
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 3, 2017


Abstract—The paper suggests a technique for fast data

processing of unique and constrained items. The technique is
based on two methods that involve: 1) address-based data
sorting; and 2) communication-time networks. Input data are
received one by one from a sequential channel. The first
method enables undesirable values (e.g. previously taken or
explicitly blocked) to be discarded. Although this method is
chosen from the scope of data sorting, it is used in the paper
(after some adjustments) for filtering. The second method
enables each data item to be properly handled during
communication time. For example, in case of data sorting it
means that as soon as a new item is received it will immediately
be placed in a proper position of the produced sorted subset
that is composed of all previously acquired items. The circuits
that implement the proposed methods have been entirely
modeled and verified in software, then described in VHDL,
synthesized and implemented in hardware, and finally
evaluated. The results have shown that the proposed solutions
are well suited for real-time applications.

Index Terms—Address-based sorting; data filtering; sorting
networks; communication-time circuits; FPGA.

I. INTRODUCTION

Data processing is one of the most common procedures in
computational systems. Examples of such processing are
data sorting/searching, discovering of frequent items,
filtering and so on. Very often different operations over data
are implemented in highly parallel networks that take input
values and convert them to output values in a combinational
circuit. The output values are not formed immediately
because input signals pass through logic elements each of
which causes a delay on a way of the signals from the inputs
to the outputs. In many practical applications we would like
to handle just non-repeated values, i.e. each of such values is
unique. Let us consider, for instance, a set of natural values:
{4, 0, 18, 5, 6, 4, 3, 3, 4} and some of them (e.g. the values
3 and 4) are repeated. Hence, the set of unique or non-
repeated values is {4, 0, 18, 5, 6, 3}. For many practical
applications that can be found in cryptography,
bioinformatics, feature extraction, data mining and some

Manuscript received 30 November, 2016; revised 9 March, 2017.
This research was supported by the institutional research funding IUT

19-1 of the Estonian Ministry of Education and Research and Portuguese
National Funds through FCT - Foundation for Science and Technology, in
the context of the project UID/CEC/00127/2013.

other areas, we would like to separate out only unique
values and, besides, even some of such values need to be
discarded, i.e. they are not allowed to be taken for the
subsequent processing. For instance, in the set with unique
values, given above {4, 0, 18, 5, 6, 3}, we may block some
interval, for example, the values greater than or equal to 5
and less than or equal to 6. With such the requirement the
set above is reduced to the set: {4, 0, 18, 3}. In many cases
this task needs to be solved in real time, data processing has
to be very fast and, thus, hardware accelerators are
necessary. The paper suggests one possible solution of this
problem through an integration of two methods involving
procedures from address-based data sorting and
communication-time or real-time data processing. The first
method, which is proposed in [1], considers the value v of
each data item as the memory address on which this
memory contains a one-bit flag indicating whether the value
v is new or has already been received. Let us assume that
data items are taken sequentially. It is shown below that the
method [1] permits very fast detection of unique (non-
repeated) items. To satisfy requirements of real-time
applications, processing has to be done as fast as possible.
The type of processing itself may vary but most often we
execute such procedures as sorting, searching, and filtering
(i.e. extracting items with the desired characteristics). The
majority of such problems can be solved in two of the most
frequently investigated highly-parallel circuits based on
sorting [2] and linear [3] networks. The majority of sorting
networks implemented in hardware use Batcher even-odd
and bitonic mergers [4]. There are limitations for both
circuits [4] and [3] because they either introduce a very long
propagation delay in [4] or are only suitable for a very small
number of items in [3]. This conclusion is also valid for
partially combinational and partially sequential networks
described in [5]. Such limitations make it difficult to apply
the mentioned above methods to real-time data processing.
We suggest such processing to be executed on circuits [6]
enabling data to be handled during communication time.
Thus, two major innovations of this paper are the following:

1. Detecting non-repeated and other constrained values
with the aid of a method inherited from the address-based
data sorting [1].
2. Fast data processing based on communication-time
networks that allow both sequential data acquisition and
processing (e.g. sorting) to be done in parallel. For

