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Abstract—Spanning-Tree Protocol (STP) has nowadays
been implemented by most manufacturers in order to avoid
loops in bridged networks. IEEE 802.1D STP is the original
standard and it is run as a distributed algorithm by every
bridge. In this paper we propose a formal specification of that
STP by using a Process Algebra named Algebra of
Communicating Processes (ACP), following a manual
approach. Furthermore, STP protocol verification has been
performed, both in a formal and in an informal way.

Index Terms—ACP; distributed algorithms; formal protocol
specification; STP.

1. INTRODUCTION

Redundancy is a key feature in today’s networks that
provides fault tolerance topologies, thus cracking down on
unplanned downtime, such as that caused by system or
communication failures.

This concept may be modelled by using Formal
Description Techniques so as to check whether some
behavioural properties are met. In order to do that, a model
is first designed as close to real as possible, then a formal
specification is algebraically derived based on the aforesaid
model, and eventually a verification procedure is performed
to prove it right.

As far as redundancy in the networking field is concerned,
we must focus on the OSI model [1], as it is necessary to
distinguish between data link layer cases (OSI layer 2) and
network layer cases (OSI layer 3).

The difference is that headers in layer 3 protocols have a
TimeToLive field which is a reverse counter being
decremented one unit at every hop, which lets the packet
being discarded if it reaches zero. Therefore, a packet within
a layer-3 loop will eventually be rejected and it will then
disappear from the network.

Otherwise, headers in layer 2 protocols do not have such a
field, so a frame within a layer-2 loop will never be rejected
and will be forever into the network, thus consuming
network resources, slowing down network performance and
eventually bringing down the network segment. This fact is
known as broadcast storm and it must obviously be avoided.

Therefore, extreme care should be taken when dealing
with layer 2 loops, composed by bridges, as they could cause
fatal consequences in the network performance if a bridging
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loop is formed.

Regarding redundancy at data link layer in the OSI model,
the most important methods are link aggregation allowing
multiple physical links to be treated as a single logical one
but letting the link up whether any of its components comes
down and the Spanning Tree Protocol (STP) allowing the
construction of a logical loop-free tree within a physical loop
topology, the latter being the key player.

STP algorithm was first designed by Radia Perlman back
in 1985 [2] but it was not until 1990 that the protocol got
first standardised as an architecture for the interconnection
of IEEE 802 Local Area Networks under the name IEEE
802.1d-1990, superseded later in 2004 by IEEE 802.1d-
2004 [3]. This one is usually called the original STP.

Some amendments were added up throughout the years to
that original STP, resulting in the issue of a new standard in
2001, namely IEEE 802.1w. The main point of it was the
dramatic reduction of the delay required in the switch to get
into forwarding state, and that is why it is usually called
rapid STP.

Both STP versions, the original one and the rapid one,
build a unique STP tree within a physical loop in order to
reach all bridges by conforming a path with the least cost
among all the members of that physical loop. The effect of
converting a loop into a tree is breaking the physical loop in
a logical manner by blocking one of the ports within the loop
whilst all of its members may still get to any other one.

In the meantime, some manufacturers implemented a per
VLAN version of both protocols, allowing the
implementation of a different STP instance for every VLAN
deployed in the bridges within a loop. This allows the
possibility of having a different blocking port in different
VLAN:Ss, so permitting load balancing strategies within the
physical loop.

This variation may initially seem fully beneficial, but
there are a couple of drawbacks as more network resources
are needed as the number of VLANSs grows and additionally
there are only two different paths to go through a loop.

In order to cope with that, a new standard was released in
2002, namely IEEE 802.1s, making possible to associate
different VLANs to a single instance of STP, hence
permitting the optimization of network resources
consumption, as when many VLANSs are defined, some of
them will share the same STP structure, so the same port will
be in blocking state. Because of this, it is usually called
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multiple STP.

The standard supporting the use of VLANs is IEEE
802.1Q, which also incorporates all STP implementations
defined so far, all of them being backward compatible to
each other, thus allowing the interconnection of bridges with
different implementations of STP.

Regarding STP specification and verification using formal
methods [4], there is a shortage of papers in the literature
concerning this area. Among the few of them, two categories
might be distinguished, namely, those working specifically
with original STP and those doing it with distributed leader
election algorithms.

