
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 6, 2017

1Abstract—In this paper a parallel image processing and
frame rate stabilization approach is proposed. This approach
works on a regular PC with a multi-core CPU. It is
implemented under .NET Framework and tested on Microsoft
Windows 7 operating system, performing several experiments.
It is also applied to a face recognition application to increase its
image processing performance successfully. Results show that,
handled workload when 4 physical cores are used is
approximately 5.25 times the workload handled with one core.
It is also shown that the approach successfully distributes the
workload on CPU cores and produces output at a stable frame
rate under both steady and unsteady workloads. This approach
can be used for various signal processing or multimedia
applications to parallelize their tasks to increase the
performance on multi-core CPUs.

Index Terms—Multicore processing; image processing;
software performance.

I. INTRODUCTION

High demand for multimedia content has increased
enormously for the past decade with the excessive use of
social media. However, real-time image and/or video
processing are computationally intensive. In order to address
this challenge, graphics processing units (GPUs), which are
processors, specialized for processing graphics, and
technologies like NVIDIA's Compute Unified Device
Architecture (CUDA) have become popular among image
processing community. GPUs are specialized for graphics
rendering, but their processing capabilities have also been
used for non-graphics applications. GPUs have cores that
can process parallel workloads. There are many studies on
methods to accelerate or implement various algorithms in
many fields [1]–[7], especially in image processing [8]–[12],
mostly using GPUs. Most of the existing approaches have
focused on parallelizing a specific algorithm by partitioning
it into parallelizable steps [13]–[16]. For instance, images
have been partitioned into blocks and filters have been
applied on these blocks with some more operations, to make

Manuscript received 2 February, 2017; accepted 22 July, 2017.

the filtering processes parallelizable in [16]. There are other
approaches that allow processing images in parallel using
process pipelines. In [17], a framework that consists of a
data simplification and a parallel pipeline processing method
has been proposed.

In this paper, we focus on order dependence and frame
rate stabilization for parallel image processing on multi-core
CPUs. The rest of this paper is structured as follows: First,
order dependence of images and frame rate problems are
explained. Then the proposed parallelization approach is
presented. In the following sections the implementation,
experiments and results are discussed. Finally, the paper is
concluded in Section V.

A. Order Dependence and Unstable Frame Rates
A multi-core CPU is capable of executing independent

processes on its cores. Processes that have to run in an order
sequentially cannot directly be executed in parallel, while
independent processes can be executed in parallel on the
CPU cores. However, managing the order dependence of the
output streams might be a challenging problem, even though
input processes are independent and run in parallel. In video
processing, for instance, frame order is important and
processed frames should be presented in an order. Therefore,
kth frame has to wait for (k-1)th frame to be ready. In parallel
processing on independent CPU cores, neither the
information about frame numbers and the cores processing
these frames nor the time periods of execution times are
available. Therefore, processing N images in parallel will be
equal to the longest time spent for each image on each core.
This situation is shown in Fig. 1 for two processes and two
cores. In order to display each image in its order, the
program has to wait for a time t2 which is the time that the
longest process takes. Managing the order of the images gets
more complicated as the number of cores increased.

Another challenge in parallel processing is to maintain a
stable frame rate. Even though the correct order of the
output is ensured, images have to be ready in a determined
time period to sustain a stable frame rate. Otherwise,

A Real-Time Parallel Image Processing
Approach on Regular PCs with Multi-Core

CPUs
Huseyin Atasoy1, Esen Yildirim2, Serdar Yildirim3, Yakup Kutlu1

1Department of Computer Engineering, Iskenderun Technical University,
Hatay, Turkey

2Department of Electrical and Electronic Engineering, Adana Science and Technology University,
Adana, Turkey

3Department of Computer Engineering, Adana Science and Technology University,
Adana, Turkey

huseyin.atasoy@iste.edu.tr

http://dx.doi.org/10.5755/j01.eie.23.6.19696

64

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 6, 2017

noticeable pauses might occur between frames. This problem
might result in unacceptable performances especially in
interactive systems.

