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1Abstract—Inverse square root has played an important role
in Cholesky decomposition, which devoted to hardware efficient
compressed sensing. However, the performance is usually
limited by the trade-off between throughput and precision. This
paper presents hardware implementation of fixed-point single
iterated multiplicative inverse square root. Multiple piecewise
linear approximation in softly nonlinear range is used to
compute the initial value. Single iterated Newton-Raphson
method is employed to obtain high precision. Multiple constants
multiplication technique is proposed to achieve high throughput.
The combination of these techniques yields high performance in
terms of throughput and precision. It obtains more than 70 %
of throughput improvement and almost 100 × higher precision
over the inverse square root Intellectual Property (IP) from
Altera. In addition, Cholesky decomposition has been presented
to validate the proposed architecture, which shows that 42 % of
throughput improvement is achieved compared with the IP.

Index Terms—Digital circuits; fixed-point arithmetic;
piecewise linear approximation; hardware.

I. INTRODUCTION

Arithmetic element functions (reciprocal, square root and
inverse square root) are playing very important roles in
digital signal processing, multimedia and scientific
computing. So far, most of the researches are focused on
reciprocal [1] and square root [2]–[4]. Other reports are
concentrated on inverse square root [5]–[9], which plays a
significant role not only in vector normalization, least squares
lattice filters, Cholesky decomposition and Givens rotation,
but also in 3D graphics application and compressed imaging
[10]. Several algorithms have been developed to compute
inverse square root. Traditionally, table method has been
used to approximate inverse square root. Direct look up table,
interpolation table [11] and bipartite table [12] have been
investigated. The drawback of table approximation is that the
memory size is grown exponentially with the increasing
precision. To overcome this issue, convergence algorithms
are developed after the initial seed (table techniques).
Subtractive and multiplicative techniques are the main kinds
of convergence algorithms. Coordinate rotation digital
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computer (CORDIC) [1] and digit recurrence algorithm [13]
are subtractive techniques. They have low complexity for
their simple operations (additions and subtracts), but they
have long latency and linear convergence. Multiplicative
technique provides quadratic convergence. Polynomial
approximation [14], series expansion [15], Goldschmidt
algorithm [16] and Newton-Raphson (NR) method [3], [5]
are multiplicative techniques. Goldschmidt algorithm has
short latency whereas it requires large amounts of memory
and area. First-order NR method is an attractive approach for
its quadratic convergence and moderate complexity. It can be
derived from the Taylor series expansion. The bit accuracy in
multiplicative technique doubles per iteration. However, in
order to reduce the total iterations, it is important to get a high
accurate initial seed.

Some algorithms have been developed based on
multiplicative technique previously. An efficient initial
approximation was proposed in [3], although it concentrated
on division and square root, it can lead to a solution of inverse
square root as well. In [6], a simple hardware architecture
was presented to approximate the initial of reciprocal and
square root reciprocal. It used linear approximation with
specific coefficients and a lookup table. However, the
precision was relatively low. A high speed single precision
floating point inverse square root was proposed in [7], using
special squaring unit and truncated multiplier. However, the
read only memory (ROM) used in [7] requires much memory
bits for a high accurate initial seed. In order to reduce
complexity, linear approximation with no multipliers was
presented in [5] to solve inverse square root. Whereas, it’s
accuracy was depending on the number of items by the
function expansion.

In this paper, hardware of single iterated multiplicative
inverse square root is implemented. To reduce complexity,
the softly nonlinear function ( 1/ , 1 2y c c   ) is used to

avoid the highly nonlinear function ( 1/ , 0 1y x x   ).
Different from one-piecewise linear approximation used in
[6], a three-piecewise linear approximation is presented to
compute the initial seed in this paper. The multiple piecewise
linear approximation leads to a high precision initial seed. In
addition, single iterated NR method is employed to obtain a
high precise output. Multiple constants multiplication
(MCM) technique is proposed to achieve a multiplier-less
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and memory-free approach, which leads to a high throughput
for the square root reciprocal. The combination of these
techniques leads to good performance trade-off for most
applications. Experiment results show competitive
throughput and precision improvement over Intellectual
Property (IP) from Altera.

