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1Abstract—Distributed generations (DGs) have been
continuously integrating into the distribution systems. Size and
site of distributed generations have significant impacts on the
system real power losses reduction and voltage profile
improvement in the radial distribution systems. In this paper,
recent and more dynamic PSO as well as improved DE
algorithms are used for optimum placement of distributed
generations in radial distribution systems. The objective of this
paper is to minimize distribution system real power losses by
the least possible injected power from distributed generations.
To assess different PSO and DE algorithms capabilities,
simulations carried out on two IEEE 33-bus and 69-bus
standard radial distribution systems.

Index Terms—Differential evolutionary algorithm,
distributed generation, particle swarm optimization algorithm,
radial distribution systems, real power losses.

I. INTRODUCTION

Distributed Generations (DGs) are mentioned usually to
the production of electricity using small generators located
in power distribution systems or the power load centers. The
reasons for implementation of DGs have been motivated due
to the different factors such as recent advances in small and
efficient generation technologies, increasing interests in the
environmental issues, postponing investment on new power
transmission and distribution networks, and the need for
more reliable and flexible electric power systems [1]–[3].

Many potential benefits of DGs depend on the size and
location of DGs. In this regard, there have been different
methodologies which have been proposed for optimal
placement of DGs. For solving the DG placement
optimization problem, a mixed integer linear program was
formulated. The objective function was to optimal
determination of the DG unit mix on a network section [4].
Tabu Search (TS)-based method was proposed to determine
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the optimum solution for the DG placement problem,
however, the TS has some drawbacks such as being time-
consuming algorithm in addition that it is trapped in local
minima [5]. An analytical expression was introduced for
finding optimal size and power factor of four types of DG
units. DG units are sized to reach the highest real power loss
reduction in distribution networks [6]. In [7], a novel
optimization approach that employs an Artificial Bee Colony
(ABC) algorithm to find the optimum DG size, power factor,
and location in order to minimize the total system real power
loss. A multi-objective optimization algorithm was
suggested in [8], its objectives consist of minimization of
costs, emission and power losses of distribution system and
voltage profile improvement. This multi-objective
optimization was solved by the modified Honey Bee Mating
Optimization (HBMO) algorithm. Genetic Algorithm (GA)-
based technique together with Optimal Power Flow (OPF)
calculations was utilized to determine the optimum size and
location of DG units installed on the system for
minimization of the cost of active and reactive power
generation. Like TS, the GA is a time-consuming method,
although it can reach global or near-global solutions [9].

Particle Swarm Optimization (PSO) algorithm is
motivated by social behavior of animals such as bird
flocking and fish schooling which was introduced first by
Kennedy and Eberhart [10]. In a PSO algorithm, particles fly
around in a multi-dimensional search space, and each
particle adjusts its position according to its own experience,
and the experience of other neighboring particles as well.
PSO algorithm is very easy for implementation and has few
parameters for adjustment. PSO and its various branches
have been utilized in many power system optimization
problems [11]. Differential Evolution (DE) is a simple while
powerful Evolutionary Algorithm (EA) for global
optimization which was introduced by Price and Storn. The
DE algorithm has gradually become more popular and has
been used in many practical uses, mainly due to its good
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convergence properties and is principally easy to understand
[12, 13]. In this paper, several advanced and evolved PSO
and DE techniques are utilized for optimal DG allocation.

Rest of the paper is organized as follows: Section II
presents problem formulation and objective function. PSO
and DE Techniques for finding optimal sizes and locations
of various DG sizes are included and referred in Section III.
Case studies for optimum DG placement on two IEEE 33-
bus and 69-bus radial distribution systems are addressed in
Section IV. At the end, conclusions are sum up in Section V.

II. PROBLEM FORMULATION

To solve DG placement problem, first a power flow
method should be used. The goal of a power flow calculation
is obtaining complete voltage angles and magnitudes
information for each bus in a power system. In this paper,
power flow calculation which is forward-backward (fw-bw)
method is also necessary to obtain the variation of power
and voltage when some DGs are installed into the system.

A. Objective Function
Mathematically, the objective function is formulated to

minimize the total real power losses as (1)
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Qi are real and reactive power injection in bus i. Rij is the
resistance between ith and jth bus. Vi and δi are the voltage
magnitude and angle of ith bus. Vj and δj are the voltage
magnitude and angle of jth bus.