Fig. 1. The time required to process two order-dependent images on two
cores in parallel.

This paper presents an approach to maintain order
dependence and a stable frame rate in real-time or near real-
time applications on regular multi-core CPUs.

II. METHODOLOGY

Proposed approach is implemented using circular buffers,
which are well-known structures, with added special
functionalities.

A. Numbered Circular Buffers
A circular buffer is a fixed-size memory region, which is

considered to be connected end-to-end virtually. In the
presented method, circular buffers, with additional
functionalities, are used to provide available data in case of
fluctuations in time taken by CPU cores while processing
images.

In real-time image processing applications, showing
processed images in their order is important. Therefore, each
element in the buffer has to have a number to represent its
order. A numbered circular buffer (NCB) is derived using
two nested circular buffers, as shown in Fig. 2, in order to
achieve this task.

Fig. 2. A circular buffer that has N cells and sequence numbers.

Sequence numbers are written to the interior cells of the
buffer without enforcing them to be consecutive. Inputs and
outputs are controlled by two pointers; read pointer and
write pointer. In the example shown in Fig. 2, location of
each frame written to RAM is copied to the external cell
whose location is stored in the write pointer. Then sequence
number of this frame is written to the corresponding interior
cell in the buffer.

The frame which is subsequent to the last queried frame is
searched in the interior cells when a thread queries a frame
from NCB. The exterior cell which corresponds to the
interior cell that contains the searched number is returned as
the result of the query. Hence, each frame can be read in its
original order even though they do not have to be written to

the buffer in their original order.
NCB is used to ensure the frame flow in the approach

presented in this paper. However, some problems may arise
due to instant changes in reading/writing speeds. For
instance, NCB may become full if writing speed is higher
than the reading speed. Similarly, NCB becomes empty if
reading speed exceeds the writing speed. In order to prevent
frame loss, writing operation should result in failure if NCB
is full and reading operation should result in failure if NCB
is empty correspondingly. In an attempt to solve this
problem, interior cells are used as flags. Value of the interior
cell is set to -1 when corresponding exterior cell contains no
data. Therefore, exterior cells that correspond to interior
cells which contain -1 are write-only, and the others are
read-only. Besides, NCB has to be locked when writing or
reading operation is started and unlocked after the operation
is finished to prevent multiple accesses to NCB at the same
time.

Two NCBs, namely, input NCB and output NCB, are
required to implement the approach. The input NCB is used
to keep unprocessed frames that are read from the source
and processed frames and/or related data are stored in the
output NCB.

B. CPU Cores and Work Sharing
In the proposed method, one of the cores of the CPU is

used as the controller core and the others are worker cores.
The controller core runs the following 4 threads.

Graphical User Interface (GUI) thread: It is the main
thread of the application and is responsible for user
interaction.

Input-writer thread: It reads frames from the source
periodically at x fps (period (T) = 1000/x ms) and writes
them into the input NCB. If the writing operation is resulted
in a failure, it keeps trying periodically until it writes the
frame into the NCB successfully.

Output-reader thread: It reads frames and/or related data
from the output NCB at x fps and writes them to the target
(for example to the GUI).

Evaluation thread: It evaluates measurements taken by the
other threads that run on the other cores to show or save
information about their current state if needed.

The worker cores are responsible for ensuring the
following jobs:
 Reading the next frame with its sequence number from
the input NCB;
 Processing the frame and cleaning the data that will no
longer be used from the memory;
 Writing the processed frame and/or extracted data to the
output NCB.
Flow of the frames on the NCBs and cores is shown in

Fig. 3.

