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Abstract—Batteries are used to store electrical energy as
chemical energy. They have a wide using area from portable
equipment to electric vehicles. It is important to know the state
of charge of a battery to use it efficiently. In this study, a
graphical user interface is developed wusing a visual
programming language to monitor the electrical situations of
batteries. Cascade neural network, which is one of the most
chosen artificial neural networks, is used to determine the type
and state of charge of batteries. The software is able to identify
type and state of charge of batteries online. Lead acid, Lithium
Ion, Lithium polymer, Nickel Cadmium, Nickel Metal Hydride
rechargeable batteries are used in experiments. The
experimental results indicate that accurate estimation results
can be obtained by the proposed method.

Index  Terms—Artificial neural network; Battery
monitoring software; Rechargeable batteries; State of charge
determination.

I. INTRODUCTION

Although batteries seem to be simple, they are nonlinear
and complex systems because of their physical and chemical
structure. Depending on the development of technology the
usage area of batteries is increasing. It is important to
estimate the state of charge (SOC) of the battery accurately
in battery management systems to use the battery efficiently.
Mathematical, electrical, electrochemical methods are used
to estimate to the SoC of the battery; Mathematical and
electrochemical methods include complex equations, and
these equations must be redesigned for other types of
batteries. The electrical method is easy to calculate, and the
user can develop a battery model by looking at a datasheet
of the battery or by measuring the battery parameters.
Satisfactory battery models can be achieved using datasets
generated by electrical methods.

Various SoC estimation methods are proposed in the
literature that uses experimental dataset. The dataset used in
electrical battery models can be obtained by monitoring
battery voltage, current, electrochemical impedance
spectroscopy, etc. and parameters. Data collecting is
possible by measuring parameters while charging the
battery, discharging the battery or in a steady state. Most
known methods are ANN, fuzzy logic, Kalman filter and
radial basis function neural network (RBFNN). The artificial
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neural network (ANN) method is easy to build because it
doesn’t have complex mathematical equations and works
with high accuracy [1]-[7]. Developing fuzzy rules and
membership functions and fuzzy outputs are difficult. It
requires a lot of data and expert knowledge to develop a
fuzzy system [8]-[10]. The Kalman filter is computationally
complex and requires conditional independence of the
measurement errors [11]-[15]. RBFNN is easy to build, but
it is slow when the dataset is large [16]. In [17] a model is
developed to estimate the usable capacity of lead acid
batteries used in electric vehicles. High accuracy is obtained
using ANN. In [18] three layer feed forward neural network
is used to estimate SoC of NiMH batteries. SoC is estimated
under 5 % error rate with this method. In [2] back
propagation neural network is applied successfully to
estimate SoC of NiMH batteries used in electric vehicles.
The SoC of the battery can be estimated while charging,
discharging the battery and the steady state after charging.
The open circuit voltage of the battery is applied as an input
parameter of a neural network. The simulation results
suggest that this method is suitable for hybrid electric
vehicles. In [19] a three-layer back propagation neural
network is used to estimate the SoC of a high powered
NiMH battery. Five input parameters are applied to the
neural network; these are battery discharge current, total
ampere-hour, open circuit voltage of the battery, time-
dependent average open circuit voltage and twice of time
dependent average open circuit voltage. The datasets are
obtained while discharging the battery from full charge to
full discharge. The Levenberg Marquart algorithm is used in
training. Simulation and measurement results are compared
to test the performance of the artificial neural network. After
ten minutes the SoC of the battery can be estimated with
fewer than 5 % error rate.

Knowing the percentage of energy left in a battery gives
the user information on how much time a battery will
continue to operate without recharging. It is important to
charge and discharge the battery in the correct form to
prevent fires and explosions; furthermore, proper use of the
battery provides more efficiency and longer life for users.
On the other side of the spectrum, improper use will reduce
the lifetime of the battery, and the defective battery creates
chemical pollution in nature. In this study, an experimental
setup is developed to monitor the batteries' electrical
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parameters. Special software is designed to save the
measured data systematically and determine the type and
SoC of rechargeable batteries online. The software is also
able to stop an experiment while the battery is out of
voltage, current or temperature boundaries. Cascade
Correlation Neural Network (CCNN) is used to determine
the type and SoC of batteries while discharging the battery
at a constant load. The terminal voltage of the battery,
current, power data is used to generate the dataset. Lead acid
(Pb), Lithium Ion (Li-Ion), Lithium polymer (LiPo), Nickel
Cadmium (NiCd), Nickel Metal Hydride (NiMH)
rechargeable batteries are used in the experiments. The
Watt-hour values of experimental batteries are chosen which
are very similar; this is to successfully determine the type of
batteries that have nearly the same properties. The
difference between this study and other academic studies is
the idea of determining the type of battery and the charging,
discharging form. The experimental setup and database
structure can be an example for people who are working on
monitoring the electrical behaviours of batteries.

