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Abstract—New wireless technologies and approaches enable
to connect even the simplest sensors with limited computational
power to the global network. The need for efficient and secure
solutions is growing with the wider use of these devices. This
paper provides a new method for speed optimization of Elliptic
Curve Cryptography operations which are frequently used in
the light-weight secure communication algorithms. This
method is based on the anomalous behaviour of specific elliptic
curves. We analyse more than 60 curves of various
international standards. Further, our method is less complex,
easy to deploy and comparable effective as ordinary, more
complex methods. Last but not least, we show the importance
of future research in the area of elliptic curve
parameterization.

Index Terms—Cryptography; data security; elliptic curves;
information security.

I. INTRODUCTION

Elliptic curves have been studied as a mathematical
concept since the second century A.C., while the name
“elliptic” was given in the nineteenth century [1]. However,
the concept of Elliptic Curve Cryptography (ECC) has only
been known about in the last 30 years. The first use of
elliptic curves in cryptography was by H. W. Lenstra for
elliptic curve factorization which was used as the fastest
algorithm to find factors of large integers [2]. However,
N. Koblitz and V. Miller are considered as the founders of
ECC. In 1985 N. Koblitz [3] and V. Miller [4]
independently proposed the use of a group of points on an
elliptic curve defined over a finite field. Over the past 30
years, ECC has become a key part of many current
cryptosystems, cryptographic schemes and algorithms, e.g.,
Elliptic curve Diffie-Hellman (ECDH), Elliptic curve
Integrated Encryption Scheme (ECIES), Elliptic curve
Digital Signature Algorithm (ECDSA), Edwards-curve
Digital Signature Algorithm (EdDSA), Elliptic curve
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Menezes-Qu-Vanstone (ECMQV), and Elliptic curve Qu-
Vanstone (ECQV). ECC is also recommended in different
standards, e.g., by Standards for Efficient Cryptography
Group (SECQG) in SECI1 [5], SEC2 [6] and SEC4 [7]; by the
National Institute of Standards and Technology (NIST) in
800-57 [8] and FIPS 186-2 [9]; by Accredited Standards
Committee X9 in ANSI X9.62 [10] and ANSI X9.63 [11];
by Institute of Electrical and Electronics Engineers in IEEE
1363-2000 [12]; and by Wireless Application Forum in
WTLS [13]. Furthermore, many real implementations use
and provide ECC primitives and algorithms, e.g., Bouncy
castle [14], TinyECC [15] Crypto++ [16], OpenSSL [17],
and FlexiProvider [18].

The main advantage of ECC is reaching the same level of
security by using a smaller key compared to classical
asymmetric cryptographic schemes based on factoring
modulus or a discrete logarithm. This reduces such factors
as memory storage requirements, key transmission time,
arithmetic computation power costs and the bandwidth [19],
[20]. This key advantage is the reason why ECC is favoured
in internet-based applications and preferred for constrained
devices with low computational power and low memory
storage, smart cards and cryptographic tokens. These
constrained devices are portable, small, and lightweight and
have low processing power, parameter storage and memory
[21]. These arcas might be summarized as limited devices,
which are defined mainly by their low computational power
and low memory storage capacity. This paper deals with the
research of new effective methods for speed and memory
optimization of ECC used in limited devices. Many current
methods deal with ECC optimization by finding new
effective methods. These solutions are hard to deploy and
often require main system changes. On the other hand, we
try to provide a solution which is comparably effective as
more complex methods, but very easy to deploy.

The rest of the paper is organized as follows. Section II
summarizes related works. Section III introduces our
experimental environment. Further, in Section IV the main
experimental measurements of ECC are provided. The
discussion and comparison with other works is provided in
Section IV. Finally, Section V summarizes our conclusions.
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II. CURRENT AND RELATED WORK

Due to new wireless technologies and other worldwide
technological changes and progresses made, the modern
concept of The Internet of Things (IoT) is attracting more
attention. IoT is based on connecting even the simplest
sensors (limited devices) with each other as well as
connecting these to the global network infrastructure [22].
These connected devices have a wide use over many areas
and should provide heightened amounts of information
which might be used to increase the life quality of the
citizens, ensure higher level of process automation, discover
new options for optimization, general security purposes and
even for saving lives in disasters [23]. The wide use of
connected devices and objects also gives rise to new
challenges in the areas of architecture, availability,
reliability, mobility, performance, management, scalability,
interoperability, security and privacy [24]. Basic security
issues might be solved by encryption, authentication and
authorization algorithms. However, due to the usage of
limited devices, the implementation of these algorithms is a
difficult task. ECC is nowadays used among others to solve
these difficulties and it also provides secured solutions for
limited devices [25].