II. PROPOSED INVERSE SQUARE ROOT

A. Precision Analysis of Different Approximating Methods
In the inverse square root approximation, errors ( totalE )

can be caused by the approximated methods and the
truncation processes in hardware implementation. Shown in
(1), methodE and truncatE denote the error caused by
approximation algorithm and truncation, respectively. The
errors derived from width representation of a data and shifts
in an algorithm are included in the truncation in terms of bits.
These errors are related to specific hardware framework. In
order to evaluate the performance of different approximating
algorithms, error of methodE is analysed in this section

.total method truncatE E E  (1)

Absolute error comparison of different approximating
methods has been shown in Fig. 1, in which M1 is the method
of single NR combined with eight-piecewise linear
approximation in highly non-linear range. The method of
single NR with table approximation is presented in M2 and
M3, where a large table size ( 102 10 bits) is used in M2 and
a small table size ( 72 7 bits) is used in M3. The method of
different piecewise linear approximation in softly non-linear
range with single NR has been presented in M4 and M5,
where there are three-piecewise segments in M4 and
four-piecewise segments in M5. The mean absolute errors of
the different methods are also denoted in Fig. 1. It can be seen
that the proposed M4 provides relatively fewer error than M3,
which indicates that three-piecewise linear approximation is
more effective (higher precision) than table approximation
using the size of 72 7 bits. It has an average error of 10-5 in
M4. It can be found that M1 has a slightly better precision
than M4 on the average because it uses more coefficients in
approximation. M2 gives the best precision among all the
methods on average, which implies more memory bits with
NR method can improve the precision effectively. Compared
with M1, M5 shows a slightly better precision at the same
number of approximation coefficients (eight even and eight
odd coefficients in M5, sixteen coefficients in M1). This
indicates that the softly non-linear approach outperforms the
highly non-linear method for linear approximation. The
precision gain obtained by M2 and M5 is based on higher
complexity (more memory bits in M2 and more
approximating coefficients in M5) compared to M3 and M4,
respectively. To find a good performance trade-off, the
proposed M4 is a competitive option for high precision and
high throughput applications.

B. Proposed Approximating Method and Hardware
Architecture

Initial approximation and NR method are combined in this
paper to yield a competitive method in terms of throughput

and precision. A softly non-linear function 1/ ,y c

1 2c  is presented to solve 1/ ,0 1y x x   so as to
get the initial seed. The variable x is represented in (2),
where  is the number of leading zero, and w is the width
of c . In addition, 1 1wc   . Thus, inverse square root can be
derived in (3) based on the parity of number  (even and
odd). Integer k is a positive number. Number of leading zero
( ) can be detected using shifts and additions so that no
more extra complexity will be consumed. Three-piecewise
linear approximation (belongs to the interpolation table
category) is used to compute the seed 0( )y in (4), where a
and b indicate the multiplier and addition coefficient,
respectively. The coefficients obtained through piecewise
fitting are shown in Table I.

TABLE I. FITTING COEFFICIENTS.
Coefficient Segment Even Odd

a
1 -0.4081 -0.5771
2 -0.2875 -0.4066
3 -0.2080 -0.2942

b
1 1.4038 1.9852
2 1.2485 1.7656
3 1.1209 1.5852

1 00.0...0 ... ,wx c c


 (2)

/2

12 , 2 ,
1 1 12

22 2 , 2 1,

k

k

k
c

y
x cc k

c









 
    
  

(3)

0 2 ( ).ky ax b  (4)

After the initial seed is obtained, single iterated NR
method is applied to get the required precision. NR method
can be derived by function f and its first derivation f  in
(5) and (6), respectively. Being substituted, NR algorithm can
be expressed by (7), where 0y is the initial seed:

2( ) 1/ ,f y y x  (5)

1 ( ) / ( ),n n n ny y f y f y   (6)
2

1 (3 ) / 2.n n ny y xy   (7)

The proposed architecture is illustrated in Fig. 2, in which
y is the inverse square root of input x . 0P is the

three-piecewise linear approximation of 1/ c and 2 / c
for even and odd, respectively. The left shifting by k bits in

0 _P shift is supposed to accomplish (3). Three multipliers
are needed in the NR method. In order to reduce the
complexity, the additional multiplier in the initial
approximation process is eliminated by MCM technique
(also known as common sub-expression elimination (CSE)).
The principle of MCM is to reduce the complexity by finding
common items in expressions, and the multiplication is
reduced by additions and shifts. The multiplication ( )ax is
reduced by Spiral Project [17]. In the single precision floating
point standard, there are 23 bits of fraction. To be applied to a
wide application, 28 bits of fixed-point is chosen in this paper
( x is scaled by 226).
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Fig. 1. Absolute error ( methodE ) comparison of different approximating methods.