C. Frame Rate Stabilization
Every thread working on worker cores sends the image it

processed to output NCB and reads the next image on input
NCB and starts processing. Therefore, it is not possible to
forecast the order of the frames written to output NCB and
which worker core processed the frame. This might cause
output NCB, which is expected to provide processed images

65

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 6, 2017

continuously, not to be fed by the worker cores periodically.
Although buffering provides some processed frames for the
output-reader thread in the case that frame processing on the
cores delays, it cannot be guaranteed that there will be
frames ready to be read or the buffer will not be full. Since
the buffer is fed by more than one worker core and sequence
numbers of the frames are disregarded while they are written
to the output NCB, a deadlock case might be encountered as
shown in Fig. 4.

Fig. 3. Frame flow on the NCBs and cores.

Fig. 4. A deadlock state caused by unbalanced input/output to the NCB.
The reader thread waits forever for frame 11, since frame 11 will never be
able to be written to the NCB.

In Fig. 4, the output reader thread is waiting for frame 11
to be available at the output NCB. When frame 18, 15 and
11 are made ready by the worker cores in the order shown in
Fig. 4, there are only two empty cells in the NCB and they
will be filled with frame 15 and frame 18. The thread that
made frame 11 ready waits for a cell to be read and empty.
This prevents the reader thread that is waiting for frame 11
to continue. This deadlock causes the other threads that
process the other frames, to wait for a cell to be empty and
frame flow is cut off entirely.

Because of these reasons, the difference between locations
of the read pointer and the write pointer has to be kept in a
certain range without breaking the frame flow or the frame
rate. The problem and the solution can be expressed more
effectively using a simple metaphor. Let W(rite pointer) and
R(ead pointer) be two vehicles on a circular track (Fig. 5).
The speed of the vehicle R is constant while the speed of the
vehicle W is not. In order to prevent a possible crash, the
safest distance between the vehicles is equal to the half of
the circular track length. Since R has no control over the
vehicle W, R has to keep the distance safe by speeding up or
slowing down. However, acceleration of R should be kept
low in order to prevent speed of R to be unstable.

Fig. 5. The safest distance between two vehicles on a circular track.

Since the write pointer moves when a core finishes
processing its frame, the speed of the write pointer depends
on speeds of the cores. It can be changed only by delaying
writing operations of the cores. However, the speed of the
reading operations from the output NCB can be changed
without reducing the image processing speed. Speed of the
read pointer has to be changed interfering the reading period
(tw, (1)), because the read pointer moves periodically

 0 0max 0, ,w pt T t T (1)

where tw is the time for which the thread has to wait before it
reads the next frame, T0 is the frame reading period, tp is the
time spent on the reading operation. (hereinafter referred
to as waving factor) is the coefficient that will change the
period to keep the distance between the frame numbers
which read and write pointers point to, safe while stabilizing
the frame rate.

D. Linear Waving Factor
Waving factor is used to keep the distance (X in (2))

between the numbers of the frames which the read and write
pointers point to, equal to half of the capacity of the NCB
which is the safest value. Thus, the system aims to keep the
difference between X and N/2 (H in (3)) equal to 0 by
speeding up or slowing down the reading speed by means of
the waving factor:

,w rX X X (2)

,
2
NH X (3)

where Xr and Xw are not physical addresses of the frames,
they are numbers of the frames which the read and write
pointers point to, respectively. Waving factor is computed as

 2
1.

2

w r
l

X XH
N N

 (4)

The range of waving factor is between [-1, 1] since
maximum and minimum values of X are N and 0.

E. Exponential Waving Factor
The linear waving factor l changes the period when H is

not equal to 0. This may cause sharp changes in period. In
order to make changes softer, exponential waving factor (e)
is derived. For a predefined positive constant A > 1, A Z+,
(5) shows the exponential waving factor.