Most of the current works that are focused on improving
the efficiency of ECC algorithms are based on:

— developing new and more efficient algorithms i.e. for

point multiplication [26]-[28],

— creating new and more efficient curves [29],

—using different unusual algorithms or more efficient

mathematical fields for ECC [30], [31].

In general, these methods are appropriate and they bring
significant and efficient results, but they are also often very
hard to deploy. However, if we take a closer look at the
curve speed in different kinds of algorithms, methods and
implementations, we can see significant speed differences
even for curves of similar types. In the work [32] we
showed our lightweight ECDH implementation with various
curves, where curves of the same size had up to 50 % speed
difference. Our previous work [33] already showed the
differences between the efficiency of prime field based and
field of characteristic 2 based elliptic curve systems in
limited devices. The prime field based curves show a higher
efficiency on limited devices than curves with field of
characteristic 2 (by tens of percent). Based on these results
we believe the efficiency might be improved not only with
new algorithms or new curves, but also by choosing the
right elliptic curve from the current ones. Our solution will
be easier to deploy with similar effectiveness. Additionally,
the in-depth research of current elliptic curves and their
behaviour on specific limited hardware might also bring
significant results for new algorithms or curves in the future.

This paper provides a new look at the efficiency of
various cryptographic elliptic curves. We provide a clear
description of elliptic curve parameterization. On this basis,
we explain the links between computation speed and elliptic
curve domain parameters. This new approach might be used
for creating faster and memory friendly curves. Further, the
experimental measurements which are showing the
discovered anomalous behaviour of some elliptic curves are
provided. This anomaly might be used for simple speed and
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memory optimization without additional needs.

III. EXPERIMENTAL BACKGROUND AND PRE-SETS

A. Network Model

We are developing a secure solution for the smart grid.
Our network model helps us to develop solutions which
might be rapidly implemented into real applications. The
smart grid often uses limited devices i.e. for measuring
consumption (water, gas, heat take-offs), failure states
indicators, power quality monitors and many others. Fig. 1
shows our smart grid network model for this measurement
where we can see the part with limited resources (limited
devices) and also the part with non-limited resources.
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Fig. 1. Smart Grid network for remote data acquisition [34].

The Intelligent Communication Unit is a limited device
which connects even the simplest meters, sensors and
indicators via a specific interface (i.e. PLC, RS485, USB)
and communicate over access technology (i.e. PLC,
Wireless) with a data concentrator. In this experiment, we
consider a microcontroller MSP430 and a computer unit, the
Raspberry Pi 2, for the non-limited area as a core of the
communication unit for the limited area.

B.  Experimental Measurements Pre-Sets

The MSP430 of the 5438A family is considered as a core
for limited devices in our measurements. MSP430 is an
ultra-low power micro-controller with power consumption
in hundreds of pA for the active mode and units of pA for
the standby/sleep mode. This microcontroller has 256 kB
FLASH, 16 kB RAM, 32-bit multiplier, high/low frequency
crystal (32 MHz/32 kHz) and allow 16-bit operations; more
details about technical specification of MSP430 can be
found in [35]. For MSP430, we used our lightweight
implementation of elliptic curve primitives and ECDH
algorithm.

The Raspberry Pi 2B is considered in our measurements
as a core for non-limited devices. We included this unit in
our measurement to obtain more data. The Raspberry Pi 2B
is a simple computer unit based on the Broadcom BCM2836
processor. This device has a 900 MHz quad-core ARM
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Cortex A7 processor and 1 GB LPDDR2 memory; more
details about the technical specification of the Raspberry Pi
2B are in [36]. For the Raspberry Pi 2B, we used the
OpenSSL  library which implements elliptic curve
primitives, curves of different standards and many different
algorithms based on elliptic curves i.e. ECDH or ECDSA.

C. Elliptic Curve Cryptography Implementations

Our light-weight solution is precisely described in [32]
and it is available on [37]. We have implemented more than
60 elliptic curves of different kinds of standards together
with a big-number representation and basic and modular
arithmetic. We use classical representation of elliptic curves
by domain parameters which are pre-generated and defined
by a standard. For point multiplication, the non-adjective
form of multiplication w-NAF is used (Double-and-add
variation, D&A) and Montgomery modular algorithms are
used for other modulo operations. The operations are
optimized for the low-power microcontroller MSP430 and
ECDH algorithm.