B. Problem Constraints
In this paper, optimization problem is solved subject to

several problem constraints which are given further.
Load balance: For each bus, to meet demand and supply

the following equations should be satisfied
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Voltage limits: For each bus, there should be an upper and
lower voltage bounds

min max ,i i iV V V  (3)

where |Vi|min = 0.95 p.u. and |Vi|max = 1.05 p.u.
Active (real) and reactive power limit of DG: To size

DGs, there should be a range of available DG size:

min max ,DGi DGi DGiQ Q Q  (4)
min max .DGi DGi DGiP P P  (5)

Real power loss limits: It is obvious that Total Real Power
Loss should be decreased after DG installation

( ) ( ).k kLoss withDG Loss withoutDG  (6)

III. OPTIMIZATION ALGORITHMS: PSO AND DE
The reason for selecting PSO as an optimization algorithm

is that in PSO there is neither competition between particles
nor self-adaptation of the strategic parameters. The
progression towards the optimum solution is governed by the
movement equation. PSO has the fast convergence ability
which is a great attractive property for a large iterative and
time consuming problem [14]. While, the reason why we
chose DE is for its good convergence properties. It has only
a few control parameters kept fixed throughout the entire
evolutionary process [15].

A. Standard PSO
In PSO, the optimization process begins with a randomly

created population constituted by the so called particles.
Each particle contains a position vector, a velocity vector
and a memory vector of its previous best position. Each
member of the population is moved in the search space
according to three vectors called inertia (first term), memory
(second term) and cooperation (third term) as (7)–(9):
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where, ≥0 defined as inertia weight factor.
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Fig. 1. Flowchart of PSO algorithms in problem solving.

B. Various PSO Branches
So far various PSO techniques have been developed and

implemented on various parts of engineering problems. Five
improved PSOs are utilized in this paper for optimal
placement of DGs [11]. The PSO techniques used in this
paper are: Adaptive Dissipative PSO (ADPSO), Escape
Velocity PSO (EVPSO), PSO with Passive Congregation
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(PSOPC), PSO with Area Extension (AEPSO) and Dynamic
Adaptation of PSO (DAPSO) [16]–[20]. Figure 1 shows the
computational flow chart of the PSO algorithms.

C. Standard DE
In general, DE algorithm has five stages. Figure 2 shows

structure of the algorithm [21].

import values of population size, generation, variable number.
while termination criteria is satisfied

{
for i=1 to NP; i++
{

selection three vector from population randomly;
( ) ( )( ) ( )
( ) ( )G GG G

a ci mut bU U SF U U  
for j=1 to VN; j++

{
if rand(0,1)<CR

Uji(cross)=U(mut)

else
Uji(cross)=Uji

} % End of crossover operator
%start selection operator
if f(Ui(cross)) ≤ f(Ui)

Ui=Ui(cross)
else

Ui=Ui
% End for selection operator

}
}    %End while

Fig. 2. Structure of simple DE algorithm.

Initialization: This algorithm is a population based
algorithm, for this, initial population is produced as (10)

, ( ),G MIN MAX MIN
i k L L LZ Z rand Z Z    (10)

where [1, ]i P , [1, ]L V , to start optimization process.
Dimensions of DE algorithm depend on the size of
population P, and variable V, ZL

MIN and ZL
MAX are lower and

upper boundaries, respectively, selected based on the type of
problem. rand produces a value in [0,1], randomly.

Mutation: The initialized population is mutated using
(11). Mutation operator helps algorithm to escape from local
minima. For this, three vectors are randomly selected from
initial population called Z1, Z2 and Z3. Main criterion in
production of mutated matrix is scaling factor, F, which is
selected from [0, 2]. The impact of 2nd and 3rd selected
vectors, Z2 and Z3, in mutation process are controlled by F

1
, 1 2 3( ).G G G G
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Crossover: By crossover operator, prior population
(parent) is composed and then produces next population
(children). Crossover operator is not applied on all
population, and applying criteria is Crossover Rate, CR. This
parameter has a real value in [0, 1]. If crossover rate is more
than a random value, vectors from mutation step are
selected; otherwise, selection is performed from initial
population
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where 1,..., , 1,...,i P j V  αj and γ are chosen randomly
from [1,…,V].

Selection: In this stage, the algorithm uses selection
operator to select optimal solution. In other words, selection
operator decides between initial matrix, Zi, and crossover

matrix, Zji. If related solution of crossover vector, f(Zc,i
G), is

less or equal to solution corresponding to initial population,
f(Zi

G), crossover vector is selected which is shows in (13)
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where 1,...,i P .
Termination Criteria: To terminate algorithm, there are

two techniques; reaching optimal solution and finishing
iteration number. In optimization problem, second criterion
is used.