On one hand, within the first group it is worth mentioning
[5] and [6], although the model implemented in both papers
is not the typical bridge loop seen in production networks, as
the modelled loops therein are formed by an alternation of
bridges and LAN segments whilst real production loops are
usually formed just by bridges and LANs are connected to
those bridges.

On the other hand, within the second group it is worth
citing [7]-[9], where different leader election algorithms in a
distributed fashion are presented and verified using various
tools. STP-like implementations are built with those
algorithms for diverse situations, even though none of them
are particularly designed to fit the original STP algorithm
specifications.

Therefore, the idea herein is to create an STP model
whose behaviour is as close to the original STP specification
as possible. Furthermore, a distributed algorithm will be
designed following the aforesaid specification, which will be
part of that overall STP model.

The organisation of this paper will be as follows: first,
Section II introduces ACP, then, Section III presents an STP
informal specification, next, Section IV shows an STP
bridge model, after that, Section V works on STP formal
specification, later, Section VI performs STP verification,
and finally, Section VII will draw the final conclusions.

II. ALGEBRA OF COMMUNICATING PROCESSES

There are many ways to specify and verify communication
protocols but maybe the most elegant and effective method
is based on abstract algebras. They could be seen as the
branch of algebra aimed at studying the algebraic structures,
such as groups, rings or fields, along with their associated
homomorphisms.

Communication protocols are usually composed of some
processes executing in a concurrent manner, in a way that
they interact with each other and at the same time with their
environment. Therefore Process Algebras might be
considered as a mathematical framework to work and reason
with concurrent processes in a formal way [10], similar as
abstract algebras do.

Process Algebras contain basic operators to label finite

processes, communication operators to work with
concurrency, recursion to outline infinite behaviour,
encapsulation  operators to  force actions into

communications and abstract operators to hide internal
computations [11].
When working with Process Algebras, it is crucial the
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concept of bisimulation equivalence, or bisimilarity,
meaning that two processes are bisimilar if they can execute
the same string of actions and they have the same branching
structure as well.

This concept helps identify equivalent systems just
according to the behaviours of their process terms, thus
abstracting away from other details. As happens with
abstract algebras, axiomatisation models have been created
in order to prove that two process terms are bisimilar,
meaning that they are behaviourally equivalent.

There are three main approaches to Process Algebras and
concurrency [12], such as CSP (Communicating Sequential
Processes), CCP (Calculus of Communicating Systems) and
ACP (Algebra of Communicating Processes).

Among them, ACP aims to present a system of axioms in
order to describe process theory without caring about the
mathematical definition of a process, thus abstracting away
from the real nature of those processes.

In this paper, we are going to focus on ACP, but this has a
limitation as it just works with processes. Therefore, in order
to add up data types to the models, there are some
extensions, such as the software packages pnCRL and its
evolution mCRL2 [13], which also allows the introduction
of time constraints, or alternatively the package CADP [14].

1.

The focus in this paper will be put on the operation of the
original STP. This protocol is on by default in all ports of a
bridge.

The premise to understand STP is to distinguish between
control-plane traffic and data-plane traffic among bridges.
On one hand, the former consists of device-generated frames
required for the proper operation of a network, named
BPDUs, an acronym standing for Bridge Protocol Data Unit,
providing the path that the latter must follow. On the other
hand, the latter consists of user-generated frames being
forwarded to another user. Therefore, it may be said that the
former shows the way that the latter follows.

The basic function of STP is to prevent loops in data-
plane traffic, so it converts a physical bridge loop into a
logical tree-like structure, where there is no loop.

In order to accomplish that, STP chooses a particular
bridge to be the Root Bridge and assigns costs to each link
within the loop. That way, the port belonging to a bridge
within the loop whose path to the Root Bridge has got the
largest cost will be blocked for user data traffic, thus
effectively breaking the loop.

Regarding control-plane traffic, every link joining two
bridges within a loop must have an end whose role is to be a
Designated Port, which is the one sending BPDUs, whereas
the other end may have a role as either a Root Port or a Non-
Designated Port, which is the one receiving BPDUs.

Each bridge within a single loop has only two neighbours,
hence the Root Bridge will have both of its ports within a
loop when operating in Designated Port role.