The OpenSSL is a non-lightweight ready-to-use library
for a wide range of applications. This solution brings all the
necessities for implementing a system based on ECC. This
library also contains all the necessities for the ECDH and
ECDSA algorithms. A detailed description of this library is
in [38] and it is available on [39].

IV. IMPACT OF ELLIPTIC CURVE DOMAIN PARAMETERS ON
SPEED EFFICIENCY

Each elliptic curve is defined by the field and domain
parameters. We will work with two different field types,
field of characteristic 2 and prime field. The elliptic curves

over finite field of characteristic 2 (F,m) have seven

domain parameters (septuple)

(m, f(x).a,b,G,n,h), (1)

TFzm

where m is an integer specifying F,m; f(x) is irreducible
binary polynomial of degree m specifying the polynomial
basis representation of Fym ; a, b are two elements of Frm
(a, b € Fym) specifying an elliptic curve E( Fom ) defined
by

3vax® +bin Fym,

E:y?+xy=x 2)

where variable G is a base point G = (xg, yg) on E( Fom);

prime n is order of G; and finally the integer % is the
cofactor

h:#E(Fzm)/n. 3)

The elliptic curves over finite prime field ( F, p) have six

domain parameters (sextuple)

TFp =(paaabaGsnah)s (4)

where p is an integer specifying F, ; a, b are two elements

of F, (a, b € Fp) specifying an elliptic curve E( Fp)
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defined by

E:y25x3+ax+b(modp), 5)

where variable G is a base point G = (xg, yg) on E(F » );

prime n is order of G; and finally the integer % is the
cofactor

h:#E(Fp)/n. (6)

There are three main mathematical operations with
elliptic curves (or their points): point addition, point
doubling and point (scalar) multiplication. These operations
are the basis for all other mathematical algorithms for ECC
ie. the ECDH and ECDSA algorithms. The time
consumption and computational difficulty of these basic
operations with points of elliptic curves is obviously curve-
size dependent. This means operations with curves of larger
domain parameters should be slower than operations with
curves of smaller domain parameters.

We independently measured more than 60 elliptic curves
on two different software implementations (own and
OpenSSL  implementation) and two different hardware
devices (the MSP430 limited-device and the Raspberry Pi
2B non-limited device). The size of domain parameters for
each measured elliptic curve is in Appendix A (Table A-I,
A-IT). Table I and II summarize our main experimental
results where curve name is the official elliptic curve name
defined by the standard SEC (sect/secp elliptic curves),
WTLS (wtls elliptic curves), ANSI (prime, c2pnb/tnb
elliptic curves) or IPSec (ipsec elliptic curves). Field defines

the 2" of Fym (or p of F,). No. is the number of

significantly smaller domain parameters than degree m (i.e.
curve wtlsl with field s has domain parameters 1y, ,

ap blb > X113b > Y112b > M12b the No. is 2, because Ofa, b)

Parameter #; is time needed for curve ECDH key and ECDH
parameters generation with the specific curve. The A4t is
defined as a time difference between the fastest curve and
the concrete curve and it is given as a percent (value 0.00
mark the fastest curve), where A¢; is measurement on
Raspberry Pi 2B and 4¢ is on MSP430.

Table I shows the results for measured elliptic curves over
the field of characteristic 2 on the Raspberry Pi 2B with
OpenSSL implementation. The results are as expected and
more samples or other measurements on different platforms
are not necessary. The curves with a higher degree are
generally slower. Further, the curves of the same degree
with small domain parameters (a, b, x, y) are generally faster
than curves with normal sized domain parameters (same size
as curve degree). Some higher degree curves with small
domain parameters (ipsec3, F. 5156 ) are even comparably as

fast as lower degree curves with non-small domain
parameters (sect131r2, F2132 ). Figure 2 shows an example

of a different curve speed for F2164 , F 77 and F2186 on the

Raspberry Pi 2B with OpenSSL implementation of elliptic
curves. The white colour is for curves with four, grey is for
curves with two and black is for curves with zero small
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domain parameters. As evident, the fastest curve is the curve
with the smallest domain parameters.

