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1Abstract—First, the paper proposes the method for
interpolation of any experimentally obtained symmetric
hysteresis loop curve (SHLC) with accuracy and computation
efficiency at discrete Fourier transformation (DFT) level.
Second, the method has been further developed so that, based
on the family of the properly chosen and measured SHLCs, it
reliably and accurately predicts an arbitrary inner SHLC.
Sinusoidal magnetic flux, along with applied zero crossing
sampling system, allows for the introduction of the pure
linearization approach. The novelty of this approach is a direct
transformation of a cosine polynomial (CP) interpolating of
one SHLC over the set of equidistant nodes in the electric angle
(EA) domain to the algebraic polynomial (AP) interpolating the
same SHLC over the set of nonequidistant Chebyshev nodes in
the magnetic flux (MF) domain, with the accuracy remaining
unchanged. Based on the results of the interpolation error
analyses, the SHLC measurement has been proposed for
nonequidistant values of magnetic flux at the loop tip,
matching the Chebyshev nodes of the second kind. This is the
second novelty which enables a successful prediction of an
arbitrary inner SHLC.

Index Terms—Accuracy; error estimation; interpolation;
magnetic hysteresis; magnetic losses; transformer cores.

I. INTRODUCTION

The usage of a properly selected numerical fitting method
is a common characteristic of the majority of
phenomenological approaches to the magnetic curves
analysis and modelling. This applies to the earlier works
treating some particular magnetic curves (Widger [1], Rivas,
Zamarro, Martin, and Pereira [2]), over the flexible Takacs
model [3] numerically parameterized by Meszaros [4] and
de la Barriere, Ragusa, Appino and Fiorillo [5] to the most
comprehensive and usable models recently developed by
Zirka, Moroz, Harrison and Chieza [6], Zirka, Moroz,
Harrison, Chieza and Hoidalen [7], [8], and Alonso, Jazebi,
and de Leon [9]. It should be noted that the works [6]–[8]
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are based on the continuous earlier research, referenced in
[6], and a careful analysis of certain drawbacks in practical
usage of the Jiles-Atherton [10], [11] and Preisach model
[12], [13].

Different numerical fitting methods, applied to the
different models of magnetic curves, affect error distribution
in very specific ways. The authors have generally avoided
treating this difficult problem explicitly, and mainly resorted
to giving graphical presentation of error distribution in
particular cases, and offering a remark regarding the good
correlation between the experimental and theoretical results.
Therefore, there are no consistent means for the comparative
estimation of the accuracy that the proposed methods can
offer.

On the other hand, the improved flexibility of the
proposed models [6]–[8] usually has as a consequence a
very tedious preparation for the numerical computations. As
an alternative approach, the interpolation method has been
proposed in the symmetric hysteresis loop (SHL) modelling
by M. Hoffman and H.-G. Herzog [14]. Unfortunately, this
remarkable work does not provide an explicitly derived
error estimation of a chosen set of the interpolation nodes
for the measured SHLs. Secondly, the very interpolation
procedure for an arbitrary SHL prediction was omitted.
Given that the base set of the experimentally obtained SHLs
is the milestone for the second and higher order reversal
curves prediction [6], [7], [14], the accuracy of the
interpolated SHLs is an important issue.

The above mentioned works [6]–[9], [14] treat the so
called inverse hysteresis models. The first step in each of the
proposed models [6], [7], [14] is getting a certain number of
SHLs by the measurement at some equidistant values of the
magnetic flux or magnetic flux density at the loop tip. This
work proposes the SHL measurement at nonequidistant
values of magnetic flux at the loop tip matching the
Chebyshev nodes of the second kind. Since the treated SHLs
are symmetrical, their ascending or descending curves only
need to be considered.

The symmetric hysteresis loop curves (SHLC) are
measured under sinusoidal magnetic flux (MF) regime and
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then represented by using the cosine polynomials (CP) in the
electrical angle (EA) domain , 0[ ] with an achieved
accuracy at the discrete Fourier transform (DFT) level.
Actually, sinusoidal MF allows for the introduction of the
pure linearization approach, which in turn allows for the direct
transformation of the CP of the form

   
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n k
k
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

  (1)

over the EA domain , 0[ ]  , to the algebraic one of the
form
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with the remaining kC coefficients and accuracy
unchanged. The polynomial (2) represents the same SHLC,
but now in the MF domain ,[ ]m m   . Terms

/( )k mT   in (2) denote the k degree Chebyshev polynomials
of the first kind, whereas  represents the instantaneous MF
values, and m denotes the maximal value of MF at the
loop tip. In Section II the linearization approach will be
briefly presented and the existence of the discrete sets of
samples showing how the method can be applied will be
considered. An estimation of the approximation error, as
well as the testing of the accuracy of the method by
considering distribution of the approximation error for
experimentally obtained SHLC, is presented in Section III.
In Section IV, this method is further developed for the
interpolative prediction of an arbitrary inner SHLC, while
the discussion and conclusion is given in Section V and
Section VI respectively.