Fast Processing of Non-Repeated Values in
Hardware

Iouliia Skliarova1, Valery Sklyarov1, Alexander Sudnitson2

1Department of Electronics, Telecommunications and Informatics/IEETA, University of Aveiro,
Aveiro, Portugal

2Department of Computer Engineering, Tallinn University of Technology,
Tallinn, Estonia
iouliia@ua.pt

http://dx.doi.org/10.5755/j01.eie.23.3.18336

74

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 3, 2017

instance, if the main objective is data sorting then we
would like to get all the received data sorted immediately
after the last item has been taken from the input.
The indicated above two major innovations are discussed

in Sections II and III, accordingly.

II. DATA FILTERING

The objective of this section is to describe the proposed
simple, but efficient method that enables an input sequence
to be filtered and the output sequence to be formed in such a
way that:

1. All the source items are included in the output
sequence just once. If there are several items with the
same value then just one of them is included.
2. All predefined and explicitly indicated values are
removed from the output sequence.
The proposed circuit is created on the basis of [1]. Its

functionality is explained below on an example of modeling
of the circuit in the following Java program:

import java.io.*;
public class Generate_Non_repeated {

static Random rand = new Random();
final static int N = 32;
final static boolean[] for_test = new boolean[N];

public static void main (String args[])
{ int[] nr = new int[N];

clean();
for(int i = 5; i < 10; i++) block(i);
for(int i = 0; i < N; i++)

nr[i] = rand.nextInt(16);
for(int i = 0; i < N; i++)

if (verify_rep(nr[i])) // transfer to the output
// and process the item

}

public static boolean verify_rep(int check_me)
{ if (for_test[check_me] == true) return false;

else for_test[check_me] = true;
return true; }

public static void clean()
{ for(int i = 0; i < N; i++) for_test[i] = false; }

public static void block(int b)
{ for_test[b] = true; }

The program above generates randomly a set of integers
that are included in the array «nr». We declared also an
additional array «for_test» with Boolean values. This array is
used much like the memory for sorting data in [1]. All the
array elements are initially set to false value by the «clean»
function. In fact, it is done automatically in software but we
would prefer to invoke the function «clean» just to not forget
cleaning in hardware if required. The function «block»
allows some undesirable values to be blocked. As an
example, we eliminated all the values greater than or equal
to 5 and less than 10. The function «verify_rep» tests each
incoming value v and if this value appears for the first time
then on the address which is the same as the value v the
value true is written, otherwise the incoming value v has
already been processed previously and, thus, the new
repeated value is discarded. For the sake of simplicity, the
input sequence is generated randomly and some particular
limitations are settled. Clearly, the input sequence and the

limitations may easily be changed.
Figure 1 demonstrates the proposed filtering circuit,

which is very simple and fast.

input
data

item v

memory
address v

Memory of
vwords of
size 1 bit

output
data
item

Preloading to avoid
undesirable values

Simple
control

circuit (CC)
based on

FSM

OV

Fig. 1. The proposed filtering circuit (OV is the original value).

The core of the circuit is the memory that has v 1-bit
words. If the value 1 is written to an address v then the value
v is blocked, i.e. it cannot be included in the output
sequence, and otherwise the value v has to be included in the
output sequence. A simple control circuit (CC) is a finite
state machine (FSM), which preloads values 1 to the
memory to such addresses for which the corresponding
values v have to be discarded and sets the value 1 for the
first value v in the input sequence. The bottom AND gate (a
trivial multiplexer) either allows (when on the address v the
flag 0 is stored) or not (when on the address v the flag 1 is
stored) the value v to be transferred to the output.

The circuit in Fig. 1 is very fast. Preloading is executed
only during an initialization phase. Data are received and the
output is generated with the speed of access to the memory.
The details of hardware implementation will be discussed in
Section IV.