A bends linear waving factor line toward +x, -y and -x, +y
(Fig. 6). Therefore, the exponential waving factor softens the
change of the period when the difference between optimal

66

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 6, 2017

distance and distance between the numbers which the
pointers point to is close to zero. The value of the
exponential waving factor increases exponentially. In critical
situations (when the NCB is about to be full or empty) the
waving factor can extend or shorten the period enough to
maintain the optimal distance. Note that, it is possible to
bend the curve more, using higher A values. But a very high
A value may cause the change in the period to be insufficient
even in critical situations

 1 1 sgn().l
e lA A (5)

Fig. 6. Normalized H (equation (3)) and waving factor curves.

III. IMPLEMENTATION

The proposed approach was implemented under Microsoft
.NET Framework as a .NET library. Since Windows is not a
real-time operating system, latencies between when timers
have to expire and when they are expired were measured to
make sure that the system is implementable in practice.
Those measurements and the results are discussed in the
following subsection.

A. Timer Resolution
Timer resolution determines how frequently the operating

system checks if a timer has expired. Sensitivity of time
measurements depends directly on timer resolution of the
system. Low timer resolutions cause problems for operations
that have to be run periodically on the system since it may
take more than one period for the system to realize that one
period has elapsed. This might cause problems in real-time
applications. For instance, an application that processes
25 frames per seconds (fps) and takes 35 milliseconds (ms)
to process each frame has to wait 5 ms after processing. If
this application is running on Microsoft Windows 7,
sleeping for 5 ms approximately takes 15 ms since the
default value of the timer resolution is 15.6 ms. This causes
the period to increase to 50.6 ms and the speed to reduce to
20 fps.

Although Microsoft Windows is not a real-time operating
system, it is possible to change timer resolution of the
system to make it closer to real-time. In this study, various
timer resolutions are tested. Timer resolution was set to

15.6 ms, 10 ms, 5 ms, 1 ms and 0.5 ms and a thread, that
requests to sleep for 1 ms 20 times, is executed at each trial.
Times elapsed between the time that thread is put to sleep
and is woken up were measured. The results are shown in
Fig. 7.

Fig. 7. Sleeping durations of a thread that requests to sleep for 1 ms at
timer resolutions of 15.6 ms, 10 ms, 5 ms, 1 ms and 0.5, respectively.

The deviation at the lowest and also the default resolution
(15.6 ms) is approximately 14.5 ms. This is very high for an
image processing application that is intended to run near
real-time. But at the highest resolutions (1 ms and 0.5 ms)
the deviation did not exceed the values 0.1 ms and 0.05 ms
respectively.

Since the approach was implemented under .NET
Framework and the minimum value that Sleep() function
accepts is 1 ms, the resolution was set to 1 ms in the
experiments.

IV. EXPERIMENTS AND RESULTS

Two sets of experiments were performed to test the
proposed algorithm. First, the approach was tested on a
dummy image processing tasks to evaluate performance
enhancement under steady workloads (E1-E7). Then it was
applied to a real-time face recognition application and tested
using parameters that require more processing capability
than one core has, under unsteady workloads (E8-E13).

All the experiments were performed on a regular desktop
computer with an Intel i7-3770 3.40 GHz CPU (4 physical
cores and 2 logical cores per each) and 8 GB of RAM.
Average percentage of usage of each core and instant frame
rates were recorded by the evaluation thread during the
executions.

A. Experiments on a Dummy Image Processing Task
In these experiments, a video containing 750 frames

(1280 × 720 pixels) was used. The implementation was
tested with a dummy image processing task which consists
of the following steps:
 Convert image to gray-scale and make two copy of it;
 Equalize histogram of the first copy;

67

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 6, 2017

 Convolve a 2 × 2 averaging filter with the first copy,
repeat this step M times;
 Draw the second copy to the first copy from 20 pixels
inside the edges.
These steps were performed using Open Source Computer

Vision (OpenCV) libraries. M was considered as the
workload unit. Its values were selected so that the program
can produce output at 25 fps using CPU cores around 85 %–
95 % on average. For example when the task was being
executed on a single core, for M = 8 the average core usage
is about 85.45 % and for M = 9, is about 100 %. Therefore
in this example M = 8 is used to achieve a stable frame rate.
Also, the capacities of the input and output NCBs are set to
5 and 25, respectively. Note that the safest distance between
frame numbers which the pointers point on the output NCB
is 12.5 since the frame rate is 25.

