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1Abstract—The paper suggests a technique for fast data sort
based on a specially organized binary searching network with
the following new distinctive features: 1) data sort is done
within the time of data acquisition through a serial interface; 2)
a new type of pipeline, which we call ring pipeline, is created 3)
the delay for receiving each data item is minimized thanks to
the novel ring pipeline; 4) sorted data can be transmitted
almost immediately after receiving the last input item; 5)
several data sets may be sorted by the same network at the
same acquisition time. It is proved theoretically that the
network is very fast. It was modelled and evaluated in software
and the basic components were synthesized and implemented
in hardware. The results have shown a significant speed-up
comparing to the best known alternatives.

Index Terms—Binary search networks; ring pipeline; block-
based merge; communication-time circuits; system-on-chip.

I. INTRODUCTION

Data sorting is frequently used in different types of
information processing. For many practical applications the
performance (sorting throughput) is a very important factor
[1]. One widely used way enabling the performance to be
improved is a hardware/software co-design in which
hardware accelerators sort blocks of data and these blocks
are further merged in software communicating with
hardware through high-performance interfaces. The size N
of blocks is limited by the available hardware resources and
it rarely exceeds a thousand of words of 16 bits–32 bits. For
example, in [2] an 8-element even-odd merging network is
built (i.e. N = 8). In [3] N is increased up to 512 thanks to
iterative circuits allowing highly parallel segments with a
small propagation delay to be reused. Many other recent
publications reviewed in [3] are dedicated to this research
area and the majority of the networks are based on either
even-odd merge or bitonic merge techniques [4], [5] that
have been analysed in detail in [6]. The main idea of the
applied methods is processing of a large size set composed
of N K-bit vectors and most often K = 32 bits. Computations
are organized in such a way that N × K bits (that form each
subset) are handled in parallel and, for example, for N = 256
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and K = 32, the network has 8,192 (unsorted) inputs and
8,192 (sorted) outputs. Input/output data cannot be
received/transmitted completely in parallel due to
limitations either in available pins or in on-chip wires for the
very large number (such as 8,192 + 8,192) of external
signals. Most often input data are received sequentially
through an input port with a typical width equal to
32/64 bits. The result is transmitted through an output port
with a similar width. Multiport devices, such as all
programmable systems-on-chip (APSoC) from Xilinx Zynq-
7000 family permit greater number of signals to be
exchanged between software and hardware in parallel, but in
any case the maximum number of such signals cannot
exceed a few hundreds. Thus, hardware/software sorting
involves three sequential stages that are:

1. Receiving N × K-bit unsorted data;
2. Highly parallel processing in a network (such as even-
odd or bitonic mergers);
3. Transmitting the results, i.e. N × K-bit sorted data.
Note that the indicated above stages may be pipelined, but

in any case the points 1) and 3) need to be executed
autonomously at least once to get the first unsorted subset
and to transmit the last sorted subset. Besides, the effective
throughputs of the points 1), 2), 3) are different and an
adjustment of stages in the pipeline has to be done, which
involves additional hardware resources, restricts capability
of transmissions in burst mode and so on finally leading to
performance degradation.

The circuit that permits input data to be acquired and
sorting these data to be done at the same time is proposed in
[7] (see Fig. 1). It contains N K-bit registers R0, …, RN−1,
and N − 1 comparators/swappers (↑) marked with letters a,
b, c, d, e, f, g and operating in parallel. For the sake of
simplicity, N is assigned to 8. Any comparator/swapper
takes two inputs and forms two outputs in such a way that
the upper output is greater than or equal to the bottom
output, i.e. input items are either transferred unchanged or
swapped.

At the initialization step, all the registers R0, …, RN−1 are
set to the minimum possible value. K-bit data items are
received sequentially from an input port through the
multiplexer Mux. The comparators/swappers move up all
input items with non-minimum values, which are
accommodated somehow in the registers R0, …, RN−1.
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Receiving and accommodating items is done during
communication time in N clock cycles. It is shown in [7]
that as soon as N data items are acquired and saved in the
register, the sorted result can be transmitted immediately
from the K-bit output.
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Fig. 1. Searching network with feedback for N = 8.

