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1Abstract—Multisine signals are used in many applications
like fast estimation of frequency response function, as well as in
a variety of other fields. Synthesis of a low crest factor (CF)
multisine waveform with the given amplitude spectrum depends
on initial phases of its components. Approaches for finding
good initial phases can be divided into two classes: analytical,
direct formula calculations and use of numerical iterative
search algorithms. In some cases, the direct formula calculation
is used as a starting point for the further iterative search. This
paper presents both, new direct formulas and an improved
iterative search algorithm to synthesize arbitrary spectrum
multisine with the lowest CF. Comparison with the results of
earlier methods proves the positive effect of proposed
modifications.

Index Terms—Multisine signal; crest factor; signal
synthesis; iterative algorithm.

I. INTRODUCTION

The multisine signal is widely used in many applications.
It allows faster estimation of the frequency response function
(FRF) in comparison with stepped-sine at different
frequencies [1] and faster impedance spectroscopy
measurements [2]. There are many other fields of application
of multisine like acoustics [3] and communications [4]. The
multisine signal s(t) is defined as a sum of harmonically
related sinusoids

1( ) sin 2 ,k
i ii is t A f t     (1)

where Ai is the amplitude, fi is the frequency of i-th
component, and k is a number of components. Note that Φi

refers the initial phases of sine waves, but not cosine
waveforms, which are often used when discussing
minimization algorithms of crest factor (CF) as in [1]. If the
signal does not have DC component, i is an integer in the
range from 1 to k. The index i also denotes normalized
frequency bin that is normalized against the unit frequency f1

that is fi = f1 × i.
Multisine has the flexibility to create a signal with an

arbitrary spectrum. However, the multisine with random
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phases typically produces relatively high peak values of the
waveform, which is usually characterized by the crest factor
(CF), the ratio of signal peak value to its root mean square
(RMS) value. In practice, peak values of the signal are
limited, and the maximum power of the signal is directly
related to its CF. Moreover, signal to noise ratio (SNR)
depends on signal power. It follows that lower CF of the
excitation signal provides higher accuracy of FRF and
impedance spectroscopy measurements.

CF of the multisine signal with a given magnitude
spectrum depends only on its initial phases Φi . Much
research has been done for the minimization of CF during
last five decades, but the solution is still an open
mathematical problem [1].

A. Analytical Method
Schroeder [5] noticed a low peak factor of the frequency-

modulated signals and his formulas are based on intuitive
concept concerning an asymptotic relationship between the
power spectra of signals and their instantaneous frequencies.
He proposed an analytical solution for the multisine CF
minimization through a simple formula

1
1 12 ( ) ,k

i ii k i p 
    (2)

where pi is a relative power of the i-th component. In the
case of equal powers (also amplitudes) of the signal
components (2) reduces to
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where Φ1 is an ad hoc addend in (2) and (3), which was
added by Schroeder [5] empirically to obtain more
appropriate values for the initial phases Φi of signal
components enabling so to achieve the lowest CF.

Later here we use phase angle units in degrees. CF of the
multisine signal with Φi according to (2) and (3) depends not
only on variables i and k but also on the distribution of
normalized frequencies and value of the parameter Φ1. The
Schroeder’s method produces acceptable but not the best CF
for the signal with equal amplitudes of components and
consecutive frequencies (i = 1, 2, 3, 4, …, k), see Fig. 1.
Minimal CF (solid line in Fig. 1) is obtained when optimal
values of Φ1 are used for calculation of Φi. Optimal values
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are found by the minimum of the CF when varying Φ1 in the
range from 0 to 180 degrees in steps of 1. For the best
results, it means that this method is not fully analytical since
the 180-step search is required for each value of k.

Fig. 1. Crest factors of the multisine signal with normalized frequencies i =
1, 2, 3, 4, … , 30; initial phases are optimized with the best known
numerical method (the lowest dashed line), with Schroeder’s method using
optimal Φ1 (solid line), with Schroeder’s method using Φ1 = ± 90° (dotted
line), and Shroeder’s method using Φ1 = 0° (upper dashed line).