The goal of this study is to determine type and SoC of
rechargeable batteries via CCNN with high accuracy. There
are many applications to determine the SoC of a battery but
estimating the type of batteries is a new study. Estimating of
the battery via CCNN is another innovation of the study. Pb,
Li-Ton, Li-Po, NiCd and NiMH rechargeable batteries are
used in the experiments.

II. RECHARGEABLE BATTERIES

Batteries are a part of our everyday lives at the moment,
all of the wireless equipment that operates using electrical
energy take this power from batteries. In the modern day,
portability is important, which in turn has increased the
importance of batteries. The usage rate of batteries in a
country is directly proportional to the usage of technology.
There are many different rechargeable battery types, in this
study, Pb, Li-lon, Li-Po, NiCd, NiMH rechargeable batteries
have been used.

Pb batteries are suitable for applications where weight
and dimensions of the battery are not necessary. Therefore
they are cheap. Mostly these batteries are used in vehicles,
medical devices, and motorized chairs for disabled people
and emergency lighting spotlights and uninterruptible power
supplies. Li-lon batteries are more stable and lightweight;
the organic electrolyte provides the practical cell voltage to
be above 4 V. They have high energy densities, and they
provide easy applications without the need for connecting
several cells in a series [20]-[22]. They are used in laptops,
mobile phones, music players and much more digital
portable devices. LiPo batteries are rechargeable batteries
that continue on from the Li-lon battery technology. LiPo
batteries have high energy densities according to their
volume and weights because of this; they have a large usage
area. They are used in electrical vehicles, laptops, and many
electronic applications. The most important property of
NiCd batteries is that they hold the capacity inside it without
losing it, in essence, it has the same capacity two weeks
after the last charging time. NiCd batteries are used in single
or grouped form in drills, measuring instruments, etc. The
fast charge of these types of batteries decreases their using
life. With standard charging, NiCd batteries have an average
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life of 5 years. NiMH batteries have more energy density
than NiCd batteries, but their rechargeable number is lower.
They are used in laptops, mobile phones, cameras, toys, etc.
There is some memory effect in NiIMH batteries.

III. MATERIAL AND METHOD

A. Experimental Setup

In electrical battery test setups the experimental setup is
shaped according to the measuring parameters. If the
battery’s internal resistance will be measured, the internal
resistance meter is used, if the current will be measured, the
current sensor will be used, if voltage is measured, the
voltage sensor must be used. A charger must be used to
charge the battery, and a load must be used to discharge the
battery. If the temperature parameter is necessary
temperature sensors must be used in the system. The
collected data can be processed by a computer or embedded
systems. Successful battery models can be obtained with
collected data from electrical measurements. In this study,
open circuit voltage, current, power, load, ambient
temperature and battery temperature are all measured during
charging and discharging of the batteries.

The measurement setup of this study is given in Fig. 1. To
charge the battery, Imax B8+ charge equipment and to
discharge battery Array 3711A programmable DC load
equipment is used. A circuit is designed to choose the
charger or load from software. A LTS25-NP current sensor,
a LV25P voltage sensor and a LM35 temperature sensor are
also located on this circuit. Three batteries can be connected
to this circuit and the experiment battery can be chosen from
the software. There are also contacts to control buttons of
the charger on this circuit. The contacts on this circuit are
controlled by digital [/O on Advantech USB-4716 data
acquisition (DAQ) card. The output of K-type thermocouple
is connected to digital I/O of DAQ card through the circuit.
The programmable DC load is connected to the PC via
Array 3312 Seri-USB port converter. Square codes are glued
to all batteries that define their identity. Perkon Spider
SP400 square code reader is used to read codes. This
equipment is connected to the computer via a USB port. A
web camera is used to watch the experimental setup.