II. THEORY OF LINEARIZATION APPROACH AND
EXPERIMENTAL RESULTS

A. Theoretical and Experimental Requirements for the
Validity of the Method

Let us assume that the MF in magnetic circuit of an
Epstein frame (toroidal specimen) or a single phase
transformer at industrial frequency f = 50 Hz or f = 60 Hz is
sinusoidal. A generally accepted view in this case is that the
extremes of the same sign of the excitation current and the
MF occur simultaneously at the moments when the induced
electromotive force in the primary and secondary windings
achieves zero values (Fitzgerald, Kingsly, Umans [15]).

The previous assumption implies the use of a dual-
channel zero crossing system for synchronous sampling. For
this purpose, the authors used two Agilent 3458 multimeters
in the zero crossing mode with a sampling rate of 10 kHz.
One channel was used for the sampling of the excitation
current 0 ( )i t and another for the sampling of the induced
electromotive force in the secondary winding 0 ( )e t . The

0 ( )e t was used as a trigger zero crossing signal, while the
power source was the sinusoidal voltage source Fluke
6100 A with f = 50 Hz mains frequency. For this purpose, a
single phase transformer 220 V/57.73 V, Sn = 100 VA was

used as a measuring object. Along with sample sets of the
0 ( )i t and 0 ( )e t obtained by the measurement, the MF

samples were obtained by the numerical integration from the
0 ( )e t samples. The measurements were done for the next

series of 13 supply voltages matching the Chebyshev nodes
of the second kind. These values are represented in Table I.

TABLE I. RMS SUPPLY VOLTAGE VALUES MATCHING
CHEBYSHEV NODES OF THE SECOND KIND.

13.81 V, 41.22 V, 67.98 V, 93.67 V, 117.88 V, 140.23 V, 160.37 V,
177.98 V, 192.78 V, 204.55 V, 213.08 V, 218.26 V, 220.00 V

The above mentioned sampling system enables a set of
200 samples of the excitation current 0 ( )i t and the
electromotive force 0 ( )e t for an entire period T = 0.02 s, f =
50 Hz. The sampling process is synchronized with regard to
the zero values of the 0 ( )e t signal, which is equal to the
synchronization with regard to the extremes of the signals

( )t and 0 ( )i t . Therefore, from the set of 200 samples for
an entire period T, and by using software processing, a set of
101 samples was selected that belong to the ascending part
of the signals ( )  and 0 ( )i  on the EA domain [ ,0]   ,

2 /t T  , resulting in 0 ( ) mi I   , 0 (0) mi I ,
( ) m    , (0) m   . In other words, the first sample

from this set that corresponds to the negative extreme, for
both the MF and the excitation current, was indexed with the
index value 0. Then, the last sample from this set that
corresponds to the positive extreme for both the MF and the
excitation current was indexed with the index value 100.
The synchronized sets of 101 samples that belong to the
ascending part of the signals ( )  and 0 ( )i  are graphically
shown in Fig. 1.

a) b)
Fig. 1. Waveforms of excitation current (grey line) and magnetic flux
(black line) synchronized on the electric angle segment [-, 0] (a);
Excitation current mapping into the ascending hysteresis loop curve (b).

The synchronized set of sinusoidal MF samples actually
represents the values of cosine function ( ) cosm    into
the EA domain [ ,0]   . By mapping the abscissae
domain [ ,0]   by means of the function cosm  onto
abscissae domain ,[ ]m m   , with the ordinates
remaining unchanged, the MF samples are perfectly linearly
distributed along a straight line of the form y x . As a
consequence of the new MF distribution, the excitation
current samples will be distributed along the ascending
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curve of the hysteresis loop (Petrovic, Pjevalica, Vujicic
[16]). This situation is represented fully in Fig. 1. At the
same time, the CP (1) of the excitation current will be
mapped into an algebraic polynomial (AP) (2) of the
hysteresis loop curve ([16], [17]).

Without any loss of generality, and for the purpose of the
common mathematical notation usage, the further
consideration will be based on the normalized MF values,
denoted with / mx   .

B. Existence of the Subsets of Samples Which Represent the
Chebyshev Nodes of the First and the Second Kind

Now the sample index is denoted by k. Then the
Chebyhev nodes of the first kind (CHN_I nodes) are
determined by the expression [17]:

,ChI ChIk kx cos (3)

 2 2 1 2 ,ChI ChIChIk n k n     (4)

where  101,2, , 0ChIk n   , and the Chebyhev nodes of
the second kind (CHN_II nodes) are determined by the
expression [17]:

,ChII ChIIk kcosx  (5)

 ( 1 ,1)ChIIChIIk k n    (6)

where ( 0,1, , 1)ChIIk n  . By means of the substitution
 = /100, where  represents the sampling step,
expressions (3)–(4) and (5)–(6) get the next form
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where ( 1, 2, , )ChIk n  .
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where 0,1, , 1( )ChIIk n  . Based on (7), the expression
for determining index values of the CHN_I nodes is derived
as

 2 2 1 100
100

2
,ChI

ChI
ChI

n k
k

n
  

  (9)

where 1, 2, , )( ChIk n . The above expression allows only
those values for ChIn that produce the integer values for

ChIk . Therefore, ChIn can take only the values from the set
{50, 25, 10, 5, 2, 1}. Similarly, from (8) it is obtained

,100 1)(ChII ChIIk k n  (10)

where 0,1, ,( 1)ChIIk n  and integer values for ChIIk
will be obtained only if ChIIn takes the values from the set
{101, 51, 26, 11, 6, 5, 3, 2}.