Even a superficial comparison of the circuit in Fig. 1 with
other known networks permits to conclude that the indicated
above stage 2) is completely avoided and the time of sorting
is composed of just two stages 1) and 3) that can be
pipelined. However, there is a drawback which is similar to
the known networks, such as the even-odd and bitonic
mergers. The combinational path delay (see Fig. 1) is
relatively large, which does not permit to benefit from
optimal modes of data transmission. For example, if N =
256 then there are p = 8 (i.e. p = log2256 ) following each
other levels of comparators/swappers that involve a delay
equal to 8 × Tcw, where Tcw is the delay of one
comparator/swapper. As a rule, this delay is not less than a
few nanoseconds and thus the combinational path delay is
clearly larger than 10 ns. Therefore, data transfer is
synchronized by a clock frequency that is less than
100 MHz, which does not permit the full bandwidth
capabilities to be supported. The best known even-odd and
bitonic mergers involve a delay that is equal to p × (p + 1)/2
[2], i.e. for the considered above example the delay is
increased from 8 × Tcw to 36 × Tcw.

We suggest below further improvements through the
following additional features: 1) introducing ring pipeline
that enables data to be received with significantly higher
clock frequency; 2) using the same circuit for sorting several
blocks at the same time for their subsequent merging in
software and permitting burst sizes for the input port to be
increased; 3) transmitting the sorted results with higher
frequency thanks to the proposed ring pipeline.

II. NETWORK ARCHITECTURE AND FUNCTIONALITY

Let us introduce a ring pipeline, i.e. let us accommodate
additional registers in places indicated in Fig. 1 by dashed
vertical lines B, C, i.e. between the comparators/swappers
that are active at each level. Now the circuit in Fig. 1 may
handle several subsets with N items each. The primary N ×
K-bit register A, shown in Fig. 1, and the newly introduced
registers B, C form a 3-stage ring pipeline. The number of
such stages for a general case is equal to p = log2N and the

relevant circuit enables p sets with N K-bit elements to be
processed. Let us consider an example for N = 4 and a 2-
stage ring pipeline (p = log2N = 2). Now p = 2 subsets F1

and F2 can be sorted passing through two registers A and B
linked to a ring. Suppose: F1 = {361, 1011, 1021, 841}
(subscript 1 indicates belonging to the subset 1); F2 = {1162,
422, 622, 412} (subscript 2 points to the subset 2). For the
considered example 8 clock cycles will be involved enabling
the two subsets F1 and F2 to be sorted. States of the registers
converted by the relevant comparators/swappers in each
clock cycle 1), …, 8) are the following: 1) input 361: A = {0,
0, 36, 0}, B = {0, 0, 0, 0}; 2) input 1162: A = {0, 0, 116, 0},
B = {0, 0, 36, 0}; 3) input 1011: A = {0, 0, 101, 36}, B = {0,
0, 116, 0}; 4) input 422: A = {0, 0, 116, 42}, B = {0, 36, 101,
0}; 5) input 1021: A = {36, 0, 102, 101}, B = {0, 42, 116, 0};
6) input 622: A = {42, 0, 116, 62}, B = {36, 101, 102, 0}; 7)
input 841: A = {101, 36, 102, 84}, B = {42, 62, 116, 0}; 8)
input 412: A = {62, 42, 116, 41}, B = {101, 84, 102, 36}.
After the cycle 8) two sorted subsets can be transmitted
through a single output port (see Fig. 1) also in 8 clock
cycles as follows: 1) 361: A = {101, 84, max, 102}, B = {62,
42, 116, 41}; 2) 412: A = {62, 42, max, 116}, B = {max,
102, 101, 84}; 3) 841: A = {max, 102, max, 101}, B = {max,
116, 62, 42}; 4) 422: A = {max, 116, max, 62}, B = {max,
102, max, 101}; 5) 1011: A = {max, max, max, 102},
B = {max, 116, max, 62}; 6) 622: A = {max, 116, max,
max}, B = {max, max, max, 102}; 7) 1021: A = {max, max,
max, max}, B = {max, max, max, 116}; 8) 1162: A = {max,
max, max, max}, B = {max, max, max, max}. Finally, we
get two sorted subsets Fs

1 = {361, 841, 1011, 1021} and
Fs

2 = {412, 422, 622, 1162}. As you can see only the
transmission time is involved and sorting is done in parallel
with transmitting data and does not involve any additional
delay.

