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1Abstract—An nth-order closed-loop hybrid system will
exhibit a deadbeat response if the system output approaches the
reference input in n steps. This paper studies the problem of
obtaining a deadbeat response for an nth-order single-input
single-output plant (process) in n + 2 steps with a minimum
deadbeat controller output deviation from the steady state
value. We identify the requirements for the design of a
deadbeat controller with two additional steps and present
worked examples for the problem. A deadbeat controller is then
used to control a piezoelectric micro-robot model. The second
order continuous transfer function is used to simulate the
robot’s piezoelectric actuator. This research presents the
advantages of a deadbeat controller with two additional steps
when applied to a robot control problem.

Index Terms—Control design; deadbeat control; digital
control; robot control.

I. INTRODUCTION

A deadbeat control algorithm is used when a rapid settling
time is required. The deadbeat controller design is presented
in the z-domain. A deadbeat controller replaces the poles of
the system with poles at the origin of the z-domain [1]. That
is the reason why deadbeat controllers should be used only
for the control of stable plants (processes). The main
drawback of the deadbeat controller is that the sampling
period T0 is the only design parameter that influences the
magnitude of the manipulated variable u(0). As the
magnitude of the manipulated variable u(0) increases, the
sampling period decreases. It is possible to increase the
number of design parameters by designing an extended order
deadbeat controller [1], [2].

In this article, the presented n + 2 order design for the
deadbeat controller is based on the continuous object z-
transfer function. The overall structure of the control system
is shown in Fig. 1.
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Fig. 1. Structure of the deadbeat control system: g – reference input; e – an
error variable; u – manipulated variable (controller output); y – system
output.

II. DEADBEAT CONTROLLER WITH TWO ADDITIONAL STEPS

The extended order deadbeat controller transfer function
WDC(z) can be written [3] as follows
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Q(z)C(z)W (z) ,
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(1)

where Q(z) and P(z) are the polynomials of the transfer
function of the deadbeat controller, and C(z) is an additional

polynomial. Let 1 2C(z) = 1 c1 2z c z   . Then the

coefficients of the deadbeat controller can be found using
the following:
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i 0 i i-1 1 i-2 2q q (a a c a c ),      (3)

i 0 i i-1 1 i-2 2p q (b b b ),c c      (4)

where i 1,..., n 2,  ai and bi are coefficients of the
polynomials of the continuous object’s z-transfer function

CO
B(z)W (z) =
A(z)

; n – order of the object transfer function.

The number of a deadbeat controller’s steps increases by
two compared with a simple deadbeat controller. The
deadbeat controller’s properties depend on the values of the
sampling period T0, coefficients c1 and c2.

A number of approaches are available for designing such
a deadbeat controller, which revolve around varying the
sampling period T0 along with the coefficients c1 and c2. We
present two different approaches below.

First approach. By changing the sampling period T0 we
design a simple deadbeat controller, such that u(0) = q0 ≈
umax, where umax is the maximum allowable magnitude of the
manipulated variable u. It then follows from (2)–(4) that
coefficients c1 and c2 are zero.

We then fix the sampling period T0, where u(0) = q0 ≈
umax.

We denote the sum of coefficients c1 and c2 in (2) as C

1 2 .c c C  (5)

We simulate the response of a deadbeat control system by
gradually increasing the value of C, starting at zero. The
value of c2 is then increased from zero up to C (from (5) we
have 1 2c C c  ) allowing us to calculate the root mean
squared deviation (RMSD) [4], [5] that represents the mean
deviation of the values of the manipulated variable u(i) with
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respect to the steady state value of the manipulated variable
u(m)
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1RMSD ( ( ) ( )) ,
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u i u m
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 


 (6)

where m is the number of simulation points.
We plot a diagram where 2( )RMSD f c (Fig. 2), and

select a value for c2 that corresponds to the smallest RMSD
and obtain c1 from (5).

Fig. 2. RMSD dependency on c2.

We plot a diagram where min ( )RMSD f C (Fig. 3), and
select a value for C and c2 that corresponds to the smallest
RMSD and obtain c1 from (5).

Fig. 3. RMSD dependency on C.

This guarantees that minimal resources will be required to
control the object.

Second approach. By changing the sampling period T0 we
design a simple deadbeat controller (coefficients c1 and c2 set
to zero in (2)–(4)) such that u(0) = q0 ≈ umax. By gradually
decreasing the sampling period T0 and increasing the value
of C from zero, we aim to maintain in (2)–(4) that

0 max(0)u q u  . By simulating the response of a deadbeat
control system with fixed values for the sampling period T0

and the coefficient C, we increase the value of 2c from zero
up to C (then 1 2c C c  ), allowing us to obtain the root
mean squared deviation (RMSD). We then obtain a value for

2c that corresponds to the minimal RMSD and obtain c1

from (5).