All possible index values obtained from the expressions
(9) and (10) are represented in Table II, except for the

values for 5ChIn  and 6ChIIn  . The reason for this is
that an expected number of excitation current harmonics is
certainly higher then 5. In addition, the index values for

101ChIIn  are excluded from the Table II. In the case of
101ChIIn  , the entire set of samples would be included,

making the analysis of the error distribution virtually
impossible.

TABLE II. IDENTIFICATION OF THE SAMPLE SUBSETS THAT
REPRESENT CHEBYSHEV NODES.

for Index of the sample that coincides with a node index

nChI = 10 {5, 15, 25, 35, 45, 55, 65, 75, 85, 95}

nChII = 11 {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}

nChII = 21 {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80,
85, 90, 95, 100}

nChI = 25 {2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66,
70, 74, 78, 82, 86, 90, 94, 98}

nChII = 26 {0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68,
72, 76, 80, 84, 88, 92, 96, 100}

nChI = 50
{1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35,

37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 67, 69,
71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 97, 99}

nChII = 51
{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34,

36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68,
70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100}

C. Generating a SHLC Interpolation Polynomial over the
Chebyshev Nodes of the First and the Second Kind

The interpolation polynomial over 1ChIn n  CHN_I
nodes from normalized MF domain [ 1,1]x  , / mx  

has the following form [17]

     0 0
1

11 ,
2

ChI
k kChI k

n
n x c T x c T xP




    (11)

where [ 1,1]x  . Term ( )kT x in the above expression
denotes a k degree Chebyshev polynomial of the first kind.

By virtue of the discrete orthogonality [17], [18] of the
( )kT x Chebyshev polynomials over CHN_I nodes, the kc

coefficients are computed by two equivalent expressions:

0
1

(2 ( 1) ) )) ,( (j jk k
j

ChIn
c n i x T x


   (12)
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j

n
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
    (13)

where 0, , 1ChIk n   , 0, , 1ChIj n   ,
( )j ChIjx cos  , and ChIj is determined by (4).

In accordance with (11), (12) and (13) a cosine interpolation
polynomial over n + 1 CHN_I nodes in the EA domain

[ , 0]  has the following form [17]

  0
1

11 cos ,
2

ChI
k

k

n

ChI c c knp  



   (14)

where [ , 0]  . An example of generating an
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interpolation polynomial by means of (12)–(14) is
represented for the set of 10ChIn  Chebyshev nodes of the
first kind in tabulated form in Table III and in graphical
form in Fig. 2. This polynomial interpolates the ascending
SHLC of the most outer hysteresis loop obtained at 220 V
supply.

a) b)
Fig. 2. Graph of the cosine interpolation polynomial over 10 CHN_I nodes
in the EA domain   [-, 0] (a); Graph of the algebraic interpolation
polynomial over 10 CHN_I nodes in the normalized MF domain x  [-1, 1]
(b).

TABLE III. CHEBYSHEV NODES OF THE FIRST KIND AND THE
COEFFICIENTS OF THE CORRESPONDING INTERPOLATION

POLYNOMIAL.
nChI
node
index

sample φ
(index)
[mWb]

sample
φ(index)

normalized

sample
i0(index)

[mA]

coefficients for
Chebyshev

polynomial basis
5 -1.343223 -0.98768834 -117.73383 c0 0.0276080973

15 -1.214427 -0.89100652 -71.73744 c1 0.0897163468
25 -0.966170 -0.70710678 -20.84362 c2 -0.0095927426
35 -0.621415 -0.45399050 6.71507 c3 0.0301421501
45 -0.214354 -0.15643446 16.62675 c4 -0.0048764490
55 0.214354 0.15643446 21.98335 c5 0.0037755316
65 0.621415 0.45399050 33.87069 c6 -0.0003212031
75 0.966170 0.70710678 59.07249 c7 0.0005555446
85 1.214427 0.89100652 90.99124 c8 0.0004339397
95 1.343223 0.98768834 119.09578 c9 0.0001550182

Similarly, by virtue of the discrete orthogonality of the
Tk(x) Chebyshev polynomials over 1ChIIn n  Chebyshev
nodes of the second kind [17], the following expressions
hold

0 0
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1

1 1( ) ( ) ( ) ( )
2 2
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where [ ,0]  , 0, , , ,1 0,ChIIk n n j   

1,ChIIn n  ( ),j ChIIjx cos  and ChIIj is determined
by the expression (6).

An example of generating an interpolation polynomial by
means of (15)–(18) is represented for the set of nchII = 11
Chebyshev nodes of the second kind in graphical form in
Fig. 3 and in tabulated form in Table IV. The interpolated
SHLC is the same as for CHN_I nodes.

a)                                                         b)
Fig. 3. Graph of the cosine interpolation polynomial over 11 CHN_II
nodes in the EA domain   [-, 0] (a); Graph of the algebraic interpolation
polynomial over 11 CHN_II nodes in the normalized MF domain x  [-1,
1] (b).