Serito USB port | Square
P Web-Cam [—» |+ q
converter Kullania Arayiizii code
7'y
4 <B ‘ reader
Temperature Computer
transmitter
h 4 ;l
]
! AGND -E
Programmable DC DO BHx"
load D1 Current Voltage ||—t8H% s
Sensor sensor b =
M D1 B3
Battery charger e S
attery cl —| (SHz: 3
7y H B3§? 78 5 Temperatu E: oS =
ol.,.22 = - S |®11 07 ©
K type t BZ«é% £ g 3 re sensor g
584
termocupl 81 ° Selection and sensor circuit o
b |_epereeey)
Power Battery
supply

Fig. 1. Measurement setup.

While discharging the battery, the current, voltage, load
and power parameters are taken from the load equipment,
while charging the battery, current and voltage parameters
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are measured with sensors and transferred to a computer via
DAQ card. While charging, the battery load and power
parameters are calculated using voltage and current data.

Ttec 6 V 1.3 Ah Pb battery, Panasonic CGR18650CG
3.7V 2.2 Ah Li-lon battery, Power Xtra PX864055 3.7 V
2 Ah Li-Po battery, AA Portable Portable Corp. CD-
SC2200P 3.6 V 2.2 Ah NiCd battery and Gold Peak Group
GP211AFH 3.6 V 2.1 Ah NiMH battery are used in the
experiments. The technical information of these batteries is
given in Table I.

TABLE 1. THE TECHNICAL PROPERTIES OF BATTERIES.

Property Pb ILO‘n II;:) NiCd | NIMH
Nominal voltage (V) 6.00| 3.60 [ 3.70 | 3.60 | 3.60
Nominal capacity (mAh) 1300 | 2200 | 2000 | 2200 | 2100
Nominal capacity max (mAh) | 3900 | 4400 | 6000 | 22000 | 6300
Max operating temperature (°C) | 40 60 60 60 50
Min operating temperature (°C) | -15 -10 -20 -20 -20
Standard charge current (mA) | 300 | 750 | 200 | 200 210
Standard charge time (h) 10 4 16 16 16
Fast charge current (mA) 520 | 1500 | 1000 | 2000 | 2100
Fast charge time (h) 50| 2.0 | 3.0 1.2 1.6
Deep charge voltage (V) 4.8 | 3.0 | 271 3.0 2.7
Weight (gr) 280 44 36 150 96
Cycle life 2000 | 300 | 300 | 500 300
C rate 2 2 3 10 3
Overcharge voltage (V) 7.4 | 42 | 40 | 4.2 4.2
Wh (Vx Ah) 7.8 7.9 7.4 79 7.6
Wh % differer\l)s}e1 from average 104 | 233 | 415 | 233 155

The percentage of maximum difference with average Wh
value is 4,15 %. The batteries capacities are very similar,
and this property makes it difficult to determine the battery
type. Although the capacities of these chosen batteries are
similar, their charging types and charging currents are
different.

B. Cascade Correlation Neural Network

The CCNN is developed by Fahlman in 1990. CCNN is a
supervised learning algorithm. CCNN begins with a
minimal network, then automatically trains and adds new
hidden units one by one, creating a multi-layer structure.
The CCNN architecture has several advantages over existing
algorithms: it learns very quickly, the network determines its
own size and topology, it retains the structures it has built
even if the training set changes, and it requires no back-
propagation of error signals through the connections of the
network [23].

An untrained cascade correlation network is a blank slate;
it has no hidden units. A cascade correlation network’s
output weights are trained until either the solution is found,
or progress stagnates. If a single layered network will
suffice, training is complete. The weights of hidden neurons
are static; once they are initially trained, they are not
touched again. The features they identify are permanently
cast into the memory of the network. Preserving the
orientation of hidden neurons allows cascade correlation to
accumulate experience after its initial training session. Few
neural network architectures allow this. If a back-
propagation network is retrained, it ‘forgets’ it's initial
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training [24].
The CCNN architecture is shown in Fig. 2.
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Fig. 2. The Cascade architecture.

Initial state and after adding two hidden units. The
vertical lines sum all incoming activation. Box connections
are frozen, X connections are repeatedly trained. CCNN
combines two ideas: The first is the cascade architecture, in
which hidden units are added only one at a time and do not
change after they have been added. The second is the
learning algorithm, which creates and installs the new
hidden units. For each new hidden unit, the algorithm tries
to maximize the magnitude of the correlation between the
new unit's output and the residual error signal of the net.