Alternatively, the non-root bridges must have a port with
the least cost to the Root Bridge within a loop when running
STP in the Root Port role. The role of the other port in a
non-root bridge may be Designated Port if it propagates

STP INFORMAL SPECIFICATION
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along the BPDUs issued by the Root Bridge and received by
its Root Port, or otherwise Non-Designated Port if it does
not propagate them any further, and that will depend on the
STP algorithm calculations.

Accordingly, BPDUs are sent from all Designated Ports to
the other end of each link depending on the HelloTimer
settings, which is 2 seconds by default. Those BPDUs are
generated by the Root Bridge and will travel along the
topology from bridge to bridge until they reach the only one
Non-Designated Port, where they will stop.

In a way, STP might be compared like a double path
starting at the Root Bridge and ending at the non-root bridge
having the Non-Designated Port. Consequently, there must
be just one Root Bridge and one Non-Designated Port within
a bridge loop.

In relation to data-plane traffic, it follows the role ports to
assign a state to each port. This is, Designated Ports and
Root Ports will be set in Forwarding state, thus sending and
receiving user data traffic, whereas the Non-Designated Port
will be put in Blocking State, thus being the port breaking
the loop as no user data traffic will be allowed.

In short, control-plane traffic is associated with role ports,
whereas data-plane traffic is linked to state ports. All these
information will be given by the outcome of the STP
algorithm, which basically will appoint the Root Bridge and
the Non-Designated Port within a non-root bridge.

As far as STP operation is concerned, when a bridge first
gets connected to other bridges, it assumes it is the Root
Bridge, therefore its ports are all in Designated role and they
start sending BPDUs out to its neighbour bridges.

As long as those other bridges receive those BPDUs, they
run the STP algorithm in order to check whether the values
received are better than theirs referring to the election of the
Root Bridge and all port roles within the bridge loop,
including the Non-Designated Port. If this is the case, they
will update the aforesaid values accordingly.

The STP algorithm makes tie-breaking decisions based on
a sequence of four conditions: lowest BridgeID, lowest root
path cost to Root Bridge, lowest sender BridgelD and lowest
sender PortID. The first one gets the Root Bridge, whereas
the other ones get the port roles for all bridges taking part in
that loop in a tie-breaker fashion.

With regard to BridgelD, it is the concatenation of
priority and MAC address, being the latter a unique value.
This makes that attribute an ultimate tie-breaker in order to
choose the Root Bridge. Furthermore, PortID is also unique,
so that will be an eventual tie-breaker when dealing with
port roles. In short, those sequential tie-breakers will assure
that there will be only one Root Bridge and one Non-
Designated Port in any bridge loop.

This is an STP informal specification, but we are looking
forward to implementing an STP formal specification that
captures the protocol behaviour by getting some ACP
bisimilar process terms.

IV. STP BRIDGE MODEL

The first step in order to formally specify the STP
protocol is to get a model of the main tasks performed by a
single bridge. For that purpose, it must be taken into account
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that a loop of bridges is formed by n bridges, so each one
might be enumerated from 0 to n—1.

The proper mathematical structure to model this would be
modular arithmetic, this is Z,, where integer numbers go
around in a circular fashion according to the operator
modulo 7, being n a natural number.

Those integers modulo n are obtained as the remainders of
the division of an integer by n and thanks to the congruence
relation in modular arithmetic, the following properties
apply:

nmodn=0modn = 0, (1)
—Imodn=(n—1)modn=n-1, 2)
imodn=i—>Vie[0..n-1]. 3)

The next step is to get the proper expression in ACP for
implementing a number of processes running concurrently.
This equation is provided by the Expansion Theorem
presented by Bergstra and Klop [15] and expands ACP
axioms for parallelism to »n objects executing
simultaneously.

That equation is shown below

XX, =X | X' +XXG X)X, @

where X' ={X,.X,}-{X;} and X"/ ={X..X,}-

-{x x5

The aforesaid expression states that left merge (|| ) and
communication merge (|) are altogether able to cover the
behaviour of concurrency (||), facilitating its mathematical
treatment. Both operators will be defined at a later stage.

This fact makes possible to calculate the interaction of »
concurrent processes, but regardless of how many bridges
you have in a loop, each bridge will only interact with its
two neighbour bridges.

