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1Abstract—Time-frequency representation (TFR) based on
Adaptive Optimal Kernel (AOK) normally performs well only
for monocomponent signals and has poor noise robustness. To
overcome the shortcomings of AOK TFR mentioned above, a
new TFR algorithm is proposed here by integrating nonlinear
mode decomposition (NMD) with AOK TFR. NMD is used to
decompose multicomponent signals into a bundle of meaningful
oscillations and then AOK is applied to compute the TFR of
individual oscillations, finally all these TFRs are summed
together to generate one TFR. Through quantitative comparison
with other TFR methods to both simulated and real signals, the
superiority of proposed TFR based on NMD and AOK on
removing noise and many other measurement index of TFR are
shown.

Index Terms—Time-frequency representation; nonlinear
mode decomposition; adaptive optimal kernel; the cross terms.

I. INTRODUCTION

Since most of the signals around us are non-stationary
signals, such as communications, radar, sonar, acoustics, etc.,
their amplitudes and frequencies are changing with time.
Instantaneous frequency estimation is a very important and
popular tool to analyse many signals especially non-stationary
signals. Many traditional instantaneous frequency estimation
methods such as phase difference method [1], maximum
likelihood estimator [2] and other similar methods are easily
applied but lack of precise.

Empirical Mode Decomposition (EMD) is a kind of
method introduced by Huang [3], with which we can obtain a
meaningful instantaneous frequency. While doing a good job
on conquering the influence of the cross term of
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multicomponent signals, the drawbacks of EMD are also
obvious, it is not noise robust and has the phenomenon of
mode mixing which is caused by intermittent signals or noise
components [4]. To overcome the shortcomings of EMD, a
noise assisted data analysis method called ensemble empirical
mode decomposition (EEMD) is originally proposed in [5].
While doing a better job than EMD on resisting noise, it still
doesn’t meet expectations.

Time-frequency representations (TFR) is one of the most
popular and efficient techniques in instantaneous frequency
estimation, especially for multi-component signals [6].
Adaptive optimal-kernel (AOK) TFR is a signal depended
instantaneous frequency estimation method [7]. To overcome
the shortcomings of TFR methods with fixed windows or
kernels that perform well only for limited class of signals,
AOK is based on a signal-dependent radially Gaussian kernel
that adapts over time. However, AOK normally performs well
only for single component signals [8]. To reduce the
interference of the cross terms in AOK when processing
multi-component signals, a TFR method integrating EMD
with AOK (EMD + AOK) can suppress the cross terms to a
certain extent, but being quite sensitive to noise [9]. Since
EEMD is more effective in resisting noise than EMD,
EEMD + AOK can be used to improve the noise robustness to
some degree but not enough [5].

The key ingredient of quantile-based empirical mode
decomposition (QEMD) that analyses noisy signals
efficiently is to apply a quantile smoothing method to a noisy
signal itself instead of interpolating local extremes of the
signal when constructing its mean envelope [10]. While
holding the merits of the conventional EMD, it is also robust
to outliers and noise. Using QEMD instead of EMD, a new
TRF method is generated. However, it performs not good
when the signals are complex and contain relatively high
frequencies parts.
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Recently, a noise-robust, adaptive decomposition method
called nonlinear mode decomposition (NMD) is proposed
[11], [12]. NMD decomposes a given signal into a series of
physically meaningful oscillations for any wave form while it
is extremely noise robust. And it is based on the combination
of time-frequency analysis, surrogate data tests, and the idea
of harmonic identification [11]. However, the Nonlinear
Modes (NMs) obtained by decomposing the given signal with
NMD are not single component as IMF. The time-frequency
distribution can’t be got by directly doing the Hilbert
transform as each of them may contains several frequency
components.

To solve the problems of cross terms and the sensitivity to
noise of EMD + AOK and EEMD + AOK methods, a new
time-frequency representation algorithm combining NMD
and AOK together is proposed in this paper. This approach
fully utilizes the unique NMD decomposition ability to
multicomponent signal and the good TFR of AOK. The
results of examples verify that TFR based on NMD and AOK
is practical.

II. TFR ALGORITHM

A. Adaptive Optimal-Kernel Time-Frequency
Representation (AOK TFR)

As a large number of bilinear TFR’s have been proposed,
each of them only differs in the choice of the kernel function
[7], [8], different kernel functions only perform well in the
TFR of different signals. There is a conclusion from large
amount research about TFR that no single kernel can
adequately perform well on a large number of signals. In this
case, a signal-dependent kernel function and time-frequency
representation method is expected by all. The kernel function
of AOK TFR can adaptively changes with the signals whose
characteristics change over time [7], [8]. In this case, the
kernel function at each time can always be optimal and it
performs better in tracking the changes of the given signals.
The AOK algorithm can be briefly described as follows:

A1. Choose the Gaussian radial kernels as the kernel
function

2
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2 ( )

rr 
 

   (1)

where ( )  is the extension function controlling the spread
of the Gaussian at radial angle  .

A2. In order to get the optimal kernel adapted to a signal,
solving the following optimal problem is the best way

2
0 0max ( , ) ( , ) .A r r rdrd   


  (2)

Subject to

2 2
0 02

2 2
02

1 ( , )
4

1 ( ) ,
4

r rdrd

d





 


   


  

 

 

 (3)

where 0  , ( , )A r  is the ambiguity function in polar
coordinate. The volume of the kernel is limited to  . And the
definition of ( , )A r  in the rectangular coordinates is
described in (4)
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where ( )w u is a window function which is symmetrical and

equal to zero for u T .
A3. By solving the optimal problem in Step A2, an optimal

kernel function opt ( ; , )t   is obtained who varies with

time as the same with short-time ambiguity function (STAF).
A4. Finally, a single current-time slice of the AOK TFR is

computed as one slice (at time t only) of the 2-D Fourier
transform of the STAF-kernel product
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AOK time-frequency representation is an efficient method
to track the instantaneous frequency and energy variation
changing with time. While having a good performance on
time-frequency focusing property, AOK is still a member of
the bilinear transfer family. So the problem of cross terms for
multi-component signals especially for nonlinear signals can’t
be avoided by AOK time-frequency representation. What’s
more, the noise robustness of AOK TFR still not met
expectations.

