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1Abstract—In this paper the scattering of electromagnetic
(EM) waves, emitted by a monostatic radar, from rough fractal
surfaces is examined by using the Kirchhoff approximation. Of
particular interest here is the way that the level of roughness of
the fractal surface affects the backscattered EM wave captured
by a synthetic aperture radar (SAR) and whether the
roughness of the surface can be estimated from these SAR
radar measurements. More specifically, the scattering
coefficient of the backscattered signal is calculated for a
number of radar frequencies and for different values of the
surface fractal dimension. It is found here that the slopes
between the main lobe and the first sidelobes emerging in the
backscattering coefficient as a function of the wavenumber of
the incident EM waves increase with the surface fractal
dimension. Therefore, we conclude in this paper that the
magnitude of the above slopes provides a reliable method for
the classification of the rough fractal surfaces. Applications of
the proposed method can be found, for example, in the
characterization of the sea state from measured SAR radar
data.

Index Terms—Fractal surface; Kirchhoff approximation;
scattering of electromagnetic waves; synthetic aperture radar.

I. INTRODUCTION

The scattering of electromagnetic (EM) waves from rough
surfaces has been for decades a very interesting subject for
scientific investigation. In many cases the main purpose of
this research is the characterization of rough surfaces from
scattered EM wave data for remote sensing applications, in
the microwave or optical regime [1]–[16]. These surfaces
can be modelled mathematically with deterministic or
random functions [1]–[3]. However, introducing the fractal
geometry, these surfaces can be described in a more detailed
way in multiscale [1], [3], [8], [17].

In this paper the scattering of EM waves from rough
surfaces using the Kirchhoff approximation is examined [1],
[2]. In particular, in Section II the mathematical
fundamentals for scattering of EM waves from fractal
surfaces are summarized [1]–[3].

In Section III our simulation results for the
characterization of the rough fractal surfaces from
backscattered EM wave data are presented. Finally,
conclusions and future related research of ours are described
in Section IV.

Manuscript received 4 February, 2016; accepted 29 June, 2016.

II. PROBLEM GEOMETRY AND MATHEMATICAL
FORMULATION

The geometry of the problem is shown in Fig. 1. More
specifically, an incident EM plane wave illuminates a one –
dimensionally rough fractal surface extending from x = – L
to x = L, as shown in Fig. 1 (note that a generalization to a
two – dimensionally rough fractal surface can be easily
accomplished [1], [2]). The angle of incidence of the EM
wave is i with respect to the vertical z axis, as shown in
Fig. 1, where the incident and scattered wave vectors are
denoted by ki and ks respectively [1].

Fig. 1. Geometry of rough surface scattering problem in which an incident
plane wave illuminates a fractal surface patch of size 2L at an angle i.

Following [1], and in order to describe the surface
roughness, a one-dimensional fractal function is used [1],
[3], [4]. This fractal function is described by the following
equation
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where D (1 < D < 2) is the fractal dimension of the one –
dimensional curve generating the fractal surface [1],
K0 = 2/0 is the fundamental spatial wavenumber of the
fractal surface, Λ0 is the corresponding fundamental spatial
wavelength, b (where b > 1) is the spatial frequency scaling
parameter, n are arbitrary phases and N is the number of
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tones describing the surface. The amplitude control factor C
is given by
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so that the above surface function (1), has standard deviation
(rms height) equal to σ (see [1]). Moreover, it can be easily
shown that the above surface function (1), exhibits the
property of self-similarity, as described by the following
equation [1]
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In addition, note that since the spatial frequencies K0bn are
not integer multiples of each other, the above surface
function (1) is not a periodic function, but an ‘almost
periodic function’ [1], [3]. Furthermore, it can be easily
realized from (1) above, that when the surface fractal
dimension D increases from value 1 to value 2 (i.e. 1 < D <
2), the surface roughness also increases (see [1], [3] for
more details).

In order to calculate the scattered field from a rough
fractal surface, with problem geometry as described in
Fig. 1, the Kirchhoff approximation is used in this paper, for
which it is assumed that the wavelength of the incident EM
wave is small compared to the local radius of curvature of
the surface roughness [1]–[3]. Furthermore, for the plane
EM wave incidence of Fig. 1, in [1] it is shown that the
scattered electric field is given by the following equation
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where:
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In the above (4)–(8) R0 is the distance from the
observation point (monostatic radar) to the origin,
coinciding with the ‘source surface point’, k is the
wavenumber of the incident EM wave (k = 2πf/c, where f is
the frequency of the incident EM wave), R is the Fresnel
reflection coefficient of the tangential plane at the point of
interest, θs is the direction of the observer and rf  is the
derivative with respect to its argument (x). In this paper, for
simplicity we assume a perfectly conducting rough surface,
in which case the Fresnel reflection coefficient is given by
(R+ = 1, R– = 1), where the superscript + indicates the
parallel (vertical) polarization and the superscript – denotes
the perpendicular (horizontal) polarization, respectively [1],
[2].