Therefore a bridge i (B;) would have a connection with

i-1 (

connection with its successor bridge i +1 (B 1mod, ) -

B {modn) and another

its predecessor bridge ;

On the other hand, the connection getting to bridge i
from its neighbour bridge i —1 will be named as channel i

(G
neighbour bridge

(

) whereas the connection going from bridge i to

i+1 will be called channel i+1
Ci+1m0dn)'
Additionally, each bridge will have an associated timer

signalling when the HelloTimer goes off (7;) and the

connection from that timer i to its corresponding bridge i
is called ¢; .

Putting all together, we get a topology for a loop with n
bridges as in Fig. 1, where all elements are enumerated
following the modular arithmetic rules.

With this nomenclature in mind, the next step will be to
define the diverse actions a bridge may perform. These
actions may be:
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— sending BPDUs to its neighbour bridges, but only when

the HelloTimer goes off and only if the port looking at a

particular neighbour is in Designated role,

— receiving BPDU from its neighbour bridges at any time

and no matter what role the port looking at a particular

neighbour is in,

— killing the bridge after the MaxAgeTimer reaches its

limit, which is usually a times the HelloTimer, being o a

predefined constant value, holding 10 by default,

— initialising the bridge, hence the STP protocol, when

first connecting to a network, as all ports will go into

blocking state at the beginning.

In order to model those actions, first it is necessary to
define the structure of a generic process B;, which is

composed of a collection of fields.

Fig. 1. Loop with N bridges.

Some of those fields are built-in features, meaning they
cannot be changed, such as the MACaddress and both
PortNumbers, which will play the role of ultimate tie-
breakers in STP algorithm. In order to simplify things in this
model, the former will take the i value and the latter will get
the values of the channels connected to it.

In relation to PortNumbers, they will be expressed in the
array notation, where the array index will be used to
distinguish them both. This way, index zero will be assigned
for the one facing channel i and index one for the one
facing channel i+1 mod 7 . This notation will also be used
in all fields related to ports.

Some other fields are configurable features, meaning they
have a default value, but that value might be set up when
building up a new bridge, such as BridgePriority and both
PortCosts and PortPriorities. The default values assigned to
them are 32768 to the first one and 4 to the second ones,
simulating the default cost given by STP to GigabitEthernet
links. As per the third values, it will be 128, simulating
default STP values as well.

There are two composite fields formed by concatenating
other two. One of them is called BridgelD and is obtained by
joining the BridgePriority and the MACaddress. The other
one is named PortID and is built by attaching the
corresponding PortPriority and the PortNumber. Both
values will be obtained when initialising the bridge and they
contain the ultimate tie-breakers for the STP algorithm.

Also, there are other two fields for SupplierBridges that
will be known during the first exchange of BPDUs, as
neighbouring bridges do not change whilst they are on.

The rest of the fields will have changing values according
to each execution of the STP algorithm. Those fields are
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RootID, RootPathCost, both PortRoles and BridgeFlag.
All those fields and its default values are set in Table I.

TABLE 1. FIELDS WITHIN THE BRIDGE PROCESS.

Field Nomenclature Default Value
BridgelD BID 32768.1
RootID RID 32768.1
RootPathCost RPATH 0
PortID[0] PORTIDI[0] 128.1
PortID[1] PORTIDJ[1] 128.(i+1) mod n
PortCost[0] PCOST[0] 4
PortCost[1] PCOST [1] 4
SupplierBridge[0] BSUPPL[0] 0
SupplierBridge[1] BSUPPL[1] 0
PortRole[0] PROLE[0] 0
PortRole[1] PROLE[1] 0
BridgeFlag FLAG 0

In order to initialise process B;, this is, providing the

default values to all fields just described related to the bridge
i, an algorithm called /NIT; will be implemented. Default

values will be assigned to those fields in order to simplify
the implementation, as shown in Algorithm 1.

However, it might be possible to customise any of the
aforesaid configurable values just by adding up more
arguments to the INIT; algorithm and checking up the

number of arguments passed to the algorithm.

An example of this would be an If-Then-Else-EndIf
structure where if NumArgs==2, then the second argument
might be assigned to the bridge priority, thus modifying its
default value. This part has not been implemented for

simplicity purposes.