Note that a trivial modification of the circuit in Fig. 1
enables data items to be avoided if they fall in an interval of
close values. Let us assume that any input value of size M
bits can be handled (2logM    ). If we take only the
most significant M ‒ k bits as memory addresses in Fig. 1,
then the interval is composed of 2k close values. For
example if k = 2 then the intervals are {0, 1, 2, 3},
{4, 5, 6, 7}, {8, 9, 10, 11}, etc. The value 1 in the memory
written to the address v for our example denotes that one of
the values v, v + 1, v + 2, v + 3 has already arrived and, thus,
any subsequent value v, v + 1, v + 2, v + 3 will be discarded.
Hence, even a very simple circuit shown in Fig. 1 is
powerful enough and can be used in many practical
applications.

III. DATA SORTING

We demonstrate communication-time data processing on
an example of data sorting. At the beginning let us analyse
the circuit in Fig. 1. In [1] a similar circuit was used for
sorting data items. Indeed, as soon as all input data have
been received the values 1 in the memory permit to find the
sorted sequence with unique values. This sequence is
extracted by sequential reading the memory beginning from
the address 0 and forming the sorted data from the addresses
for which the values in the memory are 1. However, v clock

75

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 3, 2017

cycles would be needed for such type of processing. Since
we would like to sort the input sequence in real-time, the
elaborated in [1] solution cannot be chosen because it is
relatively slow. That is why we propose another solution
that is shown in Fig. 2.

Data from the
outputs of the
circuit in Fig. 1

This block includes
a customizable
network with a

general structure
shown in Fig. 1 in

[6]

CC based on
a simple FSM

A request for
data extraction

Output data

Potential
overflowing
and other

abnormal cases
Fig. 2. Communication-time data processing.

The largest block in Fig. 2 contains the circuit that
permits input data to be acquired and ordered. It includes a
register and a network connected to the register outputs.
Outputs of the network are connected once again to some
inputs of the register. All necessary details can be found in
[6]. As soon as a new data item arrives from the input (i.e.
from the output of the circuit in Fig. 1), it is placed in a
certain word of the register. This way permits at any time to
begin copying the sorted data items. Thus, any pre-filtered
data item received on the input of the circuit in Fig. 2 can be
accommodated within the subset that contains all the
previously received data items so that the sorted data from
the subset can be sequentially transferred to the output of the
circuit in Fig. 2 in either ascending or descending order
depending on customization of the network [6]. The Java
program below enables complete modeling of the larger
block in Fig. 2 to be done.

import java.util.*;
public class run_time
{ public static final int p = 3;

public static final int N = (int)Math.pow(2,p);
static int[] from_channel = {30,17,41,11,5,4,40,71};
static final int s[] = {1,2,4,8};

public static void main(String[] args)
{ int a[] = new int[N];

print_sorted(SN(a)); }

public static int[] SN(int a[]) { // receiving and
int tmp, j=0; // accommodating data
for(int x = 0; x < N; x++){

a[N-1] = from_channel[j++];
for(int k = 0; k < p; k++)

for(int i = 0; i < a.length/s[k+1]; i++)
if (a[s[k+1]*i+s[k]-1] < a[s[k+1]*i+s[k+1]-1])
{ tmp = a[s[k+1]*i+s[k]-1];

a[s[k+1]*i+s[k]-1] = a[s[k+1]*i+s[k+1]-1];
a[s[k+1]*i+s[k+1]-1] = tmp; }
for(int ii = 0; ii < a.length; ii++)
{ System.out.printf("%5d; ",a[ii]);

if (((ii+1)%N) == 0) System.out.println(); }
}

return a; }

public static void print_sorted(int a[]) { // extracting
int tmp, out; System.out.println(); // the sorted data
for(int x = 0; x < N; x++) {

for(int k = 0; k < p; k++)
for(int i = 0; i < a.length/s[k+1]; i++)

if (a[s[k+1]*i+s[k]-1] < a[s[k+1]*i+s[k+1]-1])
{ tmp = a[s[k+1]*i+ s[k]-1];

a[s[k+1]*i+s[k]-1] = a[s[k+1]*i+s[k+1]-1];
a[s[k+1]*i+s[k+1]-1] = tmp; }
out = a[N-1]; a[N-1] = Integer.MAX_VALUE;