In the case of a smooth and perfectly conducting surface,

the scattered field for horizontal polarization can be found in
the direction of specular reflection, namely for si   [1],
[2]
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By normalizing the value of the scattered field Esc of (4)
by the value provided by (9), the scattering coefficient  is
calculated by [1]
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The first term in the parenthesis provides the most
significant contribution to the scattering process, while the
second term represents an edge effect, which can be
considered negligible when L >> , as assumed in this paper.

Finally, the scattering coefficient can be expressed in a
closed-form solution as follows [1]
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where Jm represent Bessel functions of first kind and order
m, and function sinc(x) = sin(x)/x. Furthermore, the
superscripts + and – denote the parallel (vertical) and
perpendicular (horizontal) polarization respectively, as
mentioned above. It must be noted here that, in our
simulations, (10) is used, in MATLAB environment, thus
exhibiting some advantages over the numerical
implementation of (11). However, (11), in addition to (10)
offers a significant physical insight to the EM scattering
problem considered here.

III. SIMULATION RESULTS

In this paper we concentrate on the backscattering of EM
waves from rough fractal surfaces (e.g. monostatic SAR
radar [9], [10]), i.e. θs = –θi at Fig. 1 and (5)–(8), and we
plot the backscattering coefficient |γ(k)| (in magnitude). The
surface is simulated as a zero-mean, band-limited fractal
function, as in (1), and its roughness is controlled by the
fractal dimension D [1], [3]. For example, for 1.05D  the
surface is almost sinusoidal [1] and the roughness is gentle,
while as parameter D increases, the surface roughness also
increases (1 < D < 2), see [1], [3].

In our simulation experiments, the backscattering
coefficient |γ(k)| was calculated from (10) for a number of
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frequencies ( 1)m of f m f    , where 1, 2,...,m M and
M is the number of frequencies, fo is the carrier frequency,
f = B/M is the frequency step and B is the bandwidth of the
radar, i.e. ‘stepped – frequency’ transmitted radar waveform
[9], [10]. Once again, in all our simulations it is set θs = –θi,

i.e. backscattered EM wave. Furthermore, in Fig. 2–Fig. 5,
below, the plots of |γ(k)| for angle of incidence θi = 30o are
shown, while the values of the other parameters are B =
1 GHz (radar bandwidth), f0 = 10 GHz (initial radar carrier
frequency) and M = 200 (i.e. 200 frequency steps in radar
emitted stepped-frequency waveform).

Fig. 2. Magnitude of the backscattering coefficient |γ(k)| as a function of
the wavenumber k, for value of the fractal dimension D = 1.05.

Fig. 3. Magnitude of the backscattering coefficient |γ(k)| as a function of
the wavenumber k, for value of the fractal dimension D = 1.30.

As far as the simulated fractal surface is concerned, the
frequency scaling parameter was set equal to 1.8b  while
the number of tones was set equal to 6N  [1]. Moreover,
the rms height of the surface was set equal to σ = 0.05λ, Λ0 =
10λ = 0.3 m and the illuminated length of the rough surface
along x-direction (‘patch size’) was chosen to be 2L = 80λ
(Fig. 1) in all calculations (so as 2L >> Λ0 and kσ < 1), where
λ = c/fo [1], [18]. Note that the length 2L, in practical terms,
is proportional to the SAR radar vertical beamwidth, for a

SAR radar platform moving in the y-direction of Fig. 1 (not
shown in this figure), as well as proportional to the distance
R0 between the radar and the surface scattering center (e.g.
proportional to the height of the SAR radar platform).

Furthermore, at the top left corner of each figure a sample
plot of the roughness fractal function )(xf r (1) is also
shown.

The roughness of the simulated fractal surface (the fractal
dimension D ) is increasing per image, e.g. D = 1.05 (Fig. 2),
D = 1.30 (Fig. 3), D = 1.55 (Fig. 4), D = 1.80 (Fig. 5).

By observing Fig. 2–Fig. 5, the following conclusion is
made: as the value of the parameter D increases, i.e. as the
roughness of the fractal surface increases, the emerging
slope between the main lobe and the side lobes also
increases.

Fig. 4. Magnitude of the backscattering coefficient |γ(k)| as a function of
the wavenumber k, for value of the fractal dimension D = 1.55.

Fig. 5. Magnitude of the backscattering coefficient |γ(k)| as a function of
the wavenumber k, for value of the fractal dimension D = 1.80.