In the first experiment (E1), all reading, processing,
writing operations and the GUI thread were executed on the
same core. One core was able to handle workload M from 1
to 8. Hence, M = 8 is considered as the baseline. On the next
3 experiments, the dummy image processing task was
executed in parallel using the presented approach.

In experiment 2 (E2), proposed algorithm is used to
distribute the workload onto 4 logical cores (on 2 physical
cores). Although the number of cores is quadrupled, the
workload value was less than 4 times of the baseline value
since one core is used as controller and the others as workers
in the presented method. Besides, usage of two logical cores
on the same physical core degrades the performance.

One logical core on each of 4 physical cores is used in
experiment 3 (E3). Although 4 logical cores are used in both
experiments E2 and E3, handled workload increases to 30 in
E3 because of the fact that each logical core is on a separate
physical core.

The tasks were executed using all the physical cores,
including two of the logical cores in each physical core, in
the last experiment (E4). As can be seen from the Table I,
maximum performance, with a handled workload of M = 42,
is obtained in E4, where all the logical cores were used.

All those 4 experiments were performed using the linear
waving factor. The waving factor does not affect percentage
of usage of the cores, because both of the linear and
exponential waving factors can be applied consuming
ignorable amount of CPU time. The fourth experiment was
repeated using the linear and exponential waving factors
with different A values (E5, E6 and E7) in order to see the
effect of waving factor parameter on the proposed algorithm.
Instant frame rates are shown in Fig. 8, Fig. 9, Fig. 10 and
Fig. 11 for E4, E5, E6 and E7. Statistical values are given in
Table II.

TABLE II. MAXIMUM / MINIMUM VALUES, MEANS AND
STANDARD DEVIATIONS OF THE OBTAINED INSTANT FRAME
RATES WHEN LINEAR AND EXPONENTIAL WAVING FACTORS

WERE USED.

Experiment Waving
factor

Instant frame rates

max min mean std.
dev.

E4 l 34.52 21.68 25.57 2.99
E5 e (A = 101) 28.58 22.46 25.28 0.86
E6 e (A = 102) 26.33 22.45 25.13 0.48
E7 e (A = 103) 26.32 22.62 25.08 0.44

X value (1) is zero at the beginning and it takes some time
to bring the distance to its safest value, as it is explained in
Section II.C. Besides, when the output NCB is about to be
empty, the algorithm tries to extend the period to keep the
distance safe. Therefore, instant frame rates are unstable at
the beginning and the end of the process for a short period of
time. For this reason, the first and the last 4 seconds were
ignored while calculating the results given in Table II.

Fig. 8. Obtained frame rates when linear waving factor was used (E4).

Table II shows that mean frame rates for linear and
exponential waving factors are stable. However, standard
deviation of the frame rates when linear waving factor is
used is high resulting in a highly varying frame rates as seen
in Fig. 8. Standard deviation is much lower when
exponential waving factor is used. Standard deviations are
observed as 0.86, 0.48, 0.44 for A = 101, A = 102 and
A = 103 respectively.

Figure 12 shows core usages during the best experiment
(E7 for A = 103). Since the first core is the controller core, it
is used only for reading images from the source, displaying
them, collecting data about the frame rates and core usages
and responding to the user continuously. Worker cores use
their processing capacities only to process images they take
from input NCB.

TABLE I. WORKLOADS AND CORE USAGES DURING THE FIRST 4 EXPERIMENTS. C1, C2, ..., C8 ARE THE LOGICAL CORES AND EACH
COUPLE REPRESENTS ONE PHYSICAL CORE (C1-C2, C3-C4, C5-C6, C7-C8). (P: PHYSICAL, L: LOGICAL).

