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1Abstract—The deepening penetration of wind power has
brought about increasing uncertainty in power grid. In system
operation, this uncertainty is mainly attributed to forecast
uncertainty, which remains a challenging issue in uncertainty
analysis. In this paper, a statistical model based on the mixed
skewed distribution is developed to provide a perfect fitting for
the conditional wind power forecast error in a single wind farm.
The dependence structure of forecast error for multiple wind
farms is obtained by pair-copula method, which takes mutual
dependence of two arbitrary wind farms into account. The case
study on a realistic transmission network in China is presented
and different modelling schemes are compared to demonstrate
the effectiveness of the proposed model in the application of
probabilistic load flow.

Index Terms—Forecast uncertainty; power engineering;
probability distribution; wind farms.

I. INTRODUCTION

The great proliferation of wind power generation in power
grid has posed severe challenges to system planning and
operation. The increased uncertainty due to stochastic nature
of wind power is the main obstacle for enhancing the
admissibility of wind generation. Forecast system that
provides short-term wind power prediction is not so reliable
and the accuracy deteriorates dramatically as the horizon
increases [1]. Probabilistic load flow (PLF) [2] is an
important tool in uncertainty analysis and could reveal all
possible working conditions in the context of probabilistic
theory. A number of methodologies such as Monte Carlo
simulation (MCS) [3], cumulant method [4] and point
estimate method (PEM) [5] have been developed in PLF
studies. However, most of the work was concentrated on
advanced algorithms and was on the long-term basis, little
attention has been paid to the uncertainty modelling.

To date, few publications have focused on the modelling of
forecast error for wind power, which is however, the most
general and crucial uncertainty to be considered in PLF
studies. In [6], wind power forecast error is assumed to follow
a normal or near-normal distribution. This assumption has
been proved to work perfectly well for geographically
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dispersed wind farms in [7]. However, Bludszuweit et al. [8]
challenged the normally distributed model as it failed to
capture variable kurtosis and skewness of the error and
proposed the beta distribution. Hybrid approaches that
combine some typical distributions have also been reported in
[7], [9].

The main contribution of this work is to solve PLF problem
from a novel perspective of forecast error modelling, it
includes: 1) Developing a mixed skewness model (MSM) that
is flexible enough to capture the biased and long-tailed
conditional forecast error for wind power. 2) Constructing
intricate dependence structure of high-dimensional forecast
error among multiple wind farms using pair-copula. 3)
Investigating the impact of different modelling schemes on
the results of PLF simulation.

The remainder of the paper is organized as follows.
Section II describes the characteristics of short-term wind
power forecast error. Section III introduces the concept of
MSM and explains how it can be used to generate forecast
error samples. Section IV employs the pair-copula theory in
dependence modelling of correlated forecast errors among
multiple wind farms. Statistical test on the model and a case
study for PLF simulation in real transmission systems are
shown in Section V. Section VI concludes the paper with a
discussion of future work.

II. CHARACTERISTICS OF SHORT-TERM WIND POWER
FORECAST ERROR

For the sake of universality of our study, we chose the
datasets from several onshore wind farms located in the east
coast of China. The day-ahead forecasts (24 h) of wind power
were produced using the NWP-based method at a temporal
resolution of 15 min, which is most widely used in short-term
wind power prediction.

Figure 1 illustrates the histogram of an example of
short-term wind power forecast error for a single wind farm.
All the data are standardized in per unit with the installed
capacity as the base value. It is obvious that the error
distribution has two main characteristics, which remains true
to other wind farms through statistical analysis:

1. Biased – The mean value of the distribution is non-zero
(equal to 0.04) and the entire figure is shifted to the right
with its skewness being 0.43.
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2. Long-tailed – The decaying rate of the figure is rather
slow in the right-hand tail region (in the interval [0.4, 0.8]),
which should not be neglected.
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Fig. 1. Frequency histogram of short-term wind power forecast error.

The forecast errors are also found to be conditional upon
their forecasts, presenting different distribution characters.
Practically, we may divide the forecast results into different
power bins (i.e., [0, 0.05], [0.05, 0.1], [0.95, 1]) and then sort
the errors into their corresponding bins. As shown in Fig. 2,
the error distributions in four continuous forecast bins (range
from [0.4, 0.6] p.u.) have differences in either shape or
position. Besides the aforementioned two characteristics of
bias and long-tail, multimodality may occur in some specific
bins, which is the case in Fig. 2(d), posing great challenges to
any typical fitting distributions.
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Fig. 2. Frequency histogram of forecast error in different power bins.