In the case of sparse distributions, e.g. with the
logarithmic distribution of frequencies, minimization results
are not as good as shown in the next section.

Several other analytical formulas have been proposed but
all with less performance compared to Schoeder’s formula as
discussed in [1] and also confirmed by our calculations.

B. Numerical Methods
Unlike the analytical approaches, numerical methods have

no explicit formula but generate lower CF multisines using
iterative algorithms. Typically these methods start with
random initial phases of components [5]–[8] or with initial
phases calculated using Schoeder’s formula e.g. in [1], [8].
In the next steps, some parameters of the signal are varied,
and the process is repeated when registering Φi of variants
with lower CF.

An exhaustive search of all the possible phase
combinations provides the best results, but the number of
calculation steps nstp increases in the power of k-1 and
therefore is practical only for k < 6. In [2] an algorithm is
proposed that drastically decreases nstp. However, it is still
too high for k > 20. Other solutions, as nonlinear Chebyshev
method [8] and genetic algorithm [3] provide relatively good
results but become time-consuming with large k [1].

In the iterative algorithm described in [7] and [8],
extremal amplitudes of the multisine signal are clipped by a
fixed level. Then the modified multisine is calculated using
the discrete Fourier transform (DFT). The obtained phases
are recognized as the improved ones, if the multisine
acquires lower CF. The algorithm will be repeated from
inverse DFT (IDFT) to DFT using the new Φi until the
clipped multisine no longer has lower CF. An improved
VDO algorithm [1] modifies this method. It adopts the
Schroeder phases as the initial phases and uses variable
clipping level based on logarithmic function in the iteration
procedure. This algorithm produces low CF similar to values
obtained by method [2] but is significantly faster in the case

of large k.
II. NEW FORMULAS

Investigation of different variants resumes in following
three simple formulas that behave better with sparse
frequency distributions and in the first case also with denser
distributions, e.g. i = 11, 12, 13, … k:
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The concept of our formula (4) is based on the uniform
increase of initial phases of multisine components that is
achieved by summation of the value of parameter B.
Additional multiplication by i ensures equal phase shift of
signal components of harmonically related frequencies.
Formulas (5) and (6), in the opposite, are producing
nonuniformly decreasing initial phases of multisine
components. In all cases, a step size of phase changes
depends on the value of B.

Results of the CF calculations with different formulas for
the consecutive frequency distribution is shown in Fig. 2, for
the logarithmic distribution in Fig. 3 and the denser
distribution in Fig. 4. In all cases, parameter B is varied in
the range from 0 to 180, and minimal values of CF are
selected. In Fig. 3, the best-known optimization results
obtained with an iterative algorithm are also shown.

Fig. 2. CF of the multisine signal with normalized frequencies i = 1, 2, 3,
4, … , 30 calculated with (3) - solid line, with (4) - line with shorter
dashes, with (5) - line with longer dashes, and with (6) - dotted line.

Fig. 3. CF of the multisine signal with normalized frequencies i = 3, 5, 7,
17, 31, 67, 127, 257, 511, 1021calculated with (3) -upper solid line, with
(4) - line with shorter dashes, with (5) - line with longer dashes, with (6) -
dotted line, and with iterative numerical method -lower solid line.
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Fig. 4. CF of the multisine signal with normalized frequencies i = 11, 12,
13, 14, …, 20 calculated with (3) - solid line, with (4) - line with shorter
dashes, with (5) - line with longer dashes, and with (6) - dotted line.

Calculations with other sparser frequency distributions
also showed better performance in comparison with
Schroeder’s formula. Use of (5) and (6) is not efficient in the
case of consecutive or dense frequency distributions as
shown in Fig. 2 and Fig. 4. Nevertheless, these formulas may
be still valuable for the calculation of initial phases in
iterative algorithms.