Iv. SPECIAL SOFTWARE TO DETERMINE TYPE AND SOC
OF BATTERIES

A graphical user interface is developed in Visual Studio
2010 software in C# programming language to monitor
conditions of batteries, saving measurement data to a
database to determine the type and SoC of batteries. Users
can add a new battery to the database. Users select the test
battery, duration of the experiment, sample time, and choose
to charge or to discharge the battery. When all the
adjustments are made an experiment code is generated
automatically. A table is created called this code in the
database, and the measurement data is saved to this table.
The measurement data curves can be seen online. The
measurements saved to the database before can be listed.

The battery can be inserted into charge-discharge loop
safely because during the experiments the battery is
controlled if it achieved to critical limit values of voltage,
current, and temperature. If one of these value is achieved
the software close the system automatically and generate
alarms. The rest periods between charging and discharging
are adjustable. The user can generate the dataset and
normalize the data to recognize the battery for CCNN and
save it in Excel format. The input variables of CCNN to
recognize the battery are voltage, current, power, voltage
decreasing angle and current decreasing angle. To determine
the voltage and current decreasing angles the battery must
be discharged for a determined time. 400 second is selected
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for this application. The dataset to train CCNN to determine
SoC of the battery can be generated and normalized. The
SoC value is determined according to the measurement data.
The input variables of this CCNN are voltage, current,
power and time:

t
TA=[Ixt, (1)
0
n . + o,
T4 = Z%X(QH —t), )
i=1
& Zivl T &i
14 = ZTX(%H —t), 3)
i=1
soc=-2¢ 100, (4)
\Max
soc=TA=14 100, (5)

The SoC of the battery can be determined from the
current curve of the battery while discharging the battery.
From full charge to full discharge the area under the current
curve represents 100 % SOC. In (1) the equation of total
area (TA) under from full charge to full discharge of the
battery curve is given. In this equation, / represents current
value and ¢ represents time. In the software, the integral can
be determined by the trapezoid method; this method is
applied as given in (2) where g; is current value of ith time,
g+1 is the current value of i+1% time; ¢ is i time value, #+
is i+1™ time value; n is a number of measurements. For a m™
measurement data, the area (/4) under up to this time can be
determined according to (3), /4 represents the used capacity
of the battery. The SoC of the battery can be determined by
dividing the remaining capacity of the battery to full
capacity of the battery as given in (4). In this equation, QC
is the remaining capacity of the battery and QMax is the
maximum capacity of the battery. So the rate of remaining
capacity of the battery can be derived from (5). In this
equation (74-14) gives the remaining capacity of the battery
and T4 gives the maximum capacity of the battery [25].

V. EXPERIMENTAL STUDY

To obtain the dataset for usage to determine the type and
SoC of batteries the batteries are full charged firstly then
they are fully discharged under constant loads. 3 Q, 5 Q, and
10 Q constant load values are used. All experiments are
done in an ambient temperature and with healthy batteries.
This experimental data is used as training data for CCNN to
determine the type and SoC of batteries.

VI. DETERMINING TYPE AND SOC OF BATTERIES VIA
CCNN

There are many studies on estimating the SoC of a battery
but estimating the type of battery is a new study. In future,
the usage of electrical cars will increase, and the importance
of batteries will increase accordingly. The users will not
wait at charge stations. Instead they will change the battery
packs in these situations. So a software that determines the
type and SoC of a battery and gives the information of how
to charge and the usage of this battery pack will be very
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useful. From this idea, we initially tried to determine the
type of battery in Matlab. There is a battery block in
Simulink and it supports many types of rechargeable
batteries. By using the full charge to full discharge values of
voltage and current and using the CCNN method we
succeeded in determining the type of battery. Then we
studied this method in a real application.