Experiment Number of used cores Workload
Core usages (average %)

C1 C2 C3 C4 C5 C6 C7 C8

E1 1L(1P) 8 85.45 - - - - - - -

E2 4L(2P) 20 20.18 88.09 88.64 87.82 - - - -

E3 4L(4P) 30 17.61 5.46 95.88 0.36 94.76 0.28 95.01 0.21

E4 8L(4P) 42 21.53 86.63 90.3 92.52 90.33 91.46 89.37 90.32

68

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 6, 2017

TABLE III. MAXIMUM / MINIMUM VALUES, MEANS AND STANDARD DEVIATIONS OF THE OBTAINED INSTANT FRAME RATES WHEN
LINEAR AND EXPONENTIAL WAVING FACTORS WERE USED ON THE REAL-TIME FACE RECOGNITION APPLICATION.

Experiment Target frame
rate (fps)

Waving
factor

Number of used
cores

Instant frame rates (fps)

max min mean std. dev.

E8 25 l 8L(4P) 25.60 22.20 25.14 0.45

E9 25 e (A = 101) 8L(4P) 25.00 24.40 24.80 0.28

E10 25 e (A = 102) 8L(4P) 25.60 24.40 24.95 0.36

E11 25 e (A = 103) 8L(4P) 25.00 23.80 24.63 0.30

E12 60 e (A = 102) 8L(4P) 66.70 52.60 59.56 2.40

E13 60 e (A = 102) 4L(2P) 66.70 47.60 58.37 3.55

Fig. 9. Obtained frame rates when exponential waving factor was used
with A = 101 (E5).

Fig. 10. Obtained frame rates when exponential waving factor was used
with A = 102 (E6).

Fig. 11. Obtained frame rates when exponential waving factor was used
with A = 103 (E7).

Fig. 12. Usages of cores during the execution in E7. The first core is the
controller core and the others are the worker cores.

B. Experiments on a Real-time Face Recognition
Application

A real-time face detection and recognition application that
was implemented under Microsoft .NET Framework is
parallelized using the presented approach to test the
approach on a real image processing application both on a
single core and on multiple-cores.

In the application, faces are detected using Viola/Jones
face detection algorithm [18] and recognized using principal
component analysis [19]. The approach is applied to the
application to increase image processing speed of the
application, not to increase its face recognition rate.

Workloads that were used in the previous experiments are
constant. However, face recognition process requires
detection of faces on images and workload caused by this
process may vary from image to image. Therefore, these
experiments are important to show that the approach can
provide desired frame rates under unsteady workloads.

6 experiments were performed on the face recognition
application using two video files (resolution: 640 × 360). In
the first 4 experiments (E8-E11), linear and exponential
waving factors were used on the first video file to obtain 25
fps. On the last two experiments (E12, E13), the second
video file was processed at 60 fps using the exponential
waving factor with A value that provide the closest average
frame rate to the desired frame rate in previous 4
experiments. The results are shown in Table III.

In the first 5 experiments (E8-E12) the workloads were at
levels that the cores can handle easily. The best result was
obtained in E10 considering the differences between desired

69

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 6, 2017

frame rates and obtained mean frame rates. However, in E13
only 2 physical cores were used. Besides, the workload was
increased decreasing minimum face size to be searched on
images to generate a workload that cannot be handled by the
cores.

Instant frame rates obtained in E8 and E13 are shown in
Fig. 13 and Fig 15. In Fig. 13, peaks at after about 9th
second show that the waving factor shortened the period to
prevent NCB from being full. In Fig. 14, the frame rate
started to drop at about 7th second because of the excessive
workload on two physical cores. This time the waving factor
tried to extend the period to prevent the NCB from being
empty.

Fig. 13. Obtained frame rates on the face recognition application in E8.

Fig. 14. Obtained frame rates on the face recognition application in E13.