D. D. Various DE Branches
So far various DE techniques have been developed and

improved. Three improved DEs are utilized in this paper for
optimal placement of distributed generations [15], [22]. The
DE techniques used in this paper are Self-Adaptive DE,
Opposition-based DE, BSNN DE.

IV. CASE STUDY

PSO and DE Techniques have been implemented in the
MATLAB software for optimal sitting and sizing of DGs
and tested on two standard IEEE 33-bus and 69-bus radial
distribution systems.

A. PSO Techniques, IEEE 33-bus Radial Distribution
System
The first system is a radial distribution system with the

total load of 3720 kW, 2300 kVar, 33 bus and 32 branches,
the real power losses in the system is 210.98 kW while the
reactive power losses is at 143 kVar. The optimum results
for each PSO technique are obtained with population size of
30, after 30 runs and for power factor of 0.85 lagging (Table
I–Table III).

TABLE I. SINGLE DG PLACEMENT RESULTS IN IEEE 33-BUS
SYSTEM.

Technique

DG
Installation Power Loss Bus Voltage

Total
Size
(kW)

@
bus

Value
(kW)

Decline
(%)

Min.
(p.u.)

Mean
(p.u.)

Without
DG - - 210.98 - 0.9038 0.9453

EVPSO 763 11 140.19 33.55 0.9284 0.9604
PSOPC 1000 15 136.75 35.18 0.9318 0.9679
AEPSO 1200 14 131.43 37.70 0.9347 0.9715
ADPSO 1210 13 129.53 38.60 0.9348 0.9712
DAPSO 1212 8 127.17 39.70 0.9349 0.9635

For single-DG placement, it was assumed that maximum
DG size is less/equal to 1250 kW (Table I). As it can be seen
from results in Table I, the minimum real power loss is
achieved by DAPSO algorithm. The maximum real power
loss reduction by DAPSO is at 39.70 % in comparison to the
case without DG installation. However, this solution does
not lead to the best voltage profile because the main purpose
is to minimize real power loss. AEPSO, ADPSO and
DAPSO are marginally same for Min. and Mean voltage
values. AEPSO has the best results for voltage profile, since
it propose a DG near the lowest bus voltage (bus 18).

For double and triple-DG placement it was assumed that
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maximum DG size is less/equal to 2000 kW (Table II). The
minimum real power loss is achieved again using DAPSO
algorithm which the reduction is at 54.53 % in comparison
to the case without any DG installation. It is obvious that the
more the DG size and DG number, the more is the benefits.
Unlike single-DG placement, in this case DAPSO not only
could reach the maximum real power loss reduction, but also
suggests the best voltage profiles among all PSO techniques.

TABLE II. DOUBLE-DG PLACEMENT RESULTS IN IEEE 33-BUS
SYSTEM.

Technique
DG Installation Power Loss Bus Voltage
Size
(kW) @ bus Value

(kW)
Decline

(%)
Min.
(p.u.)

Mean
(p.u.)

Without
DG - - 210.98 - 0.9038 0.9453

PSOPC 916 8 111.45 47.17 0.9418 0.9738767 12

EVPSO 540 14 108.05 48.78 0.9457 0.9661569 31

AEPSO 600 14 106.38 49.57 0.9447 0.9671600 29

ADPSO 550 15 106.24 49.64 0.9467 0.9667621 30

DAPSO 1227 13 95.93 54.53 0.9651 0.9819738 32

Studying results in Table III reveals that DAPSO and
ADPSO could gain better results compared to the other
techniques in real power loss reduction, by reducing real
power loss to 56.13 % and 55.43 %, respectively. In
addition, DAPSO could improve voltage profile better than
the other techniques. It should be mentioned that the size and
number of DGs are very important in power loss reduction,
and in particular for voltage profile improvement. Thus, to
show this fact, voltage profile is depicted in Fig. 3 only for
DAPSO and ADPSO as the two best techniques for three
cases.

TABLE III. TRIPLE-DG PLACEMENT RESULTS IN IEEE 33-BUS
SYSTEM.

Technique

DG
Installation Power Loss Bus Voltage

Size
(kW)

@
bus

Value
(kW)

Decline
(%)

Min.
(p.u.)

Mean
(p.u.)

