the number s of 𝑆𝑢𝑜𝑢𝑡
was set to 

20 and the number of 𝐼𝑉𝐶𝑂  was set to three. The presented 

artificial neural network has two hidden layers (𝑙1, 𝑙2) and 

the number of neurons in 𝑙1 and 𝑙2 is represented as: 

 1 ,
2

outuS
l   (11) 

 2 .
4

outuS
l   (12) 

A bipolar sigmoid transfer function (tansig) [26] was used 

in all of the hidden layers. The presented artificial neural 

network was trained using the Levenberg-Marquardt 

algorithm and the mean square error was used as  

a performance function [26]. 

A data set of all of the 𝑀𝑐 is represented with those 

selected by the GA Sample that contained: SAM = 8000 

vectors, the training set Train contained TR = 5600 vectors 

with the corresponding output set presented as Tout and the 

validation set (Valid) that contained the VAL = 2400 

vectors. 

In the presented research, the genetic algorithm is used to 

provide the 𝑆𝑢𝑜𝑢𝑡
 for the input of an ANN, which determines 

the values of 𝑓𝑥(𝑢𝑖𝑛
𝑖 ), 𝑃𝑑𝐵𝑚

𝑖  and 𝑃𝑢𝑙𝑙𝑖 . The diagram of the 

GA and ANN connection is presented in (Fig. 7). 

The evaluation of each individual took three steps: 

1. Chromosome decoding (proposed indexes of 20 

measurement samples of the VCO response). 

2. Learning stage of the artificial neural network (ANN) 

using Train. 

3. Verification stage using Valid Learning and the 
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validation sets are disjoint. 

 
Fig. 7.  Schematic of the optimisation and learning process. 

Vector 𝑆𝑢𝑜𝑢𝑡
, which was created with 𝑤 from the GA, 

permitted 𝑝1, 𝑝2  and 𝑝3 to be designated by ANN. The 

fitness function is calculated based on the identify 

parameters. The result of (𝐹𝑓) is sent back to GA. 

The fitness function (𝐹𝑓) of each individual on the basis of 

which the global minimum is calculated is as follows 

 31 24 2 ,
6 0.5 12

f

pp p
F       (13) 

where 𝑝1 is a performance value of 𝑓𝑥(𝑢𝑖𝑛
𝑖 ), 𝑝2 is  

a performance value of 𝑃𝑑𝐵𝑚
𝑖  and 𝑝3 is a performance value 

of 𝑃𝑢𝑙𝑙𝑖 . 

V. EXAMPLES 

The following section presents the results of the proposed 

method. All of the simulations were performed on  

a computer with the following parameters: Intel Core i5 

3.2 GHz with 8 GB RAM. 

In order to compare the results that were obtained from 

the use of the GA with ANN, all of the samples of the 

output signal were first given to the input of the neural 

network. 

All of the tests presented below were compared with each 

other in terms of the efficiency of identifying the selected 

specification parameters of the VCO, but also in terms of the 

artificial neural network learning time and the artificial 

neural network response time for a given 𝑆𝑢𝑜𝑢𝑡
. 

A. Case 1: All of the Samples of the Output Signal 

In the first case, all of the samples from the output (𝑆𝑢𝑜𝑢𝑡
) 

signal were given to the input of the ANN. This solution 

was characterised by the longest training time 310 s and 

40 ms response time but also had the highest efficiency of 

𝑝1, 𝑝2 and 𝑝3 (Table II). 

TABLE II. THE RESULTS OF ALL OF THE 𝑆𝑢𝑜𝑢𝑡
 THAT WERE 

OBTAINED FOR 𝑖𝑛 OF THE ANN. 

𝒑𝟏 [%] 𝒑𝟐 [%] 𝒑𝟑 [%] 

4.8 5 9.1 

𝑺𝒖𝒐𝒖𝒕
 

1…256 

 

The time required to get the last 𝑆𝑢𝑜𝑢𝑡
 (𝑇𝑆𝑢𝑜𝑢𝑡

) of the 

output signal was equal 5.67ns for 𝑢𝑖𝑛
1 , equal 2.67ns for 𝑢𝑖𝑛

2 , 

equal 1.96ns for  𝑢𝑖𝑛
3  and equal 1.73ns for 𝑢𝑖𝑛

4 . The lowest 

error value was obtained after 33 epochs (Fig. 8). 

Figure 9(a) presents a change in the direction of the mean 

square error and Fig. 9(b) a change in the mean square error 

in the function of the epoch number. As has been shown 

below (Fig. 8), the highest efficiency of identification was 

obtained after 33 epochs. The gradient of the mean square 

error value at 33 epoch was 0.16 and the mean square error 

reached a value of 0.00001. 