Fig. 15. Usages cores during the execution of the face recognition
application in E11.

Figure 15 and Fig. 16 show core usages during E11 and
E13. The workload was successfully distributed to the cores
in E11 as can be seen in Fig. 15. On the other hand,
processing capacities of the first two physical cores were not
sufficient to handle the workload although their capacities
were being used fully, in E13 as shown in Fig. 16.
Nevertheless the approach could still provide frame rates
close to desired values in that experiment.

Fig. 16. Usages of cores during the execution of the face recognition
application in E13.

V. CONCLUSIONS

In this paper, a real-time image processing and frame rate
stabilization approach, which works on regular multi-core
CPUs and does not use an explicit hardware such as GPU or
CUDA, was proposed. It was implemented as a Microsoft
.NET library and tested using various conditions; 2 physical
(4 logical) cores, 4 physical (4 logical) cores and 4 physical
(8 logical) cores. Results were compared to single core
results.

Maximum workload handled by a single core is M = 8.
The best performance is achieved using 8 logical cores. A
workload of M = 42, which is 5.25 times the workload
handled by a single core, is handled. Results show that the
workload was distributed to all worker cores equally, such
that the percentage of the core usages was about 90 %.
Maximum workload achieved by 4 logical (4 physical) and 4
logical (2 physical) cores are about 3.75 and 2.5 times the
maximum workload handled by a single core respectively.
Besides, the results show that proposed approach can
provide stabilized frame rates successfully.

The library was also tested under unsteady workloads on a
real-time face recognition application. Workloads were
successfully distributed to the cores again and desired frame
rates were obtained. The approach provided acceptable
frame rates even under excessive workloads.

The presented approach can also be applied to parallelize
various multimedia or real-time signal processing
applications which take order-dependent data packets as
input as the face recognition application does. For instance,
it can be used to recognize speech, to process EEG data, to
encode / decode media formats etc., in parallel, in real-time.

REFERENCES

[1] J. Kruger, R. Westermann, “Linear algebra operators for gpu

70

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 6, 2017

implementation of numerical algorithms”, ACM Trans. Graphics
(TOG), vol. 22, pp. 908–916, 2003. Online. [Available]:
http://dx.doi.org/10.1145/882262.882363

[2] K. S. Oh, K. Jung, “Gpu implementation of neural networks”, Pattern
Recognition, vol. 37, no. 6, pp. 1311–1314, 2004. Online.
[Available]: http://dx.doi.org/10.1016/j.patcog.2004.01.013

[3] D. Cederman, P. Tsigas, “GPU-quicksort: A practical quicksort
algorithm for graphics processors”, Journal of Experimental
Algorithmics, vol. 14, no. 4, pp. 1–22, 2009. Online. [Available]:
http://dx.doi.org/10.1145/1498698.1564500

[4] M. Andrecut, “Parallel GPU implementation of iterative pca
algorithms”, Journal of Computational Biology, vol. 16, no. 11,
pp. 1593–1599, 2009. Online. [Available]:
http://dx.doi.org/10.1089/cmb.2008.0221

[5] C. Obrecht, F. Kuznik, B. Tourancheau, J.-J. Roux, “Multi-gpu
implementation of the lattice Boltzmann method”, Computers &
Mathematics with Applications, vol. 65, no. 2, pp. 252–261, 2013.
Online. [Available]: http://dx.doi.org/10.1016/j.camwa.2011.02.020

[6] C. Jermain, G. Rowlands, R. Buhrman, D. Ralph, “GPU accelerated
micromagnetic simulations using cloud computing”, Journal of
Magnetism and Magnetic Materials, vol. 401, pp. 320–322, 2016.
Online. [Available]: http://dx.doi.org/10.1016/j.jmmm.2015.10.054

[7] O. Schutt, P. Messmer, J. Hutter, J. VandeVondele, “GPU accelerated
sparse matrix multiplication for linear scaling density functional
theory”, Electronic Structure Calculations on Graphics Processing
Units: From Quantum Chemistry to Condensed Matter Physics,
pp. 173–190, 2016. Online. [Available]: https://doi.org/10.1002/
9781118670712.ch8

[8] S. N. Sinha, J.-M. Frahm, M. Pollefeys, Y. Genc, “GPU-based video
feature tracking and matching”, Workshop on Edge Computing Using
New Commodity Architectures (EDGE), vol. 278, pp. 4321–4335,
2006.