III. DEADBEAT CONTROLLER FOR PIEZO ELECTRIC ROBOT
CONTROL

It can be shown [6] that in order to simulate the behaviour
of the piezo robot, models are needed for the piezoelectric
actuators. When placed in a closed loop, piezoelectric
actuators are subject to significant ringing, especially when
driven near their natural frequencies. To better account for
this behaviour, we use the second order model of the
piezoelectric actuator that is based on the frequency
characteristic of the actuator [6]

CO 2
90000W (z) = .

s 30s 90000 
(7)

This transfer function correctly places the natural
frequency at 300 Hz. To drive the piezo robot’s actuators, a
controller with three 0 to 150 V inputs must be used [6]. The
characteristic equation of the transfer function (7) has two
poles at -0.1500 ± 2.9962i that ensure stability of the
piezoelectric actuator.

The object (7) response – piezo output y, as simulated in
Matlab, to the step input u, is depicted in Fig. 4.

Fig. 4. Object response (magenta curve - y) to the step input (blue curve -
u).

Figure 4 shows that the object response to the bounded
input is bounded and has a finite settling time. The response
oscillates with a transient time of 0.3 s (the response remains
within 1 % of its final value) and has an overshoot of
85.4 %.

The piezoelectric actuator transfer function given in (7)
will henceforth be used to design the deadbeat controllers.
The design of the deadbeat controllers is done in Matlab.
The continuous object transfer function (7) is converted to
discrete time assuming a zero order hold on the input.

We then apply the first approach to design the extended
order deadbeat controller. By using (2)–(4), with the values
of c1 and c2 set to zero and while holding that u(0) = q0 ≈
3.0 V, we get the object (7) z-transfer function at the
sampling period T0 = 0.002 s

CO

-1 20.1712z 0.1678W (z) = .
-1 21-1.6027z 0.9418

z

z




(8)

By using (1), (2)–(4) and (6), with the values of c1 and
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c2 set to zero, we get the transfer function of the simple
deadbeat controller

DC

-1 22.9494 - 4.7270z 2.7776W (z) = ,
-1 21- 0.5051z 0.4949

z

z




(9)

where 0.002 .0T s In the time domain, this can be

represented as

u(n) = 0.5051u(n -1) 0.4949 ( 2)
2.9494e(n) - 4.7270e(n -1) 2.7776 ( 2).

u n
e n

  
   (10)

Using Matlab, we obtain the response y of the deadbeat
control system (Fig. 5) to the unit step input reference signal
g.

Fig. 5. Simulated deadbeat control system response (magenta curve – y) to
unit step reference input signal (green curve – g), blue curve – controller
output u.

Figure 5 shows that the system response has a finite
settling time. The response ends in 0.00375 s (the response
remains within 1 % of its final value) after two steps of the
control signal, as this is a second order object. The system
response does not show any signs of overshooting. The main
drawback of this controller is that the controller output is
below 0 V.

By using the first approach, we plot a diagram
min ( )RMSD f C (Fig. 3) and select a value for C = 2.0

that corresponds to the smallest RMSD = 0.0736. Then from
Fig. 2 c2 = 0.77 and from (5) c1 = 1.23. By using equations
(1), (2)–(4) and (6), we get the transfer function of the
deadbeat controller with two additional steps

DCW (z) =
-1 2 3 40.9831 0.3664z 0.2552 0.0744 0.7129= ,

-1 2 3 41 0.1684z 0.3721 0.3326 0.1270

z z z

z z z

     
     

(11)

where 0.002 .0T s In the time domain this can be

represented as

u(n) = 0.1684u(n -1) 0.3721 ( 2)
0.3326 ( 3) 0.127 ( 4)

u n
u n u n

  
    

0.9831e(n) - 0.3664e(n -1) -
-0.2552 ( 2) 0.0744 ( 3)

0.7128 ( 4).
e n e n

e n


   

  (12)

We then obtain the deadbeat control system response y to
the unit step input reference signal g (Fig. 6).

Fig. 6. Response (magenta curve – y) of a simulated deadbeat system with
two additional controller steps to the unit step reference input signal (green
curve – g), blue curve – controller output u.