III. MODELLING FORECAST ERROR OF A SINGLE WIND FARM
USING MIXED SKEWNESS MODEL

It is not trivial to fit the conditional forecast error (shown in
Fig. 2) using one single distribution. In this section, we resort
to a novel mixed model, i.e. MSM that could capture the
characteristics of the associated error for a single wind farm
without imposing much effort on parameter estimation and
model post-processing.

A MSM can be viewed as a combination of several skewed
distribution components, whose PDF, for one-dimensional
case, can be defined as

   2

1
; , , ,

n
MSM i SN i i i

i
f x f x   


  (1)

where ωi is the weight of the ith component of MSM. μ, σ and
λ denote the parameters that reflect the location, scale and
skewness of the distribution, respectively. fSN (.) is the skewed
(normal) distribution, defined as

  2 ,SN
x xf x   

  
        

   
(2)

where φ(.) and Φ(.) are PDF and CDF of the standard normal
distribution, respectively. Particularly, when μ = 0, σ = 1, λ =
0, x is a standard normal random variable, denoted as x ~ N
(0,1).

The proposed MSM is more flexible and could better
represent the asymmetry, heavy-tail and multimodality of the
short-term wind power forecast error, compared with other
commonly used distributions [10]. Figure 3 presents the PDF
of a nonstandard random variable modelled by MSM with
three components. Theoretically, with n approaches infinite,
MSM can inerrably fit any atypical distributions. However,
this could be time-consuming and cause the intractability.
Usually, n = 2 or n = 3 can meet the requirements of
engineering purposes in terms of accuracy. The estimation of
parameters ωi, μi, σi

2 and λi of each component are calculated
iteratively by applying the expectation maximization (EM)
algorithm [11], which is the one used for large number of
measured datasets.
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Fig. 3. Mixed skewness model with three components.

Once all parameters are determined, the analytical form of
wind power forecast error is obtained. Then we will employ
the scenario generation technique in [12] to yield a set of
scenarios that follow the MSM for late simulations. The
scenario generating process is explicitly shown in Fig. 4.
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Fig. 4. Random number generation of the mixed skew distribution.
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IV. MODELLING FORECAST ERROR OF MULTIPLE WIND
FARMS USING PAIR-COPULA

The wind power among different wind farms in
geographically neighbouring areas is considered to be
mutually correlated, and so are the forecast errors. To expand
our model to multiple wind farms, the structure of dependence
between forecast errors needs to be handled with attention.
Copula theory [13] could provide an effective way of
modelling stochastic dependence. According to Sklar
theorem [14], there exists a Copula function C that can be
written as

   1 1 2 2 1 2( ), ( ), , ( ) , , , ,m m mC F x F x F x F x x x  (3)

where x1, …, xm are random variables with invertible
cumulative distribution functions (CDF) F1, …, Fm and joint
CDF F(x1, …, xm). The joint PDF f (x1, …, xm) can be derived
by partial differentiating the (3)
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In most cases, bivariate dependence can be accurately
modelled by some typical copulas, such as Normal-copula,
t-copula and the Archimedean-copula family. However, with
the increase of random variables, the high dimensional copula
function in (3) fails to capture the mutual dependence between
two arbitrary variables. To overcome the constraint of just
using one type of copulas, we employ the pair-copula method
[15] to model forecast errors considering the correlation
among multiple wind farms.

The pair-copula constructs the joint distribution by
merging the bivariate copula in pairs layer by layer. Figure 5
shows the diagram of m-dimensional pair-copula with
canonical-vine structure. Ci,i+j|1,2,…,i-1 is the abbr. of
Ci,i+j|1,2,…,i-1(F(xi|x1,…,xi-1), F(xi+j|x1,…,xi-1)), (I = 2, 3, …, m-1;
j = 1, 2, … , m-i). By applying the conditional distribution
theorem, the joint PDF discussed in (4) can be described as
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where the conditional CDF involved in (5) can be written as
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The selection of optimal bivariate copulas in each layer can
be determined by comparing the Euclidean distance, and
parameter estimation is based on log-MLE and the historical
data [16].
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Fig. 5. Structure of m-dimensional pair-copula.

Finally, the main steps of generating samples of correlated
forecast errors in multiple wind farms can be summarized as

Step 1: Obtain the marginal distributions of ε1, ε2, …, εm in
m wind farms by MSM, and set u1 = F(ε1), u2 = F(ε2), … , um =
F(εm).

Step 2: Select the suitable pair-copula in each layer and
perform the parameter estimation.

Step 3: Generate the independent uniformly distributed
samples z1, …, zm, and set zi = F(εi|ε1, …, εi-1), I = 1, 2, … , m.

Step 4: For each sampling point of zi, calculate the uniform
random variable ui by iteratively using the (6).