Fig. 2. Proposed hardware architecture of inverse square root.

III. RESULTS AND COMPARISON

A. Implementation
To evaluate the performance of different methods,

hardware architectures of inverse square root have been
implemented using field programmable gate array (FPGA).
Functional verifications are completed by Modelsim SE 6.2b.
Synthesized results are obtained by Quartus II. Performance
comparison ofdifferent approximating methods (shown in
Fig. 1) in calculating /z x has been illustrated in Table II
in terms of complexity and throughput. The complexity is
measured by the logic element (LE), registers (Reg), memory
bits (Mem), and 9-bits multipliers (Mult). The target device is
Cyclone II EP2C35F672C6. Throughput is measured using
the synthesized maximum frequency by million samples per
second (Msps). Initial cycles (Delayed Cycles) are the
number of clocks to compute the first output valid data. The
anchor IP core (a divider plus a square root) is chosen from
Quartus II 10.1 (Altera), with 20 pipelines in IP1 and 40
pipelines in IP2. The proposed hardware architecture (M4) is
full pipelined. The hardware architecture of M2 and M3 can
be found in previous work [10]. The hardware architecture of
M11 is the same as M1 except that multiplication item ( ax
in (4)) is eliminated using additions and shifts by the
technique of MCM. The multipliers in M4 and M5 are also
eliminated by MCM so that no memory bits are consumed.

It can be seen that more than 70 % throughput is achieved
in M4 compared to IP1 at the cost of additional logic
resources (8.2 %) and multipliers. Compared with IP2, there
is still throughput improvement (15 %) in M4, but the

resource usage is lower and the initial latency is shorter.
Compared with the earlier developed direct linear
approximating methods (M1 and M11), nearly 45 %
throughput is obtained by M4. It should be pointed out that
M5 outperforms M11 in both throughput and complexity
(49 % of throughput improvement and 9 % of complexity
reduction). This indicates that softly non-linear
approximating outperforms highly non-linear method in
complexity (Table II) and precision (Fig. 1). The direct table
approximation combined with single NR method (M2 and
M3 in Table II) consumes much memory bits. It can be seen
from Fig. 1 and Table II that almost 100 higher precision
can be obtained in M2 at the cost of 10 more memory bits
compared to M3, which implies that a sufficient precision
gain is achieved by the combination approach. If a very high
precision is required, more NR iterations and more memory
consumptions will be needed. Compared to direct table
approximation methods (M2 and M3), the softly linear
approximation methods (M4 and M5) achieve relatively
comparable throughput, whereas releasing the burden of
memory and decreasing the latency.

To validate the precision of different implemented
methods, simulated data from different hardware
architectures has been used to analyse the absolute error, as
shown in Fig. 3. Compared to the IP, all the hardware
architectures (from M1 to M5) have a better precision, and
about 100 higher precision improvement has been obtained
in the proposed M4. Additionally, M11 has the same
precision as M1 because they use the same approximating
method. Taken into account the factors of throughput,
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complexity and precision, the proposed M4 offers a
competitive option for most applications. It requires only
single NR iteration and achieves an average precision of 10-5.
As a result, the proposed hardware architecture shows high
throughput and high precision improvement over IP from
Altera at the cost of almost the same logic element resources.

B. Application in Cholesky Decomposition
Cholesky decomposition is the key process in matrix

factorization, and inverse square root is the critical path in
Cholesky factoring. High throughput hardware architecture
of inverse square root can accelerate Cholesky
decomposition.

The algorithm of column-oriented Cholesky
decomposition is illustrated in Fig. 4, where N is the order
of matrix A and a is the element of matrix A . Variables
, ,i j k are circulating elements. In order to avoid the long

latency delay of division in PE2, inverse square root and a
multiplier are implemented to replace PE1 and PE2 in Fig. 4.