Algorithm 1. INIT(i):

INIT (i)

{

B(i) .BID = 32768.1
B(i) .RID = B(i) .BID
B(i) .RPATH = 0

B(i) .PORTID[0] = 128.1i
B(i) .PORTID[1] = 128.(i+1l) mod n
B(i) .PCOSTI[O0] = 4

B(i) .PCOST[1] = 4

B(i) .SUPPL[O0] = 0

B(i) .SUPPL[1] = O

B(i) .PROLE[O] = 0

B(i) .PROLE[1] = 0

B(i) .FLAG = 0

}

Regarding the sending BPDU action, it is necessary to
define a variable showing which role a port is in. This
variable has been named as F ;, where i is the bridge
identifier and j is the channel that port belongs to. In order
to distinguish the different roles a port might be in, F; ; may
hold the following values exhibited in Table II.

TABLE II. VALUES FOR VARIABLE P.

Port Role Value | Send/Receive BPDU | Associated State

Designated 0 SEND Forwarding
Root 1 RECEIVE Forwarding
Non- .

Designated 3 RECEIVE Blocking
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If the value related to the port role is zero, that port will
be sending BPDUs along the link and it might also be
receiving them at early stages of the STP process, but it will
not send them if that value is greater than zero, as it will only
be receiving them. When used in equations, logical NOT
(—P) will be applied in order to be 1 for Designated ports,
or otherwise to be 0 for the rest of roles.

In other words, at the beginning every port within a bridge
loop will be sending BPDUs, but after a number of BPDU
exchanges among them, every link within that bridge loop
will have an end where this variable holds zero and another
end with a higher value, despite both sides having zero value
at the very beginning.

At this point, it is time to define the algorithm called
BPDU; , which will be the one to carry the values of some

fields of a bridge i

neighbouring bridges.
Those values included in BPDUs are BridgelD (BID),

RootID (RID) and RootPathCost (RPATH) corresponding to

bridge i and they are carried by the structure 4; from that

bridge i to both of its neighbouring bridges. The BPDU

algorithm implementation is shown in Algorithm 2.
Algorithm 2. BPDU(i):

and passing them along to its

BPDU (1)

{

A(i) .BID = B(i) .BID
A(i) .RID = B(i) .RID
A(i) .RPATH = B(i) .RPATH

}

When a BPDU arrives at any of the neighbouring bridges,
the STP algorithm is run in order to compare the values
embedded within the BPDU with their own ones and change
them accordingly if they are any better.

The STP algorithm has two arguments, being the first one
the bridge identifier sending the BPDU and the second one
the bridge identifier receiving it. The STP algorithm
implementation is shown in Algorithm 3.

Algorithm 3. STP(x,1):

.RPATH
.PROLE
.PROLE
.FLAG

A.RPATH
ndex] =1
-index]
B(i) . PROLE
B(i) . PROLE

3
[
[

[1
[1 =
= index]+
+ 1-index]
(B(1i
+ B(1)

) .RPATH == A.RPATH +
.PCOST[index])

If (B(i).SUPPL[index] >
> B(i) .SUPPL[1-index])
Then
B(i)
Else
If

.PROLE [index] 3

(B(1) .SUPPL[index] <

< B(i) .SUPPL[1l-index])

Then
B(i)

Else
If

.PROLE [1l-index] 3

(B(1i) .PORTID[index] >
> B(i) .PORTID[1l-index])
Then
B (i)
Else
B (i)
EndIf
EndIf
EndIf
B(i) .FLAG = B(
B (i

3

.PROLE [index]

.PROLE [1-index] 3

1) .PROLE [index] +
) .PROLE [1-index]
EndIf
Else
If (B(1i)
Then
B(i) . PROLE
B(i) .FLAG

.BID > A.BID)

x] =3
) .PROLE [index]+
)

[inde
= B (i
+ B(i) .PROLE[1l-index]
EndIf
EndIf
EndIf
EndIf

}

STP(x,1)

{

If (x == (1-1)
Then index = 0
Else index =1

mod n)

EndIf
If (B(i).SUPPL[index] == 0)
Then B (i) .SUPP[index] = A.BID
EndIf
If (B(i) .RID > A.RID)
Then
B(i) .RID = A.RID
B(i) .PROLE [index] = 1
B(i) .PROLE[1l-index] = 0
B(i) .RPATH = A (i) .RPATH +
+ B(i) .PCOST[index]
B(i) .FLAG = B(i) .PROLE[index] +
+ B(i) .PROLE[1-index]
Else
If (B(i).RID == A.RID)
Then
If (B(i) .RPATH > A.RPATH +