TABLE I. EXPERIMENTAL RESULTS FOR MEASURED ELLIPTIC
CURVES OVER FIELD OF CHARACTERISTIC 2 ON RASPBERRY.

Curve Field No. tci Aty
name -] [ps] [%]
GF(2'"
wtls1 2114 2 3,362 0.00
wtls4 2114 0 3,496 +3.99
sectl13rl 2114 0 3,500 +4.10
sectl13r2 2114 0 3,528 +4.94
sect113k1 2114 0 3,487 +3.72
GF(2'?) and GF(2'%)
sect131rl 213 0 6,235 0.00
sect131r2 213 0 6,464 +3.67
ipsec3 2136 4 6,417 +2.92
GF(2'%), 2'") and GF(2'%)
wtls3 2164 2 8,174 +2.14
wtls5 2164 0 8,815 +10.15
sect163rl 2164 0 8,802 +9.98
sect163k1 2164 2 8,197 +2.42
c2pnbl63vl 2164 0 8,822 +10.23
c2pnb163v2 2164 0 8,795 +9.92
c2pnb163v3 2164 0 8,795 +9.90
c2pnbl76vl 2177 0 8,739 +9.20
ipsec4 2186 4 8,003 0.00
GF(2?) and GF(2™")
wtls10 2234 2 15,865 +0.23
wtls11 2234 1 17,474 +10.40
sect233rl 2234 1 17,493 +10.52
sect233k1 2234 2 15,828 0.00
sect239k1 2240 2 16,244 +2.63
c2tnb239v1 2240 0 17,890 +13.03
c2tnb239v2 2240 0 17,843 +12.73
c2tnb239v3 2240 0 17,784 +12.36
GF(2™)
sect283rl 2284 1 32,072 +11.91
sect283k1 2284 2 28,659 0.00
GF(2*"
sect409rl1 2410 2 76,160 +14.35
sect409k1 2410 1 66,605 0.00
GF(25™)
sect571rl 2572 2 174,749 +14.86
sect571k1 2572 1 152,143 0.00
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Fig. 2. Comparison of different curves over field of characteristic 2 —

F

S164 > F 77 and F SR Raspberry with OpenSSL implementation.

The curves over the prime field shows a significant
anomaly in behaviour. Table II shows the results for
measured elliptic curves over the prime field on the
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Raspberry Pi 2B and also on the MSP430 (for a greater
range of samples). The curves with a higher degree are
generally slower. However, the curves of the same degree
with small domain parameters (a, b, x, y) are not generally
faster than curves with normal sized domain parameters
(same size as curve degree). Conversely, the small domain
parameters had no effect or made the curve even slower than
the curves with the same sized domain parameters. Some
higher degree curves with normal sized domain parameters
(secpl128rl, F,g) are even comparably as fast as lower

degree curves with smaller domain parameters (wtlsS8,
Fj1 ). Figure 3 shows an example of a different curve speed
Fleo 2B with OpenSSL
implementation of elliptic curves. The grey is for curves
with two and black is for curves with zero small domain

parameters. As we can see the slowest curve is the curve
with the smallest domain parameters.

for on the Raspberry Pi

TABLE II. EXPERIMENTAL RESULTS FOR MEASURED ELLIPTIC
CURVES OVER PRIME FIELD ON RASPBERRY PI 2B AND MSP430.

Curve Fied | ™ tei Aty te: Aty
name I-] [ps] [%] [ps] [%]
GF(112) and GF(128)
wtls6 112 0 2,555 0.00 10,696 +8.68
witls8 112 4 2,953 +15.58 10,897 +10.72
secpl12rl 112 0 2,570 +0.59 9,842 0.00
secpl12r2 112 0 2,599 +1.72 11,413 +15,96
secp128rl 128 0 2,825 +10.57 12,092 +22,86
secp128r2 128 0 2,899 +13.46 12,986 | +31,94
GF(160)
wtls7 160 0 4,130 0.00 13,031 0.00
wtls9 160 4 4,704 +13.90 19,612 +50.50
secp160rl 160 0 4,143 +0.31 13,050 +0.15
secp160r2 160 0 4,143 +0.31 13,963 +7.15
secp160k1 160 2 4,557 +10.34 15,080 | +15.72
GF(192)
secp192k1 192 2 6,364 +11.92 23,674 7.57
prime192vl 192 0 5,716 +0.53 25,400 13.04
prime192v2 192 0 5,686 0.00 22,470 0.00
primel192v3 192 0 5,701 +0.26 24,171 5.36
GF(224)
wtls12 224 0 7,483 +0.09 26,631 0.00
secp224rl 224 0 7,476 0.00 27,020 1.46
secp224kl 224 2 8,388 +12.20 30,771 15.55
GF(256)
secp256k1 256 2 11,007 +12.28 - -
prime256v1 256 0 9,803 0.00 - -
4800
S 4700 e
S 4600
§ 4500
w4400
¢ 9 4300
o 4200
£ 4100 I I I I
':':‘» 4000
& 3500
3800
wtls7 secpl60rl secpl60r2 secpl6Okl wtls9