III. ENHANCED ITERATIVE ALGORITHM

In the case of using iterative algorithms, the converging of
the minimization to the global minimum is not guaranteed
even in the case of using sophisticated algorithms [9], [10].
Also recently introduced improved VDO method [1] may
stuck in local minima. Our investigation shows that the
variation of the parameter Φ1 in (3) may considerably
influence the minimization result, see Fig. 5. Here the CF is
normalized against the CF of single sinewave ( 2 ).

Moreover, use of (4)–(6) instead of (3) may provide in
some cases better results as illustrated in Fig. 6. The specific
situation depends on the distribution of frequencies, the
number of components k and their magnitudes.

Further investigation of the algorithm [1] shows that the
minimization results can be further improved if the
logarithmic clipping sequence is calculated more than once
see an illustration of the minimization process in Fig. 7.

Note that after the end of the clipping sequence, the next
sequence is shown below at the same starting time, i.e., the
time scale is relative in Fig. 7.

Considering the described circumstances the flow chart of
the iterative algorithm described in [1] was modified for
better performance as shown in Fig. 8.

Fig. 5. Variation of the relative CF on parameter Φ1 in (3) of the multisine
with 18 normalized frequencies (i = 1, 2, 3, 4, …, 18) and equal amplitudes
of components.

Fig. 6. Variation of the relative CF on the formula used for calculation of
initial phases of the multisine with 18 normalized frequencies (i = 1, 2, 3,
4, …, 18) and equal amplitudes of components; first parts of the plots
calculated with (4) and (5) coincide.

Fig. 7. The decrease of the relative CF (RCF) in the case of repeating of
the clipping sequence 15 times. The multisine has 18 normalized
frequencies (i = 1, 2, 3, 4, …, 18) and equal amplitudes of components;
starting points of the RCF values at Φ1 =11 and Φ1 =142 are the same as
shown in Fig 5.

Fig. 8. The flow chart of the enhanced multisine CF minimization
algorithm. Bmax is a maximum value of parameter B, n2max is a maximum
number of clipping sequences, and n1max is a number of points of the
clipping function. Φ(i)_opt is a final set of initial phases which corresponds
to the lowest CF of multisine.
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Two additional iteration loops are added. The first one
varies the value of parameter B and the second repeats
clipping sequences. Furthermore, different formulas may be
selected for the calculation of initial phase set of the iterative
algorithm. The drawback is a longer calculation time, but
this is not crucial. As an example, optimization result of the
multisine with 152 components and normalized frequencies
from 100 to 10000 is shown in Fig. 9. The PC has Intel®
Core™ i7-2600K CPU running at 3.40GHz, 4 cores, 8
logical processors and 16 GB of RAM. The software was
developed with the National Instruments LabVIEW software
environment running the 64-bit Microsoft Windows 7
operating system.

Fig. 9. The decrease of the CF (lower plot) and relative CF (RCF) of the
multisine during the process of minimization with enhanced iterative
algorithm. The signal contains 152 components in the range of i from 100
to 10000.

The CF values in lower plots of Fig. 1 and Fig. 3 are also
obtained with the enhanced iterative algorithm. As an
example, CF of multisine with 26 components is 1.365.

IV. CONCLUSIONS

Several new formulas were developed for the CF
minimization of multisine signals that outperform
well-known Schroeder’s formula in the case of the sparser
frequency distribution of components. Most efficient is the
formula (4) that also has a good performance with denser
frequency distributions, e.g., see results in Fig. 4.

The drawback of proposed formula is that it is not fully
analytical – a search with several hundreds of calculation
steps is required. However, it is still a good alternative in

comparison with more complicated iterative algorithms,
which require substantially more computational resources.

Moreover, it is shown that new formulas may improve the
minimization efficiency when used for calculation of an
initial set of phases for iterative algorithms.

Enhanced iterative CF minimization algorithm developed
by us (Fig. 8) was tested with different frequency
distributions. The lowest known values for the crest factor
CF were obtained. The influence of implemented parameters
as values of initial conditions, formulas used for their
calculation, and repeated clipping sequence are discussed.
Better avoiding of local minima with proposed algorithm
allows moving toward the global minimum.
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