TABLE IV. CHEBYSHEV NODES OF THE SECOND KIND AND THE
COEFFICIENTS OF THE CORRESPONDING INTERPOLATION

POLYNOMIAL.
nChII
node
index

sample
φ(index)
[mWb]

sample
φ(index)

normalized

sample
i0(index)

[mA]

coefficients for
Chebyshev

polynomial basis
0 -1.359462 -1.000000000 -123.795498 c0 0.0276971868

10 -1.294644 -0.951056516 -98.412061 c1 0.0896541475
20 -1.104122 -0.809016994 -44.543009 c2 -0.0095414213
30 -0.803888 -0.587785252 -3.735111 c3 0.0300749038
40 -0.423263 -0.309016994 13.030176 c4 -0.0047526785
50 0.00000 0.000000000 19.154967 c5 0.0036494057
60 0.423263 0.309016994 26.337257 c6 -0.0000148624
70 0.803888 0.587785252 45.335193 c7 0.0004456793
80 1.104122 0.809016994 74.312542 c8 0.0004815688
90 1.294644 0.951056516 107.005978 c9 -0.0000286386
100 1.359462 1.000000000 123.795498 c10 -0.0000424001

To generate an AP over the domain of actual values of MF
,[ ]m m   , it is necessary to transform an AP ( )kP x

from the basis of the Chebyshev polynomials of the first
kind ( )kT x into the basis of monomial kx

   
0 0

.
n n

n k k
k k

kc T kP x x C x
 

   (19)

By using the substitution / mx   into (19) we obtain
an AP over the MF domain ,[ ]m m   of the form
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 
0

.
n

n
k

k
kK 


   (20)

D. Determination of Core Losses by Usage of Interpolation
Polynomials: ( )nP x versus  n 

Figure 4 depicts the closed symmetrical hysteresis loop
over the domain [ 1,1]x  that consists of an AP ( )nP x of
the form (19) for an ascending SHLC and ( )nP x  , the
centrally symmetric to the origin 0i x polynomial, for the
descending SHLC. The polynomial ( )nP x has the form of
(11) for CHN_I nodes, or (15) for CHN_II nodes. The same
figure also depicts a closed symmetrical hysteresis loop over
the MF domain ,[ ]m m   consisting of polynomials

 n  (20) and  n   .

a)                                                      b)
Fig. 4 Hysteresis loop curves approximated by the interpolation
polynomials over normalised MF domain (a); Hysteresis loop curves
approximated by the interpolation polynomials over actual MF domain (b).

Core losses can be determined by calculating the area of
the closed hysteresis loop. Although it seems that this
calculation requires the use of the AP form (20)

    
Φ

Φ
,

m
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m
nS d   
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the integration gives as a result

2
2

0
( ((2 1)(2 1))).4Φ

n
i

i
mH c i iS



  


   (22)

In particular, for n+1=10 CHN_I nodes, expression (22) gives

0 6 82 4
m4Φ
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c c cc cS
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(23)

and for n + 1 = 11 CHN_II nodes it gives

0 6 8 102 4

m

.1
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(24)

The expressions (22), (23) and (24) point out an important

fact regarding numerical calculations, namely, that an area
of the closed symmetrical hysteresis loop can be calculated
directly on the basis of kc coefficients and the m value
without the need for generating an AP of the form (20).

III. ANALYSES OF ERROR BEHAVIOUR AND ERROR
DISTRIBUTION

A. CHN_I Nodes versus CHN_II Nodes
After transition from the EA domain (time domain) to the

algebraic domain (domain of MF), CPs (14) and (18) will be
transformed into the APs (11) and (15). This transformation
makes possible the distribution function of approximation
error

     0 1 ,i i in nCh Che x i x P x  (25)

where  1,10,...,100, ,ii x   based on the application of
Rolle's theorem for the CHN_I nodes, to be expressed in the
form

     

   
 

0 1

0 ,
2 !

ChI ChI

ChIChI
ChI ChI

n n

nn
n

e x i x P x

T x
i

n






 

 (26)

where    0 1 0 1min max ,, , , , , ,ChI ChIn nx x x x x x    

and for CHN_II nodes in the form

( ) ( ) ( )0 1 ,ChII ChII
x x xn ne i p   (27)

     
   2

2
0 1 ,

1

2 !
ChIIChII

ChII

nn
nChII

ChII
n

x U x
i

n
e x 







 (28)

where    0 1 0 1min max, , , , , ,ChII ChIIn nx x x x x x     .

Terms ( )nT x and ( )nU x in the expressions (26) and (28)
represent the Chebyshev polynomials of the first and the
second kind of degree n [17].