System.out.printf("%5d;",out); }
System.out.println();

}
}

The array s is declared to be a static member in the main
class as: static final int s[] = {1,2,4,8,/*…2p */};, for example, for
p = 3 the declaration becomes the following: static final int
s[] = {1,2,4,8};. Fig. 3 demonstrates the results of the program
execution for the following (arbitrary chosen) input data:

static int[] from_channel = {30,17,41,11,5,4,40,71};

Clearly, the number of input data (i.e. from_channel.length)
and their values (i.e. {30,17,41,11,5,4,40,71}) may easily be
changed. Additional example is given below:

public static final int p = 4;
static int[] from_channel =
{30,17,41,11,5,4,40,71,330,7,401,111,55,9,16,39};
static final int s[] = {1,2,4,8,16};

where all necessary changes are shown to allow the number
of data items to be changed from 8 to 16. The values of data
items may be chosen arbitrary.

Fig. 3. The results of the Java program execution.

Figure 3 shows all the steps of accommodating input data
items in the major block of Fig. 2 for the given sequence.
The leftmost item (30 in our example) is always the first.
The second item (17 in our example) is the second and so
on. Lines of Fig. 3 (from the top to the bottom) show
accommodation in the register [6] of input data after a new
item has arrived. For example, the third line (0 0 0 0 17 30
41 0) shows the contents of the register [6] after three items
30, 17, and 41 have arrived. If we want to output data after
this step the output data will be transferred in the sorted
order, i.e. 41, 30, 17. Figure 3 presents the result (see the
bottom line) after receiving all 8 items from the input set
from_channel. If we link the first and the second program, we
can model in software the complete functionality of the
circuits proposed in this paper. Similar ideas may also be
used for other types of data processing.

IV. IMPLEMENTATION IN HARDWARE

The presented above Java programs have been converted
to VHDL specifications much like it is done in [6] using
also newly available tools described below. Synthesis and

76

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 23, NO. 3, 2017

implementations were done in the Vivado Design Suite of
Xilinx for the Nexys-4 prototyping board of Digilent [7].
We created a user-defined IP (Intellectual Property) core for
data sorting (see Section III) in VHDL. The circuit for
filtering (see Section II) is built in the Vivado IP block
integrator and the used memory is a dual-port RAM from
the system repository. This circuit is considered to be the
second user-defined IP. The top-level circuit was also
designed in the Vivado IP block integrator in such a way
that the IP cores for filtering and data sorting are taken from
the user repository. The experiments have shown that each
incoming data item is handled within the same time that is
required to read data from the dual-port RAM. An additional
multiplexer (see the bottom part of Fig. 1) adds an
insignificant delay. In the experiments, the size M of data
items is chosen to be 16 bits (it can easily be changed
through generic constraints). Thus, just one built-in FPGA
RAM is sufficient to create the memory for the circuit in
Fig. 1. Additional logic for this circuit occupies a negligible
part of the available FPGA resources. The circuit in Fig. 2 is
significantly more resource consuming. However, more than
one thousand data items can be handled even in the
relatively simple FPGA of the Nexys-4 board. Greater
number of data items can either be processed in an advanced
FPGA or a decomposition technique (see, for example,
sorting plus merging in [2]) can be used.

Note that the described above data processing has been
applied to only natural values that are greater than or equal
to zero. However, real numbers may also be processed with
the proposed technique. The only problem can appear for
the circuit in Fig. 1 because in this case it is substantially
more difficult to detect non-repeated values. One possible
way is to consider for each real value v the nearest integer
instead of v. This obviously leads to the loss of precision.
However, instead of original values we can deal with shifted
values. For example, in case of a decimal real value v we
can shift left the value v before the processing and handle
again the nearest integer instead of the real value v. Let v =
12.125. If we shift this value left by one decimal position
then the given value v will be changed to the value 121.25.
Finally, we will check the previously received values to
which the same type of shifting and conversion has been
applied. Clearly, processing the shifted values is more
precise than processing values rounded to the nearest
integer. Likewise, we can shift the original values by more
than one digit and achieve even better precision. Negative
numbers can easily be presented in the form of natural
numbers. Let x be the maximum absolute value of negative
integers. We can add x to the actual values v and handle
natural numbers for negative values. Note that the
communication-time circuit from [6] can sort real and
negative values.