+ B(i) .PCOST[index])
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Wrapping it all up, the modelization of a Bridge B; could
be expressed this way using ACP naming convention

B;(d) =t; x=FB ; x BPDU; x5;(d)x B;(d) +
+l ><ﬁPz’ i+lmodn XBPDU' ><Si+1modn(d)><Bi (d)+
+1;(d)x STF_1mod i X Bi (d) +

+]modn(d)XST i+1modn,i XB (d)+

+Haxt;)xkill; < t; > 0> INIT; x B;(d). (5)

V. STP FORMAL SPECIFICATION

Starting from the previous bridge model, and in order to
simplify calculations, we are going to work with the most
well-known loop topology for bridges, which is the
triangular one, this is, three bridges forming a loop. The
reasoning behind this case scenario may be analogous to a
loop formed by n bridges, as each bridge will only interact
with its two neighbouring bridges.

By adapting (5) to this case, we obtain the model for each
of those three bridges:
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By(d) =ty x =By g x BPDU( x so(d)* By(d) +
+tg x =y 1 x BPDU(y x 51(d) % By (d) +
+1y(d)x STPy o x By(d) +11(d) x STP, o x By(d) +
+(a xty) x killy <ty > 0> INITy x By(d),
By(d) =t; x—R 1 x BPDU, x51(d)x By (d) +
+t x =B o x BPDU| x5, (d)x B|(d) +
+1(d)x STFy; x B (d)+ 1y (d)x STP, ; x B (d) +
+Haxt)xkill; <ty > 0> INIT; x B (d),
By(d) =1ty x =Py 5 x BPDU, x5, (d)x By (d) +
+ty x =Py o x BPDU, x50(d) % By (d) +
+ry(d)x STR 5 x By (d) + 1y (d)x STRy , x By (d) +
+Haxty)xkill, <ty >0 INIT, x By (d).

to

(6)

(7

®)

(/0

Fig. 2. Loop with 3 bridges.

ACP notation has been used herein, but as stated
previously, that process algebra is only able to reason about
process terms. However, these models use not only
processes, but also data structures and time. Therefore, the
aforesaid models must be rewritten accordingly, thus
cancelling time-related variables and all the algorithms.

The resulting ACP model for each bridge will be reduced
to the sending and receiving actions, whereas STP algorithm
will be executed directly at the receiving end whenever there
is communication in any channel and in any direction:

C,

By(d) =—=Fy 0 xs(d)x By (d)+
+=Fy1 xs1(d)x By(d) +
+15(d)x By(d) +11(d) x By (d),
By(d)=—R 1 xs1(d)xBy(d)+

+=H 5 x5, (d)x B (d) +
+11(d)x By (d) + 1, (d)x B (d),
By (d) ==Py 5 xs55(d)x By (d) +

+=P, o x5 (d)x By (d) +
+1(d)x By (d)+1y(d)x By (d).

©)

(10)

(11)

Elsewhere, regarding ACP, it must be taken into account
the various possible types of outcome given by the
communication function. The point is that communication
will happen whenever a bridge sends a message through a
channel and its neighbour bridge at the end of that particular
channel reads it. All other kind of combinations between
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sending and receiving bridges will result in deadlock ().
Therefore, these are the valid combinations leading to
communication among bridges within our topology:

TABLE 1Il. VALID COMMUNICATION ACTIONS.

Channel S];ﬁ;lil(ilzleg Receiving Bridge | Communication
Co Bo sends: so(d) B2 reads: ro(d) co
Co B2 sends: so(d) Bo reads: ro(d) co
Ci B sends: si(d) Bo reads: ri(d) c1
Ci Bo sends: si(d) Bi reads: ri(d) ci
C2 B2 sends: s2(d) B reads: r2(d) c2
C2 Bi sends: s2(d) B2 reads: r2(d) c2

Therefore, if the sending and receiving actions from
neighbouring bridges flow through the same channel:
si(d)|r;(d)=c¢;(d), or otherwise, s;(d)|r;j(d)=0. This

must be taken into consideration as it will simplify
calculations by cancelling terms.
Furthermore, the encapsulation operator 0y will be used

to force atomic actions into communications, by hiding all
sending and reading actions over all channels, thus leaving
just allowed communications, as in Table III.