Since the analytical form of the function 0 ( )i x is unknown,
the expressions (26) and (28) enable the comparison of the
quality of approximation for the case when nChI = nChII = n.
In such case, the next expressions hold:

   0
[ 1,1]

max ,ni x M
x 

 (29)

    ,
2 ! 2 !

n n nChI
M M

x T x
n n

n ne   (30)

     2
2 1

1 2 .
2 ! 2 !

n n nChII
M M

x x U x
n n

n ne  
   (31)

The term  
0 ( )ni x represents the n-th derivative of the

0 ( )i x function.
For the practical application, when the interpolation nodes

are formed from the set of samples on the basis of (7) and
(8) (Table I), will be 1ChII ChIn n  . Then, the impact of

13
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the modulation polynomial 2
2( 1) ( )

CHII
x U xn  on the

distribution function ( )
ChII

xne will be favourable toward

the impact of the modulation polynomial ( )
CHI

T xn on the

distribution function ( )
ChI

xne . This is represented in Fig. 5

for the 10ChIn  and 11ChIIn  case.

a)                                                      b)
Fig. 5 Graphs of the error distribution functions produced by interpolation
polynomials obtained for 10 CHN_I and 11 CHN_II nodes (a); Graphs of
the corresponding modulation polynomials for 10 CHN_I and 11 CHN_II
nodes (b).

As an illustration of the convergence behaviour, Fig. 6
represents the graphics of the experimentally obtained
ascending hysteresis loop curve 0 ( )i t and its interpolation
polynomials for 10ChIn  , 11ChIIn  , 21ChIIn  ,

25ChIn  and 26ChIIn  nodes, together with the
corresponding error distribution functions.

a) b)
Fig. 6. Graphs of the error distribution functions: (a) for 10 CHN_I – gray
and for 11 CHN_II nodes black line; (b) for 21 CHN_II nodes – gray
dotted, 25 CHN_I nodes – black dotted and for 26 CHN_II nodes – black
solid line.

B. Accuracy Considerations Regarding the Choice of the
Kind and the Number of Chebyshev Nodes and Comparison
with the DFT Accuracy

Since the analysed SHLC belongs to the most outer
hysteresis loop, obtained at 220 V supply, it represents the
worst case scenario with regard to the error magnitude. The
complete analysis of the all error aspects exceeds the frame
of this work and demands an article entirely devoted to this
very topic. Instead, the most important facts for
interpolation as an approach for the reliable and efficient
prediction of an arbitrary inner SHLC will be highlighted
here. Two questions arise here about the further
interpolation method development: which one of the two
kinds of Chebyshev nodes is more suitable for the SHLC

application and which number of nodes is needed to obtain a
reliable accuracy?

With regard to the first question, there are three good
reasons for the choice of the Chebyshev nodes of the second
kind. The first is the above analysed impact of the modulation
polynomial 2

21( ) ( )
CHII

x U xn  on the error distribution

function ( )
ChII

xne , when the interpolation nodes are formed

from the set of samples. The second is that the measured
loop tips belong to the set of CHN_II nodes. And finally, it
has been shown in [19] that for CHN_II nodes usage, the
accuracy achieved by using the cosine polynomial is at the
level of DFT method proposed in [20].

For an estimation of the accuracy dependence upon the
number of CHN_II nodes, the next two aspects will be
considered: the accuracy of the closed hysteresis loop area
determination and the accuracy of the SHLC instantaneous
values determination.

The determination of the closed hysteresis loop area,
based on the expressions (21)–(24), gives the results
represented in Table V.

Concerning the second aspect, since the relative errors for
the all approximated and measured instantaneous values fall
below 1 %, whatever number of CHN_II nodes is used, all
of the above treated sets of CHN_II nodes could be
employed with regard to the achieved accuracy.

TABLE V. RELATIVE ERRORS OF THE CLOSED HYSTERESIS
LOOP AREA DETERMINED BY POLYNOMIAL TOWARD THE

MEASURED.
Number of

nodes Measured area Area obtained by
polynomial

Relative error
[%]

nChII = 11 9.42364E-05 9.42852E-05 0.051
nChII = 21 9.42364E-05 9.42528E-05 0.017
nChI = 25 9.42364E-05 9.42541E-05 0.019
nChII = 26 9.42364E-05 9.42509E-05 0.015
nChI = 50 9.42364E-05 9.42513E-05 0.016
nChII = 51 9.42364E-05 9.42524E-05 0.017

IV. BRIEF EXPLANATION OF THE PROCEDURE FOR AN
ARBITRARY INNER SHLC INTERPOLATION

A. Decomposition of a Measured SHLC into its Hysteretic
and Anhysteretic Components

As the first step in the interpolation of an arbitrary inner
hysteresis loop, it is necessary to decompose each of the
measured SHLC to its hysteretic and anhysteretic components

0 ( ) ( ) ( ),anhyst hysti i i   (32)

over EA domain [ ,0]  by using the next two
expressions:

       0 00.5 ,anhyst i ii        (33)

       0 00.5 ,hyst i ii        (34)

or in normalized MF domain [ 1,1]x  by using:

      0 00.5 ,anhyst i ix xi x    (35)

      0 0 .0.5hyst xi xii x    (36)
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This decomposition has been proposed in [19], [21] and is
represented in Fig. 7 for the most outer ascending SHLC
measured at 220 V supply. The hysteretic components of all
13 measured ascending SHLCs are represented in Fig. 8.

Fig. 7. The most outer ascending SHLC with its hysteretic and anhysteretic
components over the domain x  [-1, 1].

Fig. 8. Measured and interpolated hysteretic SHLC components. The
interpolated hysteretic components were calculated for the series of 7
voltage rms values {150 V, 160 V, 170 V, 180 V, 190 V, 200 V, 210 V}.