Therefore, it becomes clear in our simulations that the
roughness of the fractal surface can be characterized by the
mean slope between the main lobe of function |γ(k)| and the
two sidelobes, adjacent to the main lobe (Fig. 2– Fig. 5).
Indeed, as D→1 (1 < D < 2) we expect the above slope to
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follow the slope of a ‘sinc’ function [sinc(x)=sin(x)/x], see
(11), while as D increases (1 < D < 2) we expect, by
physical intuition, larger slopes of the function |γ(k)|, due to
increased rough surface ‘randomness’ (at least in the case
that the wavelength of the incident wave is ‘comparable’ to
the rough surface ‘roughness’, i.e. in the ‘resonance
regime’).

In Table I, below, the relation between the fractal
dimension D and the slope calculated from each graph is
shown. The slope is equal to||/|k|, where Δγ represents
the amplitude difference between the peak of the main lobe
and the peak of the first side lobe, while Δk represents the
difference of the wavenumbers where these peaks occur.

TABLE I. FRACTAL DIMENSION D AND THE RESULTING SLOPE
CALCULATIONS.

Left slope
calculations

Right slope
calculations

D Δγ Δk slope Δγ Δk slope
1.05 0.0000 0.00 0.0000 0.0000 2.62 0.0000
1.30 0.0044 2.51 0.0018 0.0014 2.93 0.0005
1.55 0.0285 5.03 0.0057 0.0202 3.77 0.0054
1.80 0.0883 3.98 0.0222 0.0819 3.77 0.0217

If the radar bandwidth decreases, then the information
provided by the backscattered signal-wavenumber plots, of
the type provided above, is not always enough in order to
draw safe conclusions regarding the roughness (fractal
dimension) of the surface. In other words, the bandwidth for
our proposed method of surface characterization from
backscattered radar data must be sufficiently large (at least
5 % of the carrier frequency of ), in order that the
information contained in the plots of Fig. 2–Fig. 5 to be
observable and measurable. However, the possible problem
of small available bandwidth in actual radar measurements
can be counter – balanced by increased ‘patch size of
observation’ 2L [1] [see also the argument of the ‘sinc’
function in (11). Please note that the ‘patch size’ 2L is
proportional to the SAR radar vertical beam width, as well
as to the distance R0 between the radar and the surface
scattering center. In the following simulation (Fig. 6), the
backscattering coefficient |γ(k)| was calculated for the same
fractal dimension D = 1.55 and for two different patch sizes,

402 L and 1202 L . The rest of the parameters used
in this simulation are the same as in Fig. 2–Fig. 5. The
corresponding results are shown in Fig. 6. As one can
observe in (11) [argument of the ‘sinc’ function], the number
of the sidelobes increases with increasing ‘patch size’ 2L.
Then, by increasing ‘patch size’ 2L, the steeper become the
sidelobe slopes, and the more robust becomes the sidelobe
slope calculation.

In order to study further the relation between the surface
fractal dimension D and the slopes of the scattering
coefficient |γ(k)|, described above, some additional
simulations have been performed, as follows. The scattering
coefficient |γ(k)| was calculated sequentially for different
values of fractal dimension D, namely here for D = 1.05,
1.10, 1.15, …, 1.85, 1.90 (i.e. here for 18 subsequent values
of parameter D), while the rest of the parameters used in
these simulations remained the same as in Fig. 2–Fig. 5. The

left and right slope calculations of |γ(k)|, corresponding to
each value of D, were averaged, thus creating one average
slope calculation of |γ(k)| for each value of D. Furthermore,
in order also to demonstrate the robustness of our proposed
method, we inserted in (1) a uniformly distributed random
phase variable φn in the interval [0, 2π], for every new
surface simulation run, namely for every different D value.
The calculation results, after 10 simulations for each D
value, are presented in Fig. 7, below.

Fig. 6. Magnitude of the backscattering coefficient |γ(k)| as a function of
the wavenumber k, for same fractal dimension 1.55D  and different
patch size 2 40L  and 2 120L  respectively.

Fig. 7. ‘Average slope’ of the scattering coefficient |γ(k)| vs. value of the
surface fractal dimension D.

Furthermore, by ‘inverting’ the data (slope calculations
and fitting curve) provided in Fig. 7, the plots of Fig. 8 are
provided, as shown below, where in this case the surface
fractal dimension D is plotted as a function of the ‘slope
calculations’ of the scattering coefficient |γ(k)|.