This way, set H is composed of

H:{sx(d),ry(d)}—>Vx, ye[0.n—1] where d is any

BPDU sent out of any given channel or received from any
given channel.

Therefore, if an element within the encapsulation operator
belongs to set H , the result of applying this operator to it
will be & (deadlock), whereas that same element will be
invariant otherwise.

In addition to it, (4) must be adapted to this case with
three concurrent bridges, which leads to

By(d) | Bi(d) || Br(d) =

=By(d)|| _(By(d) | By(d))+
+By(d) || _(By(d) || By(d)) +
+By(d) || _(By(d) || By(d))+
+(By(d) | Bi(d)) || _(By(d))+
+(By(d) | By(d)) || _(By(d))+
+(By(d) | By(d)) || _(By(d)). (12)

Therefore, when running three processes concurrently, the
outcome shows six terms, the first three of them starting with
a left merge operator ( ||_ ) and the last three doing it with a
communication operator (| ). According to ACP axioms, the
behaviour of the former is (vxx)|| _y=vx(x||y) and that

of the latter has already been treated.

So the terms starting with a left merge operator will
become deadlock as all three processes are formed by terms
starting by either sending or receiving actions, because when
applying the encapsulation operator both actions belong to
set H defined above. That means the only interesting terms
are the ones starting with a communication operator.

With those points in mind, we proceed to derive (12),
considering that at the very beginning all ports are in
Designated role and will be sending BPDUs, therefore
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Oy ((By [By) | _By) =
=0y ((=FRy0xso [70) || _(By | By [| By) +
+(=Py 0 x5 [ 70) | _(Bo || By || By)) =
=0 ((co)x(By |l By || By) +
+(c)x (By || By || By)) =

=¢ox(By || By | By) +co x(By || By || By). (13)

All parameters (d), carrying the fields described in
Table I, have not been shown to keep it simple. This result
proves that communication happens both ways, whether
going from Bo to B2 (—Fy) or the other way around

(=P ). The other terms give similar results:

O ((Bo | B _By)=
=0 (=R xsy (1)l _(Bo | By || B2)+
H=A < )] _(Bo || By | B)) =

= x(By || By || By)+ ¢ x(By || By || By), (14)
O (B |By) |l _By) =
=0 (=R xsy )| _(By I By || By) +
+(=B x5y )| _(By || By || By)) =
=y X(By || By || By) + ¢ x(By || By || By). (15)

Putting all three terms together, Oy (B, | B | By)
accounts for the addition of (13)—(15). That means there is
communication in all channels in a bidirectional manner,
consequently, an exchange of BPDUs happens in every
possible way and the STP algorithm is run at the receiving
end of each communication.

At this point, we may consider default Bridge/D and
portCosts all over the triangular topology. In these

conditions, By has lower BID and will become Root Bridge.
At the same time, B; and B, will know about it thanks to
the BPDU exchange with its neighbor B . Therefore, after
that first interchange of BPDUs, port 1 in B} and port 0 in
B, (the ones facing B;) will become root ports, and then
both variables A and P, o will get the value of 1.

In both cases, —|Pl~’ ; =0, so those ports will not be

sending any BPDU any longer and the corresponding terms
will be cancelled from the resulting equation as they will not
make any communication possible.

After that, a new exchange of BPDUs will take place from
all remaining Designated Ports within the topology and upon
receiving the corresponding BPDUs at the other end, the
execution of the STP algorithm will be performed. At that
moment, both B, and B, will then get the same Root
Bridge identifier from both ports within the loop. The more
bridges a loop contains, the more steps are required for it.

At that point, it will be time for them to choose the Non-
Designated Port, and in this case it will be port 2 in B, the

one losing out, as default BID of B, is higher than that of
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Bi. Therefore, the variable P, , will get the value of 3 and
—F, ; =0, so that port will stop sending BPDUs, and

consequently, it will stop receiving data-user traffic.

Then, although physical topology is still a loop, the
logical one is not a loop any more but a tree, so broadcast
storms and CAM table inconsistency will be avoided. From
then on, this is the resulting equation for BPDU exchange

Op (B || By || By) = co x(By || By [| By) +
+o x(By || By || By) + ¢y x(By || By || By). (16)
It may be appreciated that BPDU communication is now
unidirectional and will remain that way as long as all bridges
within the topology are on or their parameters are not
modified. This finishes the STP formal specification.
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Taking into consideration that ACP is a kind of an
abstract algebra, the formal verification of its properties
might mainly be done by using two methods, namely, proof
by mathematical induction and proof by contradiction.