B. Choice of the Number and Values of Measurement
Points

The high interpolation accuracy that CHN_II nodes
accomplish for a measured SHLC implies an idea of the
measurement of a family of SHLCs at the loop tips
matching the CHN_II nodes, instead of the equidistant loop
tip values. Since the interpolative prediction of an inner
SHLC is actually two-dimensional interpolation, the
approximation error should be optimally suppressed. The
error analysis (section III A) implies following estimation:
the number of CHN_II nodes, that is approximately two
times greater than the number of significant harmonics of an
excitation current, guarantees the successful suppression of
the approximation error (Fig. 6). The sampling frequency of
10 kHz provides two suitable sets of 21 and 26 CHN_II
nodes (Table II). This is the main reason why this
measurement was performed for 13 rms supply voltage
values represented in Table I. Each value produces two peak
values that correspond with 26 loop tips of 13 symmetric
hysteresis loops. On the other hand, specific number of 13
rms (26 peak-to-peak) CHN_II nodes was limited by the
sampling system resolution. This restriction can be observed
for hysteretic SHLC components measured in the last three
(213.08 V, 218.26 V, 220.00 V) corresponding
measurement points (Fig. 8). Finally, 10 kHz sampling
frequency choice is in turn determined by the sampling
system resolution.

C. Choice of the Number of CHN_II Nodes over the
domain x  [-1,1]

The next step is the choice of ChIIk CHN_II nodes over
the domain [ 1,1]x  . These nodes are represented by
vertical lines in Fig. 8. For each of these ChIIk nodes, the
instantaneous value of the function ( )hyst ki x must be

determined for an arbitrary chosen value of the supply
voltage for the range from 0 V to 220 V. This task is
accomplished by using the interpolation polynomials
generated at each of xk nodes, over 13 CHN_II nodes
matching the instantaneous values of the measured
hysteretic SHLC components. This situation is represented
in Fig. 8. Since each of these 13 values is positive, the above
mentioned polynomials could be treated as odd, and they are
represented by the coefficients with the odd indexes only.

Choice of 21ChIIk  instead of 26ChIIk  CHN_II
nodes in [ 1,1]x  domain decreases computational costs
without significant influence on accuracy (Fig. 6). Taking
into account that hysteretic component of SHLC is, by
definition (36), an even function, the actual number of
computations is decreased from 21 to 10. This means that an
interpolative prediction of an arbitrary inner hysteretic
curve, in this case, resolves 10 vectors consisting of 13
coefficients for each one. These 10 vectors are represented
in Table VI.

D. Interpolative Prediction of a Hysteretic Curve for the
Given Supply Voltage Value

For an arbitrary supply voltage rms value from the range
U  [0 V, 220 V] it is necessary to get its corresponding
normalized value x by simple dividing x = U/220 V. Then,
this normalized value x is to be submitted to each of the 10
interpolation polynomials represented by its coefficients in
Table VI. As a result, 10 interpolated instantaneous values
of an inner hysteretic curve ( )hysti x are obtained at 10 of 21

CHN_II nodes. These nodes correspond to the samples with
the indexes {5, 10, 15, 20, 25, 30, 35, 40, 45, 50} (Table I
and Table VI). The instantaneous values at the first (index 0)
and the last (index 100) node take the zero value, by
definition of the function ( )hysti x . Finally, given that the

function ( )hysti x is even, the remaining 9 nodes from the

range [0, 1] take the same values as their corresponding
nodes from the range [-1, 0]. This correspondence is
represented by the following series of the index pairs {(5,
95), (10, 90), (15, 85), (20, 80), (25, 75), (30, 70), (35, 65),
(40, 60), (45, 55)}.

Based on knowing 21 CHN_II nodes, the hysteretic curve
( )hysti x can be interpolated by using the polynomial of the

form (13), or after the transformation  = arcos(x) by the
polynomial of the form (16). The represented interpolation
procedure is applied to 7 values of the supply voltage
{150 V, 160 V, 170 V, 180 V, 190 V, 200 V, 210 V} and
the interpolated hysteretic curves are represented in Fig. 8.
The relative errors obtained by direct measurement of the
core losses, and predicted by using the hysteretic curves, are
below 0.2 %.
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TABLE VI. COEFFICIENTS OF THE POLYNOMIAL
INTERPOLATING THE INSTANTANEOUS VALUES OF THE

ANHYSTERETIC CURVES AT 10 NODES.