Different hardware architectures in previous section are
implemented to evaluate the performance of Cholesky
decomposition.

Hardware architecture of Cholesky decomposition is
illustrated in Fig. 5, where the module of Inverse Square Root
is implemented by the method of M1, M3, M4 and IP,
respectively. Parallel multipliers are proposed to process the
data so as to accelerate the updating task. Three-port random
access memory (RAM) is used to store the input and output
matrix data. The module of Control logic is served as the
status controller.

To demonstrate the efficiency of the proposed inverse
square root, comparison results of Cholesky decomposition
using different inverse square root approximating methods
are shown in Table III. Target device is Stratix II
EP2S130F1508C3 for its many input/output pins. The
throughput ( T ) is determined by (8), where S denotes the
input samples per cycle, and maxf is the maximum frequency
(Fmax in Table III).

TABLE II. PERFORMANCE COMPARISON IN COMPUTING /z x .
Method LE Reg Mem Mult Throughput/Msps Delayed Cycles

IP1 1132 693 88 0 80.54 21

IP2 1434 1202 286 0 115.58 41

M1 753 425 368 36 133.9 22

M11 1631 950 0 32 136.76 20

M2 1035 775 10240 20 137.7 22

M3 925 719 896 16 139.12 22

M4 1225 682 0 32 137.53 19

M5 1487 838 0 32 141.6 19

Fig. 3. Absolute error ( )totalE analysis of different implemented hardware architecture.

TABLE III. NINE-ORDER CHOLESKY DECOMPOSITION OF DIFFERENT APPROXIMATING METHODS.
Method ALUT Reg Mem Mult Fmax Throughput
M0 [18] 4123 3870 88 16 124.8 11.29

M1 4866 4098 368 168 95.75 7.69

M11 4664 4173 0 160 187.44 15.06

M3 4275 3980 896 152 175.25 13.64

M4 4530 3924 0 160 193.46 16.06
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Variable ut represents the microsecond time consumed in
solving each 9 9 matrix at the speed of 100 MHz

max (100 ).uT S f t   (8)
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Fig. 4. Algorithm of column-oriented Cholesky decomposition.

In Table III, M0 is the anchor Cholesky decomposition
based on IP [18]. M1, M11, M3 and M4 denote the Cholesky
decomposition using corresponding method in Table II.
Compared with M0, it can be seen that there are throughput
improvements in M11, M3 and M4. M0 outperforms M1
because more pipelines are used in the IP (M0). It can be seen
that the proposed M4 shows the best throughput performance
in Table III. It achieves nearly 42 % throughput improvement
over previous work [18]. The throughput improvement in M4
is obtained at the cost of a high complexity (9.8 % of more
Adaptive Look-up Tables (ALUTs) and 9 of more
multipliers). As a result, a high throughput inverse square
root is achieved in this paper and no memory bits are required
by the utilization of MCM technique.

Fig. 5. Hardware architecture of Cholesky decomposition.

C.Comparison
As for the comparison to other reports, it will make sense

from the point of some performance metrics. The proposed
hardware architecture achieves higher precision than [14] as
more segments will bring higher precision (indicated by M4
and M5). In [15], single precision floating point is used. It
uses a similar approach as M2 and M3 in the mantissa. The
single precision floating point representation is not the best
choice to specific application. In addition, much memory will

be consumed to get a high precision. Area efficiency is
focused in [13] with no multipliers are used. It can reach a
precision of 10-3 at four segments while 10-5 of precision can
be obtained in this paper at the same segments. Compared to
[18], the proposed architecture leads to 42 % of throughput
improvement when applied in Cholesky decomposition.

IV. CONCLUSIONS

Single iterated multiplicative inverse square root has been
implemented in this paper. The proposed method combines
the techniques of multiple piecewise linear approximation in
softly nonlinear range, single iterated NR method and MCM
technique to achieve high precision and high throughput. The
implemented hardware architecture reduces the complexity
by eliminating multiplier with additions and shifts. As a
result, the proposed method offers a good performance
trade-off that yields high throughput, high precision with
relatively low complexity. Experiment results indicate that
the proposed inverse square root hardware architecture is a
competitive solution suitable for matrix factoring, and being
integrated into larger architecture designs such as Cholesky
decomposition and compressed imaging with significant
performance improvements.
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