In order to apply the former, a base case is proved and
then an induction rule must in turn be proved, whereas to
apply the latter, an initial false proposition is made and a
logical contradiction will occur when reasoning about it,
hence that initial statement must be false.

According to STP operation, there must be just one Root
Bridge and just one Non-Designated Port. Both are elected
by using the STP algorithm described previously, whose
main feature is a sequence of tie-breakers in order to select
the best item.

Regarding the Root Bridge, STP algorithm performs a
leader election process whose tie-breaker is BID value,
which is unique for each bridge within the loop.

Likewise, in relation to Non-Designated Port, STP
algorithm looks for the port whose cost to reach the Root
Bridge is the largest all over the bridge loop and for that
purpose it makes use of a string of tie-breakers, ending with
the PortID value, which is unique within a single bridge.
Additionally, it remains clear that Root Bridge position
definitely influences Non-Designated Port election.

Therefore, proof by contradiction is the ideal method for
proving that both Root Bridge and Non-Designated Port are
unique within a bridge loop. In order to perform that, some
case scenarios will be studied.

Let us assume there is no Root Bridge. In this case, there
will be no reference in order to calculate the root path cost
for each port within the topology, so there will be no
decision making about Non-Designated Port, thus the loop
will remain for user-traffic data and broadcast storms and
CAM table inconsistencies will arise.

Let us now assume there are more than one Root Bridge.
In this case, there will be more than one reference for root
path cost calculations, so there will be disparity of criteria in
the decision making about Non-Designated Port, thus it may
be changing over the time, bringing up CAM table
inconsistencies.

Let us then assume there is no Non-Designated Port. In

STP VERIFICATION
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this case, the loop will remain, so broadcast storms and
CAM table inconsistencies will be generated.

Let us finally assume there are more than one Non-
Designated Port. In this case, the loop will be split in as
many branches as the number of them, so each branch will
get isolated from the rest of the loop.

All of the precedent cases lead to contradiction, as none of
them produce the correct operation of the loop bridge.
Therefore, there must be just one Root Bridge and just Non-
Designated Port in order for a bridge loop to operate
properly.

Alternatively, verification could also be achieved by using
the BridgeFlag field present in all bridges. It carries the
addition of both port roles of a bridge within a loop,

represented by the variable £ ; and whose possible values

are shown in Table II.

Depending of the values of the BridgeFlag variable, it is
possible to know the number of Root Bridges and Non-
Designated Ports within a bridge loop, as well as whether
there is an incoherence in any bridge regarding port roles.
Table IV shows all combinations of cases depending of its
values, the meaning of each one and if they might happen.

TABLE IV. STP VERIFICATION USING BRIDGEFLAG VARIABLE.

Value | Root Bridge Role Ports Real Case
0 YES Both Designated YES
1 NO One Designated & One Root YES
2 NO Both Root NO
3 NO One Designated & One Non-D NO
4 NO One Root & One Non-Design. YES
6 NO Both Non-Designated NO

Eventually, it is also possible to evaluate the correctness
of STP algorithm implementation by adding up all
BridgeFlag values within a loop formed by n bridges.
Considering that there must be a Root Bridge, a non root
bridge with a Non-Designated Port and (#—2) non root
bridges without it, the total sum obtained after adding them
all up will be 0+4+(n—2)x1=n+2. Any other value will

result in an incoherent STP implementation.

VII. CONCLUSIONS

In this paper we have been working on obtaining a formal
specification and verification of IEEE 802.1D STP. For that
purpose, a bridge model using a Process Algebra called ACP
has been proposed in order to capture its most relevant
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operations in different process terms. Furthermore, a
distributed algorithm following that standard has been
designed.

Then we have implemented a formal specification by
applying ACP axioms to the aforesaid model extended to
bridge loop.

Finally, we have performed both a formal verification of
that protocol and have presented an alternative way to do so.

Further research might be performed by adding up data
structures and time to the model thanks to the use of mCRL2
software. This way, the algorithms proposed herein and the
proper time constraints might be introduced in the
specification, making it more realistic.
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