Figure 6 shows that the system response has a finite
settling time. The response ends in 0.0075 s after four steps
of the control signal. The system response does not show
any signs of overshooting. Including two additional
coefficients c1 and c2 into a deadbeat controller’s parameter
calculation (2)–(4) reduces the variance/range of the
manipulated variable from [-1.7 to +3.0 V] for a simple
deadbeat controller (Fig. 5) to [0 to +1 V].

Figure 7 shows how the disturbance, affecting the object
output at time 0.015 s, influences the system response and
the controller’s output value, which increases by the value of
disturbance signal. The system response has no overshoot,
while the settling time takes 4 sampling time units.

Fig. 7. Response (magenta curve – y) of a simulated deadbeat system with
two additional controller steps to the unit step disturbance at the system
output, reference input signal (green curve – g), blue curve – controller
output u.

We then apply the second approach to design an extended
order deadbeat controller. We first take the simple deadbeat
controller design represented in (9). By gradually decreasing
the sampling period T0 from 0.002 s and increasing the value
of C from zero, we aim to maintain in (2)–(4) that
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0(0) 3.0.u q  The lowest value of the sampling period T0

where the manipulated variable remains in the positive range
is 0.0015 seconds.

While holding the sampling period T0 = 0.0015 s we plot
a diagram min ( )RMSD f C and select a value for C = 1.25
that corresponds to the smallest RMSD = 0.1477 and c2 =
0.44. Then from (5) we get c1 = 0.81. By using (1) and (2)–
(4), we obtain the transfer function of the deadbeat controller
with two additional steps

DCW (z) =
-1 2 3 42.2828 2.1716z 0.0700 0.0014 0.9602 ,

-1 2 3 41 0.2239z 0.4019 0.2772 0.0970

z z z

z z z

     


     
(13)

where 0.0015 .0T s We then obtain the deadbeat control

system response y to the unit step input reference signal g
and the unit step disturbance affecting the object output at
time 0.01 seconds in the middle of the sampling period.

Figure 8 shows that the system response to the reference
signal has a finite settling time. The response ends in
0.0056 s after four steps of the control signal. The system
response does not show any signs of overshooting.

Fig. 8. Response (magenta curve – y) of a simulated deadbeat system with
two additional controller steps to the unit step disturbance at the system
output; reference input signal (green curve – g), blue curve – controller
output u.

TABLE I. CONTROL STATISTICS FOR DEADBEAT CONTROLLERS.

Controller Object Gain
Variation

Settling
Time, ms Overshoot, %

Simple deadbeat

-10 % 7.3 0
-5 % 6.5 0
0 % 3.75 0

+5 % 6.1 3.65
+10 % 6.4 7.2

First approach -
deadbeat

controller with
two additional

steps.

-10 % 13 0
-5 % 11.2 0
0 % 7.5 0

+5 % 10.7 2.93
+10 % 11.4 5.7

Second approach
- deadbeat

controller with
two additional

steps.

-10 % 9.3 0
-5 % 8 0
0 % 5.6 0

+5 % 7.5 2.3
+10 % 8 4.6

The disturbance affecting the object output at time
0.01seconds influences the controller’s output, which
increases by the value of the disturbance signal. The system
response has no overshoot, while the settling time takes 4
sampling time units.

To determine the robustness of deadbeat control systems
to changes in the object’s parameters, the values of the
settling time and overshoot were obtained for an object (7)
with a gain change of ±10 % from a nominal value. As
shown in Table I, both of the extended order controllers
performed comparably.

IV. CONCLUSIONS

In this paper we proposed a control strategy to utilise the
deadbeat controllers design for the piezoelectric actuator.
The proposed control design relies on the inclusion of an
auxiliary polynomial into the controller’s transfer function.
The presented strategy for selecting the deadbeat controller
parameters c1 and c2 allows to decrease the sampling period
T0 and the absolute value of the manipulated variable.
Conversely, the time available to the controlling processor is
decreased, which leads to fewer functions that need to be
implemented on a processor with reduced hardware
complexity.

The mathematical model used for the proposed control
system is observed to involve decaying oscillations.

Three deadbeat controllers were developed for
piezoelectric actuators. Controllers with two additional steps
appear to be robust to output disturbances. We simulated the
performance of these controllers and the techniques
presented in this paper can be applied to other control tasks.

The following observations were made based on these
results. The simulation results show that incorporating a two-
step approach into the controller’s design allows to narrow
down the range of the control signal variance, compared to a
deadbeat controller without any modifications. Lastly, we
observe that the designed deadbeat controllers satisfy the
performance requirements when the object gain has a
variance of ±10 %.
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