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and voltage waveforms. It is obvious, that the cause of the 
LF ripples in FM boost converter operating in DCM is the 
same as in FM buck converters and other FM SMPC: 
output voltage averaged over switching period (<vout>) 
depends on the switching frequency which changes in time 
with modulation frequency fm.  

 

 
Initially LF ripples of open-loop FM boost 

converter will be considered. For this purpose averaged 
circuit model for boost converter in DCM from [10] can be 
used (see Fig.3). It follows from this model that LF ripples 
for open-loop boost converter in operator form are 
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where ĩd(s)is small-signal AC component of time-averaged 
diode current; Hout(s) is output voltage to diode current 
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From boost converter averaged circuit model it 
can be obtained that time-averaged diode current is [10]  
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where d is instantaneous duty ratio. Assuming that d=D, 
output DC voltage Vout>>ṽout, and using the first-order-
Taylor-series-approximation for (6) it can be obtained that 
averaged diode current LF component is as follows 
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Now let us consider LF ripples of closed-loop FM 
boost converter. For this purpose small-signal averaged FM 
boost converter model is used as shown in Fig.4. The 
model is slightly modified version of unmodulated boost 
converter small-signal averaged model obtained from [11]. 
It follows from this model that LF ripples for closed-loop 
boost converter in operator form are 
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where T(s) is boost converter open-loop gain in DCM 
according to [4, 11] 
 

                            T(s)=Hdiv(s)Hc(s)Hco(s)HPWM(s),            (9) 
 

where HPWM(s)is PWM gain; Hdiv(s) and Hc(s) are voltage 
divider and compensation circuit transfer functions 
respectively; Hco(s) is boost SMPC control-to-output 
transfer function in DCM as follows [12] 
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Fig. 2. Simulated closed-loop boost converter OVR in DCM: (a)
without FM; (b) with sinusoidal FM. (Parameters: fm=1kHz
fsw=80kHz; Δfsw=30kHz Cout=330µF; L=40µH; rcout=0.035Ω;
Rload=120Ω; fcut=4kHz; Vin=7V; Vout=19V) 

 
Fig. 1. Schematic of closed-loop boost converter 
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Fig. 3. Open-loop boost SMPC averaged circuit model in DCM  

 
 

Fig. 4. Small-signal averaged closed-loop FM boost SMPC model
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As an example the transfer functions for the 
closed-loop boost SMPC are shown in Fig.5. 

To derive the steady-state LF ripples ṽLF(t) in time 
domain, the inverse Laplace transform of the Eq. (8) should 
be applied. The LF ripples in the time domain for 
sinusoidal FM can be easily obtained from (8) as follows 
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where Hfull(j2πfm)=Hout(j2πfm)/(1+T(j2πfm)). Total FM boost 
converter OVR Vofmp-p for different periodic modulating 
signals m(t) can be calculated using (1), (2) and (8). As an 
example calculated, simulated in Simulink and 
experimental Vofmp-p for comparison reasons are summarized 
in Table 1 for FM closed-loop boost converter in DCM. 
The difference between the results is not high; therefore the 
expressions derived can be used for the analysis and 
calculations of OVR.  
 
Table 1. Comparison of the calculated, simulated and 
experimental peak-to-peak OVR for closed-loop boost FM SMPC 
with fm=1 kHz; fsw=80 kHz; fcut=4 kHz; Rload=120 Ω 

 
Experimental verification 
 

For the experimental verification of the theoretical 
and simulated results FM closed-loop boost converter was 
designed and tested. The converter nominal output voltage 
is 19 V and nominal fsw=80 kHz. As PWM control circuit 
SG2524 is used. Simplified schematic diagram is shown in 
Fig. 6. For modulating the switching frequency approach 
proposed in [14] is applied by inducing modulation signal 

m(t) via RC circuit in timing resistor pin RT of the control 
circuit.  