Without
DG - - 210.98 - 0.9038 0.9453

AEPSO
300 11

103.58 50.90 0.9499 0.9676354 16
533 32

PSOPC
663 3

100.34 52.44 0.9418 0.9697621 6
633 12

EVPSO
398 16

95.63 54.67 0.9611 0.9754389 18
801 32

ADPSO
846 16

94.02 55.43 0.9528 0.9758384 26
499 30

DAPSO
681 10

92.55 56.13 0.9654 0.9829600 18
719 31

From Fig. 3, it is clear that DAPSO has better results than
ADPSO and the best case is blue curve. It is interesting that
DAPSO in Case-II (light green curve4) has better voltage
profile than ADPSO in all cases. This fact is more obvious
and attractive by considering bus-18 voltage which is the

lowest voltage without DG installation and experience more
improvement after installing DG units than the other buses.
This phenomenon is due to the fact that DAPSO could
escape local minima and seek vast search space dynamically
which depends on to its structure.

Voltage Progfile for DAPSO and ADPSO
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Fig. 3. IEEE 33-bus radial distribution system voltage profile for DAPSO
and ADPSO for three Case-I (single-DG), Case-II (double-DG) and Case-
III(triple-DG).

B. PSO Techniques, IEEE 69-bus Radial Distribution
System
The second test system is the IEEE 69-bus radial

distribution system with the total load of 3.80 MW and
2.69 MVar. Data for this system are as in [23]. Results are
furnished in Table IV which is evaluated for three DG units
placement.

TABLE IV. TRIPLE-DG PLACEMENT RESULTS IN IEEE 69-BUS
SYSTEM.

Technique

DG
Installation Power Loss Bus Voltage

Size
(kW)

@
bus

Value
(kW)

Decline
(%)

Min.
(p.u.)

Mean
(p.u.)

Without DG - - 224.89 - 0.9092 0.9734

AEPSO
842 6

125.86 44.03 0.9405 0.9812901 59
601 63

PSOPC
1090 37

116.09 48.37 0.9458 0.9833710 51
1085 58

EVPSO
535 47

106.88 52.47 0.9538 0.98331406 59
697 65

ADPSO
945 2

94.70 57.89 0.9718 0.9914521 60
1953 62

DAPSO
500 9

83.68 62.79 0.9716 0.9899521 33
1929 62

Table IV shows the best behavior of DAPSO in results,
for the larger radial distribution system, DAPSO has better
results. Voltage profile is shown in Fig. 4.

C. DE Techniques, IEEE 69-bus Radial Distribution
System
Due to the space limitation and huge number of results the

IEEE 69-bus test system was used for DE techniques. The
optimum results for each DE technique are obtained with
population size of 30, after 30 runs, CR = 0.1 and for power
factor of 0.85 lagging (Table V).

56



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 19, NO. 10, 2013

Bus Voltage

0.9

0.92

0.94

0.96

0.98

1

1.02

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

Bus No.

B
us

 V
ol

ta
ge

 M
ag

. (
p.

u.
)

Without DG
AEPSO
PSOPC
EVPSO
ADPSO
DAPSO

Fig. 4. IEEE 69-bus radial distribution system voltage profile for PSO
techniques.

TABLE V. SINGLE DG PLACEMENT RESULTS IN IEEE 69-BUS
SYSTEM.

Technique

DG
Installation Power Loss Bus Voltage

Size
(kW)

@
bus

Value
(kW)

Decline
(%)

Min.
(p.u.)

Mean
(p.u.)

Without
DG - - 224.89 - 0.9092 0.9734

Self-
Adaptive

DE

603 17
117.16 47.90 0.9402 0.9874634 52

662 60

BSNN DE
556 12

127.27 43.41 0.9375 0.9828542 33
700 60

Opposition
-based DE

666 20
130.62 41.92 0.9374 0.9869577 34

677 60

As it can be seen from Table V, the DE techniques can
obtain acceptable results compared to PSO techniques. This
is because DE techniques have good convergence properties.
All of the three DE techniques reduced real power losses
more than 40 % with DG sizes less than 2000 kW. While,
PSO techniques do this with more DG sizes.

V. CONCLUSIONS

In this paper, two types of Swarm-based and Evolutionary
Algorithms are used for DG placement problem. Various
PSO and DE techniques, as the best and newly proposed
Swarm-based and Evolutionary algorithms, were employed
for optimal sitting and sizing of the DGs. It was obtained
that both PSO and DE techniques have reached acceptable
results, and because of good convergence properties, DE
techniques could reach the optimum results compared to
those of PSOs. However, because of fast convergence
capability of PSO techniques, PSO techniques can be used
for online applications. For the future works, authors of this
paper believe that a combination of PSO and DE techniques
for DG placement problem can be effectively used and the
obtained results by using the combination of these two types
of algorithms may be remarkable.
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