[9] J. Chen, S. Paris, F. Durand, “Real-time edge-aware image processing
with the bilateral grid”, ACM Trans. Graphics (TOG), vol. 26, no. 3,
2007. Online. [Available]: http://dx.doi.org/10.1145/1276377.
1276506

[10] D. Castano-Diez, D. Moser, A. Schoenegger, S. Pruggnaller,
A. S. Frangakis, “Performance evaluation of image processing
algorithms on the GPU”, Journal of Structural Biology, vol. 164,

no. 1, pp. 153–160, 2008. Online. [Available]: http://dx.doi.org/
10.1016/ j.jsb.2008.07.006

[11] Vu Pham, Phong Vo, Vu Thanh Hung, Le Hoai Bac, “Gpu
implementation of extended gaussian mixture model for background
subtraction”, in IEEE RIVF Int. Conf. Computing and
Communication Technologies, Research, Innovation, and Vision for
the Future (RIVF 2010), Hanoi, Vietnam, 2010. Online. [Available]:
http://dx.doi.org/10.1109/RIVF.2010. 5634007

[12] P. Karas, V. Morard, J. Bartovsky, T. Grandpierre, E. Dokladalova,
P. Matula, P. Dokladal, “GPU implementation of linear
morphological openings with arbitrary angle”, Journal of Real-Time
Image Processing, vol. 10, no. 1, pp. 27–41, 2015. Online.
[Available]: http://dx.doi.org/10.1007/s11554-012-0248-7

[13] R. K. Satzoda, S. Suchitra, T. Srikanthan, “Parallelizing the hough
transform computation”, IEEE Signal Processing Letters, vol. 15,
pp. 297–300, 2008. Online. [Available]: http://dx.doi.org/10.1109/
LSP.2008.917804

[14] A. Buttari, J. Langou, J. Kurzak, J. Dongarra, “A class of parallel
tiled linear algebra algorithms for multicore architectures”, Parallel
Computing, vol. 35, no. 1, pp. 38–53, 2009. Online. [Available]:
http://dx.doi.org/10.1016/j.parco.2008.10.002

[15] Y. Lu, H. Zhou, L. Shang, X. Zeng, “Multicore parallel min-cost flow
algorithm for cad applications”, in Proc. 46th Annual Design
Automation Conf., (ACM 2009), 2009, pp. 832–837. Online.
[Available]: http://dx.doi.org/10.1145/1629911.1630124

[16] D. Akgun, “A practical parallel implementation for tdlms image filter
on multi-core processor”, Journal of Real-Time Image Processing,
pp. 1–12, 2014. Online. [Available]: http://dx.doi.org/10.1007/
s11554-014-0397-y

[17] M. B. Fattepur, J. B. Huttanagoudar, “Processing videos using
parallel computing: A novel approach”, International Journal of
Innovative Technology and Research, pp. 214–219, 2015.

[18] P. Viola, M. J. Jones, “Robust real-time face detection”, International
journal of computer vision, vol. 57, no. 2, pp. 137–154, 2004.
Online. [Available]: http://dx.doi.org/10.1023/B:VISI.0000013087.
49260.fb

[19] M. A. Turk, A. P. Pentland, “Face recognition using eigenfaces”, in
IEEE Computer Vision and Pattern Recognition, pp. 586–591, 1991.
Online. [Available]: http://dx.doi.org/10.1109/CVPR.1991.139758

71