Step 5: Obtain the corresponding forecast error samples by
inverse marginal transformation εi = Fi

-1 (ui), which serve as
the inputs of subsequent PLF analysis.

It is noted that no analytical form can be found for the
inverse marginal CDF of forecast error using MSM. Hence,
the empirical CDF Fe (ε) based on the discrete data generated
through Fig. 4 is obtained. For more information on the
empirical CDF, one may refer to [17].

V. CASE STUDY

A. Source of the Data
Here, we demonstrate the value of modelling the correlated

wind power forecast errors in probabilistic load flow with a
real regional power system. As shown in Fig. 6, six wind
farms along the east coast of Fujian, China were chosen in this
paper. The wind power outputs and their day-ahead forecasts
in 2015 were obtained with 1-h resolution.

A

B

C

D

E

F

..
.
.
.
.

Fig. 6. Sites used for wind power data in this study.

The real transmission system in the same area was
extracted from part of the Fujian power grid, which includes
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three voltage levels (500 kV, 220 kV and 33 kV). The
topology of the network with 34 buses is shown in Fig. 7 with
six wind farms connected to bus 12, 18, 19, 22, 25 and 33. The
load data at each bus is well monitored and its standard
deviation (STD) is set 5 % of the mean value.
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B. Model Validation
To verify the effectiveness of the proposed MSM, two

other distributions (normal and Laplace) were compared by
fitting the forecast error histograms for wind farm B in
specific bins. The fitted distributions along with the MSM in
bins 6 and 11 are shown in Fig. 8.
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Fig. 8. Fitting comparison of different distributions: (a) Bin No.6 [0.30,
0.35]; (b) Bin No.11 [0.55, 0.60].

It is apparent that MSM offers a better fit for the biased and
long-tailed forecast error histograms. To show this
numerically, chi-square test (χ2-statistics) is applied to
measure the goodness-of-fit for various distributions, as
displayed in Table I. The lowest value of MSM confirms it as

the best fit of all.

TABLE I. CHI-SQUARE GOODNESS-OF-FIT FOR VARIOUS
DISTRIBUTIONS.

Bin No.
Chi-square test

Normal Laplace MSM

6 3719.47 2986.02 72.59

11 5306.83 4541.65 88.92

The performance of the pair-copula method in modelling
high-dimensional forecast errors among six wind farms was
also tested. Three typical copulas (Normal-copula, t-copula
and Gumbel-copula) were chosen to fit the dependence and
the goodness-of-fit was measured using two indices
(χ2-statistics and the Euclidean distance de). As shown in
Table II, the pair-copula has the smallest values for both χ2

and de, showing the superiority in multivariate dependence
modelling as compared with the single copulas.

Though the Euclidean distance of Gumbel-copula is a bit
shorter than that of the Normal and t-copula, it takes much
more time in parametric fitting. Hence, to reduce the
computational burden, we would simply choose the
Normal-copula in the pair-copula construction.

TABLE II. FITTING TEST OF DEPENDENCE MODELLING USING
COPULAS.

Copulas Normal t Gumbel Pair-copula
χ2 74.91 78.17 68.26 36.73
de 1.235 1.214 0.988 0.418

C. PLF Analysis of the Test System
This section studies the impacts of the proposed forecast

error model for wind power on PLF analysis. The PLF
simulation is based on MCS with 10000 samples. An
improvement could be made by applying more advanced
sampling techniques, however, this study is out of the scope of
this paper. The programs were implemented with Matlab
2014b on a PC with Intel core i5 3.0 GHz and 3 GB of RAM.

To compare the results obtained by different modelling
methods, four subcases are defined and described as follows:

Base case: The exact measurement data of wind power
outputs for six wind farms are applied to PLF calculation at a
certain time spot, and the load uncertainty is modeled with
5 % STD.

Case 1: The output samples for each wind farm are
obtained directly from the typical wind power model (using
combined Weibull wind speed and the power conversion
curve [18]), and the load uncertainty is set as before with 5 %
STD.

Case 2: It is assumed that forecast errors for different wind
farms are uncorrelated. The wind power samples are
generated by adding forecast errors that follow the MSM to
their forecast at a certain time spot, and the load uncertainty is
set with 5 % STD.

Case 3: The same as case 2, except that the dependence of
forecast errors among different wind farms is modelled with
pair-copula.

The relative error indices introduced in [19] are used to
demonstrate the accuracy of the results, defined as:

,100%B Ci
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where 1,2,3i  superscript γ refers to the type of output
variables (Voltage magnitude V, angle θ, line active power P
or reactive power Q); The simulation results of the base case
are regarded as the reference, and the mean and STD are
expressed as μB and σB, respectively. Similarly, μCi and σCi are
the mean and STD obtained from the case i.