Fig. 3. Comparison of different curves over prime field Fl60 on

Raspberry with OpenSSL implementation.

Figure 4 shows the same example as in Fig. 3, but on the
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MSP430 with our implementation of elliptic curves. The
grey is for curves with two and black is for curves with zero
small domain parameters. As we can see here also the
slowest curve is the curve with the smallest domain

parameters.
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Fig. 4. Comparison of different curves over prime field Fi60 on MSP430
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Speed of the cury

secpl60r2 secpl6Okl witls9

with our implementation of elliptic curves.

The results show that on the field of characteristic 2 we
can reduce up to 5 % to 15 % of the time consumption on
smaller degree curves (114—-156 b) and up to 15 % of the
time consumption on the higher degree curves (164-572 b)
only by choosing the right curve with small domain
parameters. On the prime field we can reduce the time
consumption by 10 % to 50 % only by choosing the right
curve with normal not-smaller domain parameters. The
measurements reveal the anomalous behaviour of the prime
field curves. This means that it cannot be clearly concluded
whether the smaller domain parameters will have a positive
effect on speed of elliptic curve operations. They result in
reduced memory requirements, but not necessarily a
reduction in speed.

V. DISCUSSION

From our measurements we expect significant results
which should help in choosing the right elliptic curve for a
real application from the point of view of time and memory
requirement. Our results prove that the size of domain
parameters has a significant impact on computational
complexity and time consumption of algorithms which work
with elliptic curves. Further, we show that the time
consumption of an elliptic curve algorithm can be
significantly reduced only by choosing the right elliptic
curve. Table III shows the results of chosen current and
relevant works dealing with ECC optimization, new
methods and algorithms or new curves. As we can see, the
maximum speed reduction is about 50 %, but very often
much smaller.

TABLE III. COMPARISON OF SPEED REDUCTION WITH OTHER
CURRENT AND RELEVANT WORKS.

Speed
Short description reduction | #Ref.
[%]
Work focused on the use of ECC in wireless 4648 %
sensor networks. They present a new technique (D&A) [26]
to speed up the multiplication operation. 32-37%
(WNAF)
Work focused on double-and-add algorithm for
point mpltlphcatlon and application to the 1o data [27]
Fibonacci sequence. The work compares only
chain size, where they achieved up to 18 %
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Speed
reduction
[%]

Short description #Ref.

differences. But final speed tests are missing.

Another work focused on new more efficient
design of elliptic curve point multiplication
based on Montgomery modular multiplication.

438% | [28]

The authors introduce the new curve 25519 with
significant speed efficiency on hardware. A final
comparison of this curve on specific hardware
and with other curves is missing.

The work focused on ECC in the Internet of
Things. The authors implement their solution of
ECDSA on a small processor and gain
significant speed results compared to the other
implementations by using FPGA acceleration.

no data [29]

50 % [30]

Another work providing a new algorithm based
on modified traditional extended Euclidean
Great Common Divisor (GCD).

>50 % [31]

Our solution shows very close results to the more
complex optimization methods by simply only choosing the
right curve. This fact might be used for easy speed and
memory optimization without any further needs of algorithm
change.

VI. CONCLUSIONS

The Elliptic Curve Cryptography (ECC) is nowadays
already a frequently used method for lightweight secured
communication solution and it is spread over wide areas.
We might see it also as a solution for future LPWAN,
MANET, VANET and many others. We showed as an
example the Smart Grid network (Fig. 1), in which the low-
power devices are used to gather the sensitive customers or
network data from sensors as well as crucial management
data. For securing this communication, these devices with
limited physical resources need a sufficiently secure and
resource effective cryptographic solution. For this purpose,
the AES cipher and ECC are often used together, the ECC
being always more resources demanding.