Note that the circuit in Fig. 1 implements binary search
and can easily be cascaded as it is shown in Fig. 2, where S
is the segment from Fig. 1. Now there are 5 pipeline
registers (p = log2N = 5) that are the main register A, the
registers B and C in the segments S and the registers D and
E (see Fig. 2). The circuit in Fig. 2 can sort 5 subsets (with
N = 32 K-bit elements each one) in N × p = 160 clock cycles
and output the results also in N × p = 160 clock cycles. Note
that receiving data items through a K-bit channel requires
160 clock cycles and as soon as the last item is received the
sorted results can be transmitted immediately. Similarly,
networks with a ring pipeline can be built for larger values
of N. Since the network implements binary search the
number of comparators/swappers in the first level (marked
as L0 in Fig. 1) is equal to N/2. The number of
comparators/swappers in each subsequent level is changed
as follows: N/22, ..., N/2p. Thus, the total number C(N) of

comparators/swappers is equal to: 2

1
/ 2 .

log N
n

n
N

  


 The number

of levels in networks [7] is p. So, the delay is p × Tcw. Thus,
any new input item can be received with the delay p × Tcw

required for transmitting input signals through p
combinational levels. In the proposed circuit with a ring
pipeline any new input item can be received with the delay
Tcw, i.e. faster by a factor of p. Besides, since many subsets
can be sorted by the same circuit, the number  of received
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items is increased by a factor of p. To improve efficiency of
getting input data a burst mode is commonly applied. The
size of the burst can influence the speed of data transmission
and enlarging this size often allows the speed to be
increased. Thus, the proposed method that permits larger
number of data items to be subsequently transmitted enables
port throughput to be augmented.
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Fig. 2. An example of a cascaded searching network for N = 32.

Note that in the proposed method input items are acquired
as follows: 1) in the first p steps only the first items from p
given sets are received by the network (let us call these steps
group 1); 2) in the second p steps the second items from p
given sets are acquired by the network (let us call these steps
group 2); etc. until the final group p. Such type of data
transmission can easily be organized. For example, we made
experiments with Zynq-7000 microchips available on the
prototyping board [8]. Software, running in the processing
system of the Zynq-7000 device [8], copies data to a shared
memory in such a way that at the beginning of each memory
segment the first items from p given sets are saved, then the
second items from p given sets are saved and so on. Hence,
the programmable logic takes data from the shared memory
sequentially and transmits the sorted subsets also
sequentially. It is easily visible from the example above that
the sorted data are organized similarly, i.e. at the beginning
the first items from all p sorted subsets are transmitted, then
the second items from all p sorted subsets are transmitted,
etc. Hence, the results of sorting are presented in the same
form as input (unsorted) data. Subsequent merging (that is
frequently involved for processing large data sets [2], [3]) is
done in software much like explained in [3].

TABLE I. THE REQUIRED NUMBER С(N) OF
COMPARATORS/SWAPPERS FOR DIFFERENT SORTING

NETWORKS.
Network type C(N), p = log2N

Bubble and insertion sort N × (N − 1)/2
Even-odd transition N × (N − 1)/2

Even-odd merge (p2 – p + 4) × 2p−2 − 1
Bitonic merge (p2 + p) × 2p−2

The proposed in this paper
1

/ 2
p

n

n
N




Let us compare theoretically the complexity of the
proposed and the most frequently used known networks. A

traditional (i.e. not of the proposed ring type) pipeline can
be used for the known sorting networks. Thus, the delay for
the known networks may become exactly the same as the
delay for the proposed network with the ring pipeline (see
Fig. 2). Hence, the preference of a particular network can be
done by comparing the required resources. Table I shows
such resources for different networks including the proposed
one. The relevant formulae are taken from [2], [3], [9].

Charts in Fig. 3 permit the numbers C(N) to be compared
for various networks and different values of N.
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Fig. 3. Theoretical evaluation of the required resources for the proposed
and known networks.

It should also be noted that the number of pipeline
registers in the proposed network is always less than for any
known network because the number of propagation stages in
the proposed networks is smaller (compare, for instance, the
number of stages 8 and 36 for N = 256 in the example of
Section I). Besides, neither from the known networks is able
to sort data during communication time. Thus, the proposed
networks are faster and less resource consuming.

III. SIMULATION IN SOFTWARE AND IMPLEMENTATION IN
HARDWARE

The functionality of the network S in Fig. 1 can be tested
by the following function SN written in the Java language:

public static int SN(int a[]) {  // N and p are
constants

int tmp;
for(int k = 0; k < p; k++)

for(int i = 0; i < a.length/s[k+1];  i++)
if (a[s[k+1]*i+s[k]-1] < a[s[k+1]*i+s[k+1]-1])
{            tmp = a[s[k+1]*i+s[k]-1];

a[s[k+1]*i+s[k]-1] = a[s[k+1]*i+s[k+1]-1];
a[s[k+1]*i+s[k+1]-1] = tmp;                    }

return a[N-1];              }

where the array a can be generated randomly in the function
main, for example:

60



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 4, 2016

int[] a = new int[N]; // N is the number of elements
for(int x = 0; x < N; x++)

a[x] = rand.nextInt(Integer.MAX_VALUE);

The array s is declared as a static member in the main
class as static final int s[] = {1,2,4,8,/*…2p */};, for
example, for N = 16: static final int s[] = {1,2,4,8,16};. The
object rand is declared as follows: static Random rand =
new Random();.