Figure 4 depicts additional circuits that are needed to
handle real and negative numbers. The circuit in Fig. 4
executes pre-processing to convert negative numbers to
positive numbers and permits real numbers to be used. The
pre-processing circuit in Fig. 4 implements the described
above transformations of data items enabling the circuit in
Fig. 1 to be utilized much like as before. Generally
speaking, negative and real numbers are transformed to

some integers that are identical for data items that are
checked for repetition or discarding. Note that the original
values (see OV in Fig. 4) are transferred to the input of the
multiplexer (see the bottom part of Fig. 1 marked with OV).

in
pu

t d
at

a
ite

m
v

Adjustment
circuit

The minimal
negative
value

Number of
digits to shift

Co
nv

er
t r

ea
ls

to
 a

 fi
xe

d
po

in
t n

um
be

r

To
 th

e
m

em
or

y
in

Fi
g.

 1

OV

Fig. 4. Pre-processing of real and negative numbers.

V. CONCLUSIONS

The paper is dedicated to fast processing of non-repeated
values some of which can be discarded on request. The
emphasis is done on real-time applications in which data
items have to be received and processed with a minimal
possible delay. Several tasks have been discussed. The
objective of the first task is to avoid repeated values in the
input set that needs to be processed. The second task
analyses not only the exact value but also a set of the closest
values within the defined interval. The last task permits
additional predefined values to be also eliminated. The
proposed solutions are modelled and carefully evaluated in
software programs and implemented in hardware (in
FPGA). The experiments have demonstrated that the
suggested circuits enable data processing with the speed of
data transfer and are therefore applicable for real-time
systems.

REFERENCES

[1] V. Sklyarov, I. Skliarova, D. Mihhailov, A. Sudnitson,
“Implementation in FPGA of address-based data sorting”, in Proc.
21st Int. Conf. on Field Programmable Logic and Applications, Crete,
Greece, 2011, pp. 405–410. [Online]. Available: http://dx.doi.org/
10.1109/FPL.2011.81

[2] R. Mueller, J. Teubner, G. Alonso, “Sorting networks on FPGAs”,
The International Journal on Very Large Data Bases, vol. 21, no. 1,
pp. 1–23, 2012. [Online]. Available: http://dx.doi.org/10.1007/
s00778-011-0232-z

[3] J. Ortiz, D. Andrews, “A streaming high-throughput linear sorter
system with contention buffering”, International Journal of
Reconfigurable Computing, vol. 2011, 2011. [Online]. Available:
http://dx.doi.org/10.1155/2011/963539

[4] S. W. Aj-Haj Baddar, K. E. Batcher, Designing Sorting Networks. A
New Paradigm, New York: Springer-Verlag, 2011, 136 p. [Online].
Available: https://doi.org/10.1007/978-1-4614-1851-1

[5] M. Zuluada, P. Milder, M. Puschel, “Streaming sorting networks”,
ACM Transactions on Design Automation of Electronic Systems,
vol. 21, no. 4, 2016. [Online]. Available: http://dx.doi.org/10.1145/
2854150

[6] V. Sklyarov, I. Skliarova, A. Sudnitson, “Fast data sort based on
searching networks with ring pipeline”, Elektronika ir
Elektrotechnika, vol. 22, no. 4, pp. 58–62, 2016. [Online]. Available:
http://dx.doi.org/10.5755/j01.eie.22.4.15920

[7] Digilent, Inc., Nexys 4™ FPGA Board Reference Manual, 2016.
[Online]. Available: https://reference.digilentinc.com/lib/exe/
fetch.php?media=nexys:nexys4:nexys4_rm.pdf

77