Peak-to-peak OVR were measured using a digital 
oscilloscope. The measurement results are shown in Table 
1 and in Fig.7. As it can be seen the difference between the 
theoretical and experimental results is lower than 8%. The 
differences in Fig. 7 are mainly due to the digital 
oscilloscope measurement accuracy and due to the fact that 
the theoretical Vofmp-p is calculated assuming that HF OVR 
are only due to ESR of the output capacitor. 
   
Influence of modulation parameters on OVR 
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Fig. 5. Closed-loop boost FM SMPC transfer functions in DCM.
(Parameters: Cout=330µF; L=40µH; rcout=0.035Ω; Rload=120Ω;
fcut=4kHz; Vin=7V) Fig. 6. Simplified schematic of the experimental setup 
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Fig. 7. Closed-loop boost FM SMPC peak-to-peak OVR versus
fsw, fm, Δfsw. (Parameters: Cout=330 µF; L=40 µH; rcout=0.035 Ω;
Rload=120 Ω; fcut=4 kHz; Vin=7 V) 
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In order to allow a designer to simplify choice of 
proper values of modulation parameters (fsw, fm, Δfsw), their 
influence on Vofmp-p should be examined. In Fig.7 Vofmp-p 

versus fsw , fm , Δfsw are shown both using (1), (2), (12) and 
experimental measurements. As it can be seen from the 
results increasing Δfsw leads to increasing  Vofmp-p. For rather 
small Δfsw (<20kHz) the increase is almost linear. This 
however can also be concluded after simplification of the 
derived expressions ((2) and (12)) and using the first-order-
Taylor-series-approximation of (2)). Vofmp-p decreases as fsw 
increases. Vofmp-p depends also on fm, mainly because LF 
ripples depend on FM boost converter transfer function 
Hfull(j2πfm) as it can also be deduced from (8), (12) and Fig. 
5. It should be noted that changing fm has minor effect on 
Vofmp-p in closed-loop FM SMPC (see Fig. 7(c)), however in 
open-loop FM SMPC the effect is much more appreciable.  
 
Conclusions 
 

Output voltage ripples of closed-loop boost SMPC 
in DCM increase due to the use of FM. OVR can be simply 
analyzed and calculated using the expressions derived in 
the paper. Theoretical analysis of OVR of boost FM 
converter shows that OVR consist of both HF ripples which 
also present in unmodulated SMPC and LF ripples with fm. 
HF ripples can be calculated using expression of OVR for 
unmodulated SMPC, but LF ripples can be calculated using 
boost SMPC averaged circuit model. 

FM boost converter peak-to-peak OVR depend on 
modulation signal and its parameters:  fm , Δfsw.   The higher 
Δfsw is the higher peak-to-peak OVR are, so Δfsw should be 
chosen not only from EMI attenuation point of view but 
also OVR should be considered. The results presented in 
the paper can be helpful when designing FM SMPC 
operating in DCM.   
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In the paper output voltage ripples (OVR) of switching frequency modulated (FM) boost switch-mode power converter (SMPC) 
operating in discontinuous conduction mode (DCM) are examined thoroughly. Useful expressions to calculate OVR for closed-loop 
boost SMPC operating in DCM are derived and verified both using simulations in SIMULINK and experimentally. Influence of 
parameters of modulation and control signals on OVR is also examined. The results presented in the paper can be helpful when 
designing FM SMPC operating in DCM. Ill. 7, bibl. 12, tabl. 1 (in English; abstracts in English and Lithuanian). 
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Ištirtos dažniu moduliuoto aukštinančiojo keitiklio veikiančio nenutrūkstamo laidumo režimu išėjimo įtampos pulsacijos (IĮP). 
Išvestos ir modeliuojant SIMULINK bei eksperimentiškai patikrintos išraiškos, skirtos minėtų keitiklių išėjimo įtampos pulsacijoms 
skaičiuoti. Taip pat ištirta moduliacijos parametrų ir valdymo signalų įtaka IĮP. Pateikti rezultatai gali būti naudingi projektuojant tokio 
tipo keitiklius. Il. 7, bibl. 12, lent. 1 (anglų kalba; santraukos anglų ir lietuvių k.). 

 