The architecture of the CCNN used to determine the type
of battery is given in Fig. 3. There are five inputs, one
hidden layer and five outputs in this architecture. The input
values are current, voltage, power, Vy and i. V5 is the angle
of the voltage drop and ip is the angle of the current drop
while discharging the battery. These values are determined
by calculating the difference of values over 400 seconds.
This time value is determined by trying and considered as a
time unit. Ay is the difference of voltage value, and A is the
difference of current value after 400 seconds. i is arctan(A;)
and ¥y is arctan(Ay). The input values of CCNN is
normalized between 0 and 1 dividing input value by the
absolute value of the maximum value of the input vector. In
this equation x’ is the normalized value, x is the value to be
normalized and [x| is the maximum value of input vector.
The NN has five outputs and gives the result between 0 and
1 for each neuron. The maximum of these values represents
the type of the battery.
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Fig. 3. The structure of CCNN used to determine the type of battery.
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The architecture of CCNN to determine the SoC of the
battery is given in Fig. 4.
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Fig. 4. The structure of CCNN used to determine the SoC of battery.
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There are four inputs, one hidden layer and one output in
this architecture. The input values are current, voltage,
power and time (t). The output of NN is between 0 and 1. 0
represents the fully discharged battery and 1 represents the
fully charged battery. The t value is calculated from (6). It is
calculated from the change of voltage value. For each
architecture, the neuron number of the hidden layer is
determined by trying. The number that gives the best result
is chosen

(6)

B {old voltage value = new voltage value , t +1,

old voltage value # new voltage value, 1.

Matlab Neural Network Toolbox is used to train neural
networks. A Matlab function block is written to apply input
variables to CCNN. The outputs are compared with targets
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and success rate is calculated according to (7). SR is success
rate, REN is right estimation number, and TSN is total
sample number in this equation. A similar model is used to
calculate the success rate of type of battery determination

REN 4 00.

TSN

SR @)

The determination of the type of batteries results are
shown in Table II and estimation of SoC of the batteries
results are given in Table III. 20 % of data is used as test
data. The estimation tolerance is £1 %. For each table, it can
be seen that the best results are obtained from 3 Q constant
load experiments.

TABLE II. DETERMINING TYPE OF THE BATTERIES.

Constant load value (2) 3Q 5Q 10 Q
Slel=|E Slol=|E Slel=|E
BateryType  E[FZRZEZEREEEZSE
a7 |z a2 |7 a2 |7
Success rate of training |9 | [« |~ |+ S o & |5 |= |2 [0 [0 |5 [
data(%) — || [N [Z [N |00 [0 | |ON [N |ON (00 |0
Success rate of test data |9 |o\ | |~ |+ Q| v [0 | = S |0 [e0 [en [
Average success rate of
training data (%) 96,11 87,584 91,552
Average success rate of
test data (%) 96,016 86,969 91,47

TABLE III. DETERMINING SOC OF THE BATTERIES.

Constant load value 30 50 00
()]
S|lel=|= Slel= |z Slel= |z
Battery Type gﬁ?jgggfﬁgggfggg
S|=|Z|Z |- |Z|Z |- |Z|Z
Success rate of wliolelololaloele]o ]l |o 2o =
(=R ) f) oo O (=]
training data (%) [ [~ [= == ||~ |=|=|Z|®|®|= ||
Success rate of test ololo|o olo|o =)
vl S S S E S E R R
Average success rate
of training data (%) 98,88 98,18 96,506
Average success rate
of test data (%) 99,03 98,628 96,28

After training networks in Matlab environment, the
weight and bias values of these networks are used in
software. A function is written to find the type of battery
and a function is written to find the SoC of the battery.
There are three CCNN to determine the type of battery.
When the software is started according to constant load
value the CCNN that will be used to determine the type of
battery is found. 400 seconds later software can determine
the type of battery. Then it determines the SoC of the
battery. There are fifteen CCNN to determine the SoC of the
battery. This CCNN is determined according to constant
load value and type of battery. The software gives results for
online measurements. The window of online results is
presented in Fig. 5.
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Fig. 5. Analysis of battery.
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VII. CONCLUSIONS

Type and state of charge of rechargeable batteries are
estimated in this study via CCNN. The maximum average
success rate is 96,016 % for estimating the type of battery
and Pb batteries can be determined with 100 % success
during constant 3 Q, 5 Q and 10 Q discharging conditions
The maximum average success rate is 99,03 % for
estimating the SoC of the battery.

In this study, healthy batteries are used in the
experiments. This study can be extended by taking into
account the state of health of the batteries. In the estimation,
only voltage, current, load and power parameters are used
while discharging the battery but the battery temperature
and ambient temperature are also measured and saved to a
database while charging and discharging the battery. This
data can be used in future studies. The experimental setup
and software can be used for another type of batteries too.
The software is flexible and can be developed. The dataset
obtained from the experiments is suitable to use with other
artificial intelligence techniques to determine the type and
SoC of a battery. This software can be used in battery
maintenance services, battery tests for battery manufacturers
and for determining undefined batteries efficiently.
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