 
Fig. 8.  Dependence of the Mean-Square Error (MSE) as a function of 

epoch for case 1. 

 
Fig. 9.  Direction of the error change (a), and the change of the error value 

(b) in the case function for case 1. 

As can be seen in the Fig. 10, the largest differences in 

mapping appear for the 𝑷𝒅𝑩𝒎 parameter. The largest 

difference in identification occurred for the analyses 

contained in the 𝒀𝟔
𝒎𝒊𝒅 deviation of the W and L parameters. 

The most accurate mapping in all of the deviations of W and 

L occurred for the 𝑷𝒖𝒍𝒍𝒊 parameter. The best mapping of all 

of the specification parameters was obtained for the 

deviation of the transistor's technological parameters by 

𝒀𝟐
𝒎𝒊𝒅. 

 
Fig. 10.  Mean error value for the analysed values of the design 

specification as a function of the deviation of the photolithographic mask. 

Blue represents 𝒑𝟏, yellow represents 𝒑𝟐 and green represents 𝒑𝟑. 

TABLE III. EXEMPLARY VALUES OF THE P1 SPECIFICATION: 
EXPECTED AND CALCULATED BY THE ANN. 

 
Expected Output 

[GHz] 
ANN Output [GHz] 

𝒖𝒊𝒏
𝟏  1.381 1.331 

𝒖𝒊𝒏
𝟐  0.387 0.370 

𝒖𝒊𝒏
𝟑  2.583 2.465 

𝒖𝒊𝒏
𝟒  3.009 2.876 

 

Table III presents the exemplary the values of p1 that 
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were calculated by the ANN compared with the expected 

values. For this example, the most accurate mapping 

occurred for 𝑢𝑖𝑛
2 , with a 0.017GHz error, the worst mapping 

occurred for 𝑢𝑖𝑛
4 , with a 0.132GHz error. 

B. Case 2: Samples Proposed in the Process of Minimising 

the Fitness Function (𝐹𝑓) Using the Genetic Algorithm 

In the second case, 𝑆𝑢𝑜𝑢𝑡
 from the output signal that was 

proposed by the GA were given to the input of ANN. This 

solution was characterized by 17 s of training time and 

14 ms of response time. The efficiency of 𝑝1, 𝑝2 and 𝑝3 was 

about 0.5 % less than in case 1 (Table IV). 

TABLE IV. THE RESULTS THAT WERE OBTAINED FOR THE  SUOUT
 

THAT WAS PROPOSED BY THE GA FOR THE 𝑖𝑛 OF ANN. 

𝒑𝟏 [%] 𝒑𝟐 [%] 𝒑𝟑 [%] 

5.13 5.76 9.91 

𝑺𝒖𝒐𝒖𝒕
 

1 5 7 15 17 27 39 53 63 65 93 111 117 155 163 177 201 211 217 231 

 

The time required to get the last 𝑆𝑢𝑜𝑢𝑡
 (𝑇𝑆𝑢𝑜𝑢𝑡

) of the 

output signal was equal to 5.36 ns for 𝑢𝑖𝑛
1 , was equal 2.42 ns 

for 𝑢𝑖𝑛
2 , was equal to 1.77 ns for 𝑢𝑖𝑛

3  and was equal to 

1.57 ns for 𝑢𝑖𝑛
4 . In this case, the lowest MSE value was 

reached after 106 epochs (Fig. 11). 

 
Fig. 11.  Dependence of the Mean Square Error (MSE) in the function of 

Epoch for case 2. 

The changing the direction of the mean square error (a) 

and changing mean square error in the function of the epoch 

number (b) are presented in the Fig. 12.  

 
Fig. 12.  Direction of error change (a) and change of the error value (b) in 

the case function for case 2. 

Figure 13 presents the mean mapping errors of the project 

specification parameter for the Suout
 that was proposed by 

the GA. As can be seen, the largest differences in the 

mapping for all of the Ymid occur for PdBm. 

 
Fig. 13.  Mean error value for the analysed values of the design 

specification as a function of the photolithographic mask deviation. Blue 

represents 𝒑𝟏, yellow represents 𝒑𝟐 and green represents 𝒑𝟑. 

As was shown at Fig. 11, the highest efficiency of 

identification was obtained after 106 epochs. The gradient of 

the mean square error value at 106 epochs was 0.13 and the 

mean square error reached a value of 0.00001. 