In Fig. 8 an analytical expression between the ‘slope
calculation’ and the surface fractal dimension D has been
calculated numerically by ‘curve fitting’. Namely, it was
found here that an excellent curve fitting exists if the fractal
dimension D follows the relation * bD a slope c  . In
Fig. 8 we plot the fit curve by using the following
coefficients: a = 2.29, b = 0.25, c = 0.913, and as a measure
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of fit to our calculations we use ‘R-square criterion for curve
fitting’, which, for the above simulations, yielded the value
R2 = 0.9934 (R2 = 1 means ‘perfect curve fitting’). We plot
also the prediction bounds for the fitted curve. The
prediction is based on the existing fit to our simulation
calculations by using a 90 % ‘probability of occurrence’.
Based on the fitted curve model and the prediction bounds
for the fitted curve, Tables II and III are presented.

Fig. 8. Value of surface fractal dimension D vs. ‘slope calculation’ of the
scattering coefficient |γ(k)|.

TABLE II. ESTIMATION OF DCALC (
1

42.29 * 0.913calcD slope  ).

D Slope Dcalc

1.05 0.0000 none
1.15 0.0000 none
1.25 0.0002 1.19
1.35 0.0011 1.33
1.45 0.0031 1.45
1.55 0.0065 1.56
1.65 0.0112 1.66
1.75 0.0183 1.76
1.85 0.0274 1.84

TABLE III. DCALC PREDICTION INTERVAL USING PREDICTION
BOUNDS.

Dcalc

lower
D

Dcalc

upper
1.06 1.05 1.16
1.07 1.15 1.17
1.21 1.25 1.31
1.27 1.35 1.39
1.40 1.45 1.50
1.50 1.55 1.59
1.61 1.65 1.70
1.71 1.75 1.81
1.80 1.85 1.89

Table II presents the value D that was used for the
simulation, the slope that was calculated from this simulation
and the Dcalc value, which was calculated using our model.
For D = 1.05 to D = 1.15, namely for almost smooth
surfaces, the slope is almost zero and for these cases our

model could not establish a clear Dcalc value (since the
surface is very smooth, in this case). However, for rough
surfaces with fractal dimension D > 1.25, our proposed
model proved to predict the fractal dimension D of the rough
surface with excellent accuracy (see Table II).

The accurate results of Table II gave us the motivation to
stress the robustness of our method, by adding random
phases φn to the rough surface modeling function (1), for
each surface simulation. The variability of slope calculations
for each value of D in Fig. 7, Fig. 8 depicts this added
surface randomness. Table III presents the prediction
intervals for the Dcalc estimation. This interval indicates that
for any new observation from a fractal surface characterized
by a fractal dimension D, there exists 90 % probability that
the value of the fractal dimension of the surface lies within
the prediction bounds of this Table (Table III). Summarizing
on this, this Table demonstrates the fact that our proposed
method is accurate and robust enough to characterize a
rough fractal surface from backscattered radar data, and also
provides a bound estimation for the fractal dimension D of
this surface.

Note that if the angle of incidence is θi ≈ π/2 (i.e. EM
wave incidence almost parallel to the rough surface, see
Fig. 1), and since in this paper we are interested only for the
backscatter case, i.e. θs= –θi, from (8) it follows that in this
case z ≈ 0, and from (10) we see that our method is not
applicable in this special case (i.e. radar not airborne or
spaceborne, any more [9], [10]), since in this special case the
scattering coefficient |γ(k)| cannot be computed.
Summarizing, our proposed method for characterizing a
rough fractal surface provides reliable results for appropriate
values of radar bandwidth, surface ‘patch size’ and angle of
incidence.

IV. CONCLUSIONS

In this paper, a novel method is presented for the
characterization of rough fractal surfaces from backscattered
SAR radar data of sufficient bandwidth [9], [10]. As resulted
from the plots of the backscattered signal magnitude as a
function of the wavenumber (frequency) of the incident EM
wave, as the roughness of the fractal surface increases (i.e.
the fractal dimension D increases), then the observed slope
between the main lobe and the side lobes also increases.
Moreover, the fractal dimension of the surface can be
estimated by the average slope of backscattering coefficient
|γ(k)|. Furthermore, the value of the available radar
bandwidth is crucial and must be sufficiently large, for
correct rough surface characterization. In addition, possible
lack of enough radar bandwidth for the above purposes can
be counter – balanced by increased surface ‘patch size’ (2L),
resulting from increased radar vertical beamwidth or
increased radar platform height, as explained in detail above.

V. FUTURE RESEARCH

Regarding future related research, this may include: (i) a
three-dimensional (3D) rough fractal surface and scattering
modelling which represents a relatively easy extension to the
research presented here [1], [2], and it is obviously closer to
‘real world’ rough surface geometry [1], (ii) sea state
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characterization by using measured SAR radar data, e.g. for
a ‘stepped-frequency’ (SF) SAR radar waveform, as that
used in this paper [9], [10].
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