Many current works focused on improving the efficiency
of ECC are dealing with developing new efficient
algorithms, creating new efficient curves or trying to
implement or develop new primitives. However, this paper
shows an efficient and easy deployable solution for the
speed optimization of ECC algorithms without the need of
changing current algorithms, primitives or protocols. Our
solution is based on choosing the right elliptic curve with
right domain parameters. We provide measurements of more
than 60 elliptic curves (Section IV) on two different
hardware devices (limited and not-limited) with two
different software implementations (our software and
OpenSSL). These measurements show a significant impact
of the domain parameters on the speed of basic elliptic curve
operations. Compared with other works (focused on new
algorithms, curves or more efficient operations), we
achieved comparable results by only choosing the right
elliptic curve and with a deeper look at its domain
parameters (up to 50 % time reduction). Further, section V
shows that many other current works achieved same or
smaller time reduction by using much more complex
methods. Last but not least, these facts demonstrate that in-
depth research of elliptic curve parameterization might bring
valuable results.
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Future work should investigate the relationship between
the domain parameters and the common computational
algorithms in greater detail (i.e. point multiplication
algorithms). Mathematical analysis is required for a deeper
understanding of the speed dependency. We believe this
research will bring very significant and valuable information
for future cryptosystems and new elliptic curves.

APPENDIX A

TABLE A-1. LENGTH OF DOMAIN PARAMETERS FOR MEASURED
ELLIPTIC CURVES OVER FIELD OF CHARACTERISTIC 2.

Curve m a b X y n
name [b] [b] [b] [b] [b] [b]
GF(Q'")
wtlsl 114 1 1 113 112 112
wtls4 114 110 112 112 112 113
sect113rl 114 110 112 112 112 113
sect113r2 114 111 112 113 112 113
sect113kl 114 110 112 112 112 113
GF(2"?) and GF(2"%)
sect131rl 132 131 130 128 131 131
sect131r2 132 130 131 130 131 131
ipsec3 156 0 19 7 9 154
GF(2'%) and GF(2"*%)
witls3 164 1 1 162 162 163
wtls5 164 163 160 163 161 163
sect163rl 164 163 163 162 159 162
sect163kl 164 1 1 162 162 163
c2pnbl63vl 164 163 160 163 161 163
c2pnb163v2 164 161 163 158 163 162
c2pnbl63v3 164 163 162 162 163 162
c2pnbl76vl 177 176 175 176 175 161
ipsec4 186 0 13 5 4 184
GF(2%%) and GF(2*)
wtls10 234 0 1 233 233 232
wtls11 234 1 231 232 233 233
sect233rl 234 1 231 232 233 233
sect233k1 234 0 1 233 233 232
sect239k1 240 0 1 238 239 238
c2tnb239v1 240 238 239 239 239 238
c2tnb239v2 240 239 239 238 239 237
c2tnb239v3 240 233 239 239 238 236
GF(2%)
sect283rl 284 0 1 283 281 281
sect283k1 284 281 282 283 282 282
GF(Q2*")
sect409r1 410 0 1 407 409 407
sect409k1 410 1 406 409 407 409
GF(257)
sect571rl 572 0 1 570 570 570
sect571k1 572 1 570 570 570 570

TABLE A-1I. LENGTH OF DOMAIN PARAMETERS FOR MEASURED
ELLIPTIC CURVES OVER PRIME FIELD.

Curve p a b X y n
name [b] [b] [b] [b] [b] [b]
GF(112) and GF(128)
wtls6 112 112 111 108 112 112
wtls8 112 0 2 1 2 113
secpl12rl 112 112 111 108 112 112
secpl12r2 112 111 111 111 112 110
secpl28rl 128 128 128 125 128 128
secp128r2 128 128 127 127 126 126
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GF(160)
wtls7 160 160 160 159 160 161
wtls9 160 0 2 1 2 161
secp160rl 160 160 157 159 158 161
secp160r2 160 160 160 159 160 161
secp160k1 160 0 3 158 160 161
GF(192)
secp192k1 192 0 2 192 192 192
prime192v1 192 192 191 189 187 192
prime192v2 192 192 192 192 191 192
prime192v3 192 192 190 191 190 192
GF(224)
witls12 224 224 224 224 224 224
secp224rl 224 224 224 224 224 224
secp224kl 224 0 3 224 223 225
GF(256)
secp256k1 256 0 3 255 255 256
prime256v1 256 256 255 255 255 256
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