The most accurate mapping for all of the deviations W 

and L occurred for parameter 𝑓𝑥(𝑢𝑖𝑛
𝑖 ). The best mapping of 

all of the specification parameters was obtained by 𝒀𝟐
𝒎𝒊𝒅 for 

the deviation of the transistor's technological parameters. 

TABLE V. EXEMPLARY VALUES OF THE P1 SPECIFICATION: 
EXPECTED AND CALCULATED BY THE ANN. 

 
Expected Output 

[GHz] 
ANN Output [GHz] 

𝒖𝒊𝒏
𝟏  1.381 1.202 

𝒖𝒊𝒏
𝟐  0.387 0.373 

𝒖𝒊𝒏
𝟑  2.583 2.434 

𝒖𝒊𝒏
𝟒  3.009 2.818 

 

Table V presents the exemplary values of p1 that were 

calculated by the ANN compared with the desired values. 

For this example, the most accurate mapping occurred for 

𝑢𝑖𝑛
2 , with a 0.014 GHz error, the worst mapping occurred for 

𝑢𝑖𝑛
4 , with a 0.191 GHz error. 

C. Case 3: Random 𝑆𝑢𝑜𝑢𝑡
 Selection 

In case 3, 𝑆𝑢𝑜𝑢𝑡
 equal to 20 random samples of 𝑢𝑜𝑢𝑡 were 

given to the input of the ANN. This solution was 

characterised by 23 s of training time and 15 ms of response 

time. The efficiency of 𝑝1 and 𝑝3 are presented in Table VI. 

TABLE VI. THE RESULTS OBTAINED FOR SUOUT
 EQUAL TO 20 

RANDOM SAMPLES OF UOUT FOR THE IN OF THE ANN. 

𝒑𝟏 [%] 𝒑𝟐 [%] 𝒑𝟑 [%] 

6.87 6.1 0.12 

𝑺𝒖𝒐𝒖𝒕
 

28 49 57 77 79 81 120 125 166 174 185 186 187 207 225 226 227 230 

231 239 

 

The time required to get the last 𝑆𝑢𝑜𝑢𝑡
 (𝑇𝑆𝑢𝑜𝑢𝑡

) of the 

output signal was equal to 5.59 ns for 𝑢𝑖𝑛
1 , was equal to 

2.45 ns for 𝑢𝑖𝑛
2 , was equal to 1.8 ns for 𝑢𝑖𝑛

3  and was equal to 

1.6 ns for 𝑢𝑖𝑛
4 . In this case, the lowest MSE value was 

reached after 346 epochs (Fig. 14). 

As can be seen in Fig. 13, the highest efficiency of 

identification was obtained after 346 epochs. 

The gradient of the mean square error value at epoch 346 

was 0.23 and the mean square error reached a value of 

0.00001 (Fig. 15). 
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Fig. 14.  Dependence of the Mean Square Error (MSE) in the function of 

Epoch for case 3. 

 
Fig. 15.  Direction of the error change (a) and change in the error value (b) 

in the case function for case 3. 

TABLE VII. EXEMPLARY VALUES OF THE P2 SPECIFICATION: 

EXPECTED AND CALCULATED BY THE ANN. 

 
Expected Output 

[dBm] 
ANN Output [dBm] 

𝒖𝒊𝒏
𝟏  1.400 1.387 

𝒖𝒊𝒏
𝟐  1.447 1.558 

𝒖𝒊𝒏
𝟑  1.463 1.535 

𝒖𝒊𝒏
𝟒  1.487 1.586 

 

Table VII presents the exemplary values of p2 as 

calculated by the ANN compared with the desired values. 

For this example, the most accurate mapping occurred for 

𝑢𝑖𝑛
1 , with a 0.013 dBm error, the worst mapping occurred for 

𝑢𝑖𝑛
2 , with a 0.111 dBm error. 

D. Case 4: Samples Proposed in the Process of Minimizing 

the Modified Fitness Function (𝐹𝑓) Using the Genetic 

Algorithm 

In this case, the fitness function (𝐹𝑓) was modified. The 

aim of the modification of the fitness function was to add an 

additional parameter that would allow the promotion of 

those solutions whose index of the last Suout
 was the 

earliest. The new 𝐹𝑓is presented below 

 31 2 0.04
4 2 .

6 0.5 12
f

pp p
F

Li
       (14) 

where 𝐿𝑖 is the last index of the 𝑆𝑢𝑜𝑢𝑡
. 

In case 4, the 𝑆𝑢𝑜𝑢𝑡
 from the output signal that was 

proposed by the GA with the modified 𝐹𝑓 were given to the 

input of the ANN. This solution was characterised by 10 s of 

training time and 13.4 ms of response time. The efficiency 

of 𝑝1, 𝑝2 and 𝑝3 about 0.5 % less than in case 1 

(Table VIII). 