coeff. node index
5

node index
10

node index
15

node index
20

node index
25

c1 6.3833E-04 3.4546E-03 7.9931E-03 1.2756E-02 1.6602E-02
c3 1.9670E-04 1.0753E-03 2.0113E-03 2.5881E-03 2.6902E-03
c5 2.1206E-04 5.2613E-04 6.4626E-04 7.1113E-04 9.5985E-04
c7 8.8017E-05 6.5178E-05 -8.7940E-05 -2.6819E-04 -2.6178E-04
c9 -2.0495E-05 -1.1058E-04 -1.9030E-04 -2.9603E-04 -4.0002E-04
c11 -4.1350E-05 -1.5731E-05 7.9399E-05 1.7102E-04 1.5289E-04
c13 -1.2483E-04 -1.8550E-04 -1.8922E-04 -1.3610E-04 -9.0098E-05
c15 -2.7898E-04 -5.5093E-04 -7.0011E-04 -7.0193E-04 -5.8468E-04
c17 -1.5939E-04 -2.9773E-04 -3.6205E-04 -3.6966E-04 -3.2437E-04
c19 7.6067E-05 1.6202E-04 2.2437E-04 2.3772E-04 2.1392E-04
c21 9.6771E-05 2.0077E-04 2.5467E-04 2.5607E-04 2.1167E-04
c23 9.1052E-06 2.9877E-06 -1.0400E-05 -1.6869E-05 -1.5025E-05
c25 -1.1033E-05 -2.9560E-05 -4.2249E-05 -4.6413E-05 -4.0090E-05

coeff. node index
30

node index
35

node index
40

node index
45

node index
50

c1 1.8627E-02 1.9419E-02 1.9914E-02 2.0141E-02 2.0181E-02
c3 1.8966E-03 5.2897E-04 -5.2013E-04 -1.1451E-03 -1.3525E-03
c5 1.0653E-03 8.3402E-04 6.4074E-04 5.7865E-04 5.7157E-04
c7 -9.8832E-05 -5.9372E-05 -9.3847E-05 -1.0767E-04 -1.1173E-04
c9 -3.2529E-04 -2.3706E-04 -1.6767E-04 -1.2218E-04 -1.0766E-04
c11 1.1990E-04 1.2525E-04 1.2060E-04 1.0806E-04 1.0355E-04
c13 -9.2423E-05 -5.4096E-05 -4.7629E-05 -5.0636E-05 -5.3031E-05
c15 -4.2372E-04 -2.7229E-04 -1.6163E-04 -8.8302E-05 -6.4671E-05
c17 -2.5400E-04 -1.6877E-04 -1.3537E-04 -1.1418E-04 -1.0804E-04
c19 1.6812E-04 1.8134E-04 1.3688E-04 1.0803E-04 9.9642E-05
c21 1.5880E-04 1.2464E-04 5.6321E-05 1.4538E-05 2.9129E-06
c23 -3.3110E-06 3.3478E-05 1.4596E-05 7.8481E-06 7.4156E-06
c25 -3.7999E-05 -3.8834E-06 -1.1123E-05 -1.3649E-05 -1.3739E-05

V. DISCUSSION

Herein all steps of the proposed work will be summarized
and the main contributions will be briefly discussed.

The first step is an identification of the sample subsets
that represent Chebyshev nodes of the first and the second
kind dependent of a given sampling frequency. Expressions
(9) and (10) (Section II B) show explicit solution.
Generation of the corresponding SHLC approximation
polynomial is performed using (11)–(14) and (15)–(18)
(Section II C). Described linearization approach gives the
first important result – the degree of an approximation
polynomial should be equal to the number of significant
harmonics of an excitation current or slightly greater, to
achieve expected DFT accuracy level.

The successful interpolative prediction of an inner SHLC
requires usage of CHN_II nodes, along with decomposition
of all measured SHLCs to its hysteretic and anhysteretic
components. These issues, along with the choice of optimal
subsets of CHN_II nodes, were analysed and resolved
through Section III and Section IV.

The interpolative prediction of an arbitrary inner SHLC
was tested through prediction of hysteretic SHLC
components and its essence is presented in Section IV D.
Since the hysteretic component of one SHLC and their
interpolation polynomial are both even functions, core
losses are predicted directly using (24).

VI. CONCLUSIONS

The linearization approach provides simple and efficient

procedure of any magnetic curve approximation by
generating an accurate interpolation polynomial. The level
of accuracy of these polynomials can be adjusted choosing
proper number of Chebyshev nodes, and the level of
accuracy can be directly traced and observed. The situation
with the fitting functions usage is mainly different, but this
important topic exceeds the frame of this work.

The interpolative prediction of an inner SHLC requires
that all measured SHLCs have to be decomposed to its
hysteretic and anhysteretic component. In that case, the
interpolative procedure must be performed over either
normalized MF or EA domain. Moreover, generated
interpolation polynomial can be transformed into the
corresponding one from an actual MF domain without any
loss of accuracy.

Finally, sum of both hysteretic (even) and its
corresponding anhysteretic (odd) SHLC interpolation
polynomial gives the actual SHLC interpolation polynomial.

REFERENCES

[1] G. F. T. Widger, “Representation of magnetisation curves over
extensive range by rational fraction approximations”, in Proc. IEEE
vol. 116, 1969, pp. 156–160. Online. [Available]: http://dx.doi.org/
10.1049/piee.1969.0032

[2] J. Rivas, L. M. Zamarro, E. Martin, C. Pereira, “Simple
approximation for magnetization curves and hysteresis loops”, IEEE
Trans. Magn. vol. 17, no. 4, pp. 1498–1502, 1981. Online.
[Available]: http://dx.doi.org/10.1109/TMAG.1981.1061241

[3] J. Takacs, Mathematics of Hysteretic Phenomena. N. Y.: Hoboken
Wiley/VCH, 2003.