The complete circuit in Fig. 1 is modelled in Java through
the sequential reading K-bit inputs from the port, which is
simulated by a sequential generation of an arbitrary K-bit
value. It is done as follows:

for(int x = 0; x < N; x++)
{  a[N-1] = rand.nextInt(Integer.MAX_VALUE);

// ……..

where a[N-1] is the value coming from the Mux in Fig. 1.
The Java code was converted to a VHDL specification.

For example, the function SN above is presented as follows:

process(data_in) -- data_in is an input port declared as
-- follows: data_in : in std_logic_vector(N*K-1 downto
0);

variable MyAr : in_data;
variable tmp :  std_logic_vector(K-1 downto

0);
begin -- K is the number of bits for each

element
for i in N-1 downto 0 loop

MyAr(i) := data_in(K*(i+1)-1 downto
K*i);

end loop;
for k in 0 to p-1 loop

for i in 0 to N/(2**(k+1))-1 loop
if ( MyAr( 2**(k+1)*i+(2**k)-1 ) <
MyAr( 2**(k+1)*i+2**(k+1)-1 ) )

then
tmp := MyAr(

2**(k+1)*i+(2**k)-1 );
MyAr( 2**(k+1)*i+(2**k)-1 ) :=

MyAr( 2**(k+1)*i+2**(k+1)-1
);
MyAr( (2**(k+1)*i+2**(k+1)-1)

) := tmp;
end if;

end loop;
end loop;
min_value  <= MyAr(N-1);

end process;

The type in_data is declared as follows:

type in_data is array (N-1 downto 0) of
std_logic_vector(K-1 downto 0);

Supplying input data from one port is done in VHDL
much like as it is shown in the Java fragment above.

The ring pipeline (see Fig. 2) is modelled in the Java

program using a two-dimensional array a[i][j]. The first
dimension permits to work with p registers of the ring
pipeline a[0], …, a[p-1]. The second dimension enables to
access bits of each N-item register indicated by the index of
the first dimension. For example, two sorted subsets shown
above (Fs

1 = {361, 841, 1011, 1021} and Fs
2 = {412, 422, 622,

1162}) will be modelled by the array a with two elements for
the first dimension (for the subsets Fs

1 and Fs
2) and with four

elements for the second dimension (for 4 elements of each
subset). The program permits the results of networks with
different numbers of N to be verified. For instance, the
results of the example from Section II may be displayed or
saved in a file as follows:

36 116
0;     0;    36;     0; 0;     0;   116;     0;
0;     0;     0;      0; 0;     0;     36;     0;

101 42
0;     0;   101;    36; 0;     0;   116;   42;
0;     0; 116;     0; 0;   36;   101;     0;

102 62
36;     0;   102;   101; 42;     0;   116;    62;
0;    42;   116;      0; 36;  101;   102;     0;

84 41
101;    36;   102;    84; 62;    42;   116;    41;

42;    62; 116;     0; 101;   84;  102;    36;
--------------------------------------------------------

36;    84;   101;   102;
--------------------------------------------------------

41;    42;    62;   116;
--------------------------------------------------------

The sorted items for two subsets are shown in between
three horizontal dashed lines. Similar results of any example
with N items can be verified formally through comparison of
all the values in the results.

Finally, the proposed network with a ring pipeline (see
Fig. 2) was evaluated in software and tested in hardware [8].
The software model proves that the network in Fig. 2
functions as expected. The hardware model verifies the
correctness of theoretical evaluations and permits the
proposed networks to be compared with the known
networks. The results of experiments demonstrate that the
proposed networks are faster and less resource consuming
with almost the same factors that were given above (see
Section II) for theoretical evaluation. We checked also an
opportunity for using multiple ports, such as that are
available in Zynq-7000 devices, and found that the proposed
network (see Fig. 2) is well suited for grouping input/output
data that enables several items to be transmitted in parallel.

IV. CONCLUSIONS

The paper suggests a novel hardware solution for data
sorting that is based on a ring pipeline. The main advantages
of the proposed technique are: 1) sorting is done at the time
of acquiring input data items through either a single or
multiple ports; 2) the speed of input interface is raised
thanks to the proposed ring pipeline with reduced number of
stages comparing to the known networks; 3) the sorting
network does not involve any additional delay. These results
have been confirmed both theoretically and experimentally.
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