As there are more than one output variables of each type,
we use both the average and maximal error indices to evaluate
the performance of different cases accurately. The
corresponding results of all the output variables are
elaborately displayed in Table III. It can be seen that there is
little difference in the expectation value for the three cases,
while it is not true in terms of STD. The relative errors of STD
in case 1 are the largest of all, demonstrating that traditional
model of the wind output is outperformed by our error-based
model in PLF computation due to lack of considering the
forecast information. Moreover, the error indices of STD in
case 3 is comparatively less than that obtained by case 2,
which substantiates the importance of taking into account
multivariate dependence among multiple wind farms in the
modelling.

TABLE III. ERROR COMPARISONS OF THE REAL TRANSMISSION
SYSTEM (%).


 Case1 Case2 Case3

Mean 0.1021 0.0232 0.0128
Max 0.1472 0.0269 0.0163

Mean 2.8942 0.6220 0.3405
Max 5.7030 0.7914 0.4637

Mean 0.3455 0.2139 0.1844
Max 0.9136 0.5827 0.3591

Mean 6.2488 0.9724 0.6485
Max 12.127 2.1032 1.2861

Mean 0.5913 0.4342 0.2823
Max 0.6378 0.4518 0.3041

Mean 4.7060 1.1361 0.6070
Max 9.3673 2.2259 1.9434

Mean 0.5136 0.3240 0.1933
Max 0.6104 0.3997 0.2412

Mean 7.4913 1.5628 0.9127
Max 16.026 4.5419 2.3835

Figure 9 portrays the PDFs of voltage magnitude at bus 21
and real power flow on line 20-21 in all the four cases.
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Fig. 9. PDF comparison of bus voltage and line flow in the four cases: (a)
Voltage magnitude of bus 21; (b) Real power of line 20-21.

The PDF curves of case 3 in both Fig. 9(a) and Fig. 9(b) are
most close to the base case, which are consistent with the
previous error analysis. The large deviations of the PDF in
case 1 from the actual distribution (base case) would affect the
system risk assessment, resulting in highly conservative
decisions with high operational costs.

VI. DISCUSSION

The variability of the wind power generation is well studied
by characterizing the forecast error instead of directly
modelling the actual output. The biggest advantage of the
proposed model is that it is versatile for any error distribution
and spatial dependency for both a single and clustering wind
farms. However, the performance of our methodology can be
degraded given the low sampling rate of forecasting system or
insufficient measurement data, hence adding pseudo
measurements through linear interpolation [20] may be
necessary.

There is always a trade-off between the model accuracy and
execution time that e.g., the higher the number of skewed
normal components, the better the approximation of MSM,
which in turn leads to higher number of parameters to
estimate. In that way, Akaike’s Information Criterion (AIC) in
[19] can be employed to determine the appropriate number of
components for our model. Also, Gaussian copula is
sometimes preferred in terms of mutual dependence
modelling, even if it is not the optimal selection for its
flexibility and for the sake of time saving.

To the best of our knowledge, this is the first work studying
the PLF from an error modelling perspective. While several
limitations still exist in the current work. Firstly, some future
work about the bias correction may help guarantee a non-zero
mean of forecast errors and eliminate the seasonal trends.
Secondly, a time-dependent model for wind power forecast
error that incorporates autocorrelation needs further
investigation, because the error at a certain time step is
dependent on the error in the previous and subsequent time
steps. Finally, it is worth developing better sampling
techniques to improve the computational efficiency.

VII. CONCLUSIONS

This paper proposes a comprehensive model for wind
power forecast error and shows how it improves the PLF
analysis. The PDF of forecast errors in a single wind farm is
conditional to their forecasts and is modelled by MSM. The
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spatial correlation of forecast errors among adjacent wind
farms is obtained from the pair-copula method which takes
the mutual dependence into account. Statistical tests show the
effectiveness of the proposed model and several important
remarks are as follows:

1. The MSM used shows better performance than any other
typical distributions in capturing the characteristics of
conditional forecast error for a single wind farm due to its
flexibility and versatility.
2. Our error-based model in the application of short-term
PLF studies is superior to the traditional model of wind
output by utilizing the information of forecasts, and the
impacts of high-dimensional dependence of forecast error
among adjacent wind farms on PLF results are pronounced.
3. The dependence structure of forecast error among
different wind farms can be constructed more precisely by
using pair-copula method than those by using multivariate
copulas, and the enhancement is nontrivial in PLF
computation.
It should be noted that the proposed modelling method can

also be extended to other uncertainty problems of power
systems such as stochastic unit commitment (SUC) and
probabilistic optimal power flow (POPF).
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