[4] I. Meszaros, “Complex magnetic characterisation of iron-silicon
transformer sheets”, Journal of Electrical Engineering, vol. 57,
no. 8/S, pp. 151–154, 2006.

[5] O. de la Barriere, C. Ragusa, C. Appino, F. Fiorillo, “Prediction of
energy losses in soft magnetic materials under arbitrary waveforms
and DC bias”, IEEE Trans. On Industrial Electronics, (Accepted for
publication) Online. [Available]: http://dx.doi.org/10.1109/
TIE.2016.2608886

[6] S. E. Zirka, Y. I. Moroz, R. G. Harrison, N. Chiesa, “Inverse
hysteresis models for transient simulation”, IEEE Trans. Power
Delivery, vol. 29, no. 2, pp. 552–559, 2014. Online. [Available]:
http://dx.doi.org/10.1109/TPWRD.2013.2274530

[7] S. E. Zirka, Y. I. Moroz, R. G. Harrison, N. Chiesa, H. K. Hoidalen,
“Implementation of inverse hysteresis model into EMTP – Part I:
static model”, IEEE Trans. Power Delivery, vol. 30, no. 5, pp. 2224–
2232, 2015. Online. [Available]: http://dx.doi.org/10.1109/
TPWRD.2015.2416201

[8] S. E. Zirka, Y. I. Moroz, R. G. Harrison, N. Chiesa, H. K. Hoidalen,
“Implementation of inverse hysteresis model into EMTP – Part II:
dynamic model”, IEEE Trans. Power Delivery, vol. 30, no. 5,
pp. 2233–2241, 2015. Online. [Available]: http://dx.doi.org/
10.1109/TPWRD.2015.2416199

[9] C. Alonso, S. Jazebi, F. de Leon, “Experimental parameter
determination and laboratory verification of the inverse hysteresis
model for single-phase toroidal transformers”, IEEE Trans.
Magnetics, (Accepted for publication). Online. [Available]:
http://dx.doi.org/10.1109/TMAG. 2016.2591000

[10] D. C. Jiles, D. L. Atherton, “Theory of ferromagnetic hysteresis”, J.
Magnet. Magn. Mater, vol. 61, pp. 48–60, 1986. Online. [Available]:
http://dx.doi.org/10.1063/1.333582

[11] D. C. Jiles, J. B. Thoelke, “Theory of ferromagnetic hysteresis:
Determination of model parameters from experimental hysteresis
loops”, IEEE Trans. Magn., vol. 25, no. 5, pp. 3928–3930, 1989.
Online. [Available]: http://dx.doi.org/10.1109/20.42480

[12] F. Preisach, “Uber die magnetishe nachwirkung”, Zeit. Physik,
vol. 94, pp. 277–302, 1935. (in German). Online. [Available]:
https://doi.org/10.1007/BF01349418

[13] E. Della Torre, “2 The Preisach model”. Magnetic Hysteresis, pp. 31–
51, 1999.

[14] M. Hoffman, H.-G. Herzog, “Modeling magnetic power losses in
electrical steel sheets in respect of arbitrary alternating induction
waveforms: theoretical considerations and model synthesis”, IEEE
Trans. Magn., vol. 51, no. 2, 2015. Online. [Available]:

16



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 4, 2017

http://dx.doi.org/10.1109/TMAG.2014.2353579
[15] A. E. Fitzgerald, C. Kingsly, S. D. Umans, “1.4 AC Excitacion”,

Electric Machinery, pp. 24–28, 2003.
[16] N. Petrovic, V. Pjevalica, V. Vujicic, “The theorem about the

transformer excitation current waveform mapping into the dynamic
hysteresis loop branch for the sinusoidal magnetic flux case”, Serbian
Journal of Electrical Engineering, vol. 12, no. 1, pp. 33–52, 2015.
Online. [Available]: http://dx.doi.org/10.2298/SJEE1501033P

[17] J. C. Masson, D. C. Handscomb, “4.6 Discrete orthogonality of
Chebyshev polynomials and 4.7 Discrete Chebyshev transforms and
the fast Fourier transform”, Chebyshev polynomials, 2003.

[18] G. M. Phillips, “2.3 Finite Point Sets”, Interpolation and Approximation
by Polynomials, pp.82–87, 2003.

[19] N. Petrovic, V. Pjevalica, N. Pjevalica, N. Teslic, “Comparative analysis
of error distribution for symmetric hysteresis loop curves
approximation by means of cosine and trigonometric polynomial”,
presented at the 2nd Int. Conf. IcETRAN, Silver Lake, Serbia, 2015.

[20] G. Goev, V. Masheva, M. Mikhov, “Fourier analysis of AC hysteresis
loops”, IEEE Trans. on Magnetics, vol. 39, no. 4, pp. 1993–1996,
2003. Online. [Available]: http://dx.doi.org/10.1109/TMAG.
2003.814288

[21] N. Pjevalica, N. Petrovic, V. Pjevalica, N. Teslic, “Experimental
detection of transformer excitation asymmetry through the analysis of
the magnetizing current harmonic content”, Elektronika ir
Elektrotechnika, vol. 22, no. 2, pp. 43–48, 2016. Online. [Available]:
http://dx.doi.org/10.5755/j01.eie.22.2.14590

17