The time required to get the last 𝑆𝑢𝑜𝑢𝑡
 (𝑇𝑆𝑢𝑜𝑢𝑡

) of the 

output signal was equal to 5.2 ns for 𝑢𝑖𝑛
1 , was equal to 2.2 ns 

for 𝑢𝑖𝑛
2 , was equal 1.6 ns for 𝑢𝑖𝑛

3  and was equal to 1.42 ns for 

𝑢𝑖𝑛
4 . 

In this case, the lowest MSE value was reached after 157 

epochs (Fig. 17). 

As can be seen in Fig. 16, the highest efficiency of 

identification was obtained after 157 epochs. The gradient of 

the mean square error value at epoch 157 was 0.065 and the 

mean square error reached a value of 0.000001. 

 
Fig. 16.  Fitness progress of the GA evolution after modified 𝐹𝑓. 

TABLE VIII. THE RESULTS OBTAINED FOR THE SUOUT
 THAT WAS 

PROPOSED BY THE GA WITH THE NEW FF FOR IN OF THE ANN. 

𝒑𝟏 [%] 𝒑𝟐 [%] 𝒑𝟑 [%] 

5.6 2.9 10.5 

𝑺𝒖𝒐𝒖𝒕
 

1 3 13 39 43 53 61 67 73 75 79 83 85 117 119 131 155 159 210 213 

 

Figure 18 shows the mean deviations from the 

identification of the analysed specification parameters of the 

CUT design specification. The maximum deviation was 

obtained for 𝑌𝟔
𝑚𝑖𝑑  for 𝑷𝒅𝑩𝒎. 

 
Fig. 17.  Dependence of the Mean Square Error (MSE) in the function of 

Epoch for case 4. 

 
Fig. 18.  Mean error value for the analysed values of the design 

specification as a function of the photolithographic mask deviation. Blue 

represents 𝒑𝟏, yellow represents 𝒑𝟐 and green represents 𝒑𝟑. 

Table IX presents the exemplary values of p3 that were 
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calculated by the ANN compared with the desired values. 

For this example, the most accurate mapping occurred for 

𝑢𝑖𝑛
4 , with a 0.11 dBr error, the worst mapping occurred for 

𝑢𝑖𝑛
1  with a 8.01 dBr error. 

TABLE IX. EXEMPLARY VALUES OF THE P3 SPECIFICATION: 

EXPECTED AND CALCULATED BY THE ANN. 

 
Expected Output 

[dBr] 
ANN Output [dBr] 

𝒖𝒊𝒏
𝟏  -96.9 -88.89 

𝒖𝒊𝒏
𝟐  -110.5 -108.55 

𝒖𝒊𝒏
𝟑  -93.9 -94.17 

𝒖𝒊𝒏
𝟒  -107.9 -108.01 

VI. CONCLUSIONS 

The presented paper discusses the problem of reducing 

the identification time of the selected specification 

parameters of a Voltage-Controlled Oscillator in its ring 

oscillator structure. The use of the genetic algorithm 

together with an artificial neural network allowed selected 

specification parameters of the CUT to be identified based 

on the proposed samples that were obtained from the CUT 

response signal. The proposed method permitted the test 

time to be significantly reduced (see Sec. V), the total time 

(𝑇𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = 𝑇𝑟𝑒𝑠𝑝 + 𝑇𝑆𝑢𝑜𝑢𝑡
) required to obtain the 𝑝1, 𝑝2 and 

𝑝3 values for the analysed system response for 𝑆𝑢𝑜𝑢𝑡
= 256 

was equal ca. 40 ms, where for the 𝑆𝑢𝑜𝑢𝑡
 that was proposed 

by the GA (case 4), it was equal ca. 13.4 ms. Moreover, in 

the proposed method, the mapping errors are slightly higher 

than was in case 1, ∆𝑝1= 0.0077, ∆𝑝2= 0.024 and 

∆𝑝3= 0.0134. The method, which is based on the application 

of a GA with the ANN, also has one more significant 

advantage, it allows the time for the stimulation of the 

circuit to be reduced as it requires the acquisition of fewer 

samples than for the full system response being considered. 

The proposed method is simple and fast to implement, 

because it does not require complicated calculations. It 

should also be mentioned that the proposed method is 

sensitive because the fitness function can radically change 

the efficiency of the entire process. Due to its simplicity, it 

can be used to identify other or more parameters of the CUT 

design specification. 
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