B. Nonlinear Mode Decomposition (NMD)
The NMD method is a new signal decomposing algorithm

mainly aimed to extract the physically meaningful oscillations
from a complex signal system and simultaneously avoiding
the effect of noise effectively [11], [12]. Unlike EMD and
EEMD method that use a sifting process to extract intrinsic
mode functions (IMFs), it is mainly based on time-frequency
analysis, surrogate data tests, and the idea of harmonic
identification [11]. Each nonlinear mode (NM) extracted
from the original signal has physical significance and almost
does not contain noise. For a given signal ( )s t , the NMD
process contains the following steps:

B1. Calculate the wavelet transform  ,sW t of the target

signal )(ts and find all of its ridge curves (1) ( )p t through

the method discussed in [13], where (1) ( )p t is the ridge

curve of the first harmonic.
B2. Reconstruct the amplitude (1) ( )A t , the phase (1) ( )t ,

and the frequency (1) (1)( ) ( )t t   of the corresponding

component (1) (1) (1)( ) ( ) cos ( )x t A t t of first harmonic by
the ridge method. The formulas are as:

53



ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 4, 2016

ln ( )(1) (1)( ) ( ) ,d t
pt t e   (6)

(1)
(1)

(1) ( )
* (1) (1)

2 ( ( ), )
( ) ,

ˆ ( ) / ( )
s pi t

p

W t t
A t e

t t






   


 
 

(7)

where  1ln ( )d t  is the correction for discretization effects

found by parabolic interpolation. In addition, ( )t is the

wavelet function and ˆarg max ( )   denotes wavelet

peak frequency.
B3. Compute the corresponding degree of order 0D of the

first harmonic and create sN Fourier transform surrogates of
the signal ( )s t [11]. Calculate the TFRs of each of them and
compute the respective 1,2,... ss ND  . Count up the number of

sD meeting the condition of 0sD D and the significance
level is identified as the ratio of the number and sN .

B4. Calculate the amplitude-phase consistency of the first

harmonic  1 and set the threshold min 0.25  . And the

harmonic is identified as true if both  1
min  and the

significance level is greater than or equal to 0.95. If  1 ( )x t

was identified as true harmonic, set  1
1( ) ( )y t x t .

B5. Subtract the true harmonic 1( )y t obtained by Step B4
from the original signal ( )s t and repeat the above steps on the
residue to extract the h th true harmonic ( ),ky t

 1,2,...,k K , where K is the number of true harmonics.
Stop when three consecutive harmonics were judged as false.

B6. Sum all the true harmonics to generate a

 1
1

( )
K

k
k

NM t y t


  .

B7. Calculate the residue 1 1( ) ( ) ( )r t s t NM t  . Iterate on

1( )r t to obtain the next iNM .
Finally, the given signal )(ts can be expressed as

( ) ( ) ( ),i
i

s t NM t n t  (8)

where )(tn denotes the noise.

III. IMPROVED TIME-FREQUENCY REPRESENTATION
METHOD

A. EMD + AOK
Empirical Mode Decomposition (EMD) can be used to

adaptively decompose signals into a set of mono-component
signals called Intrinsic Mode Functions (IMF) [3].

To eliminate the effect of cross terms in AOK, a TFR
approach integrating EMD with AOK is proposed [8]. Firstly,
multi-component signals are decomposed into a series of
IMFs by EMD. Secondly, AOK is applied to compute the
TFR of individual single component, finally summing all
these TFRs together to generate one TFR. While restraining
the cross terms to some extent, the EMD + AOK method is

still very sensitive to noise.

B. EEMD + AOK
Ensemble Empirical Mode Decomposition (EEMD) is an

improvement method over EMD to eliminate the drawbacks
of mode mixing and low robustness to some extent [5].

With the advantages compared to EMD, EEMD is chosen
to replace EMD to be integrated with AOK to compute the
time-frequency representation [9]. While EEMD + AOK
method performs a little better than EMD+AOK on removing
the noise and mode mixing, it still cannot be regarded as a real
noise robust method compared with many approaches and its
performance do not meet our expectations.

C. QEMD + AOK
Quantile-Based Empirical Mode Decomposition (QEMD)

is an efficient way to decompose noisy signals based on a
quantile smoothing method and conventional EMD [10]. The
quantile sifting process can be seen as a process of removing
noise and the residual signal obtained from it is expected to
represent the pure signal without noise. And then the
conventional EMD method can be used to decompose the
“pure” signal into a set of IMFs. Finally, calculate the TFRs of
all the IMFs using AOK and sum them together to generate
the final TFR. This is a new TFR method based on QEMD
and AOK.

D. NMD + AOK
Nonlinear Mode Decomposition (NMD) is an extremely

noise robust decomposition method [11]. A new TFR method
integrating NMD with AOK algorithm together is resulted in.
NMD covers the shortage of AOK of cross terms and poor
noise robustness. So this TFR method has the advantages of
the two algorithms and performs better than the other TFR
methods mentioned above. The detailed procedure of NMD +
AOK can be described as follows:

C1. Give the original signal )(ts .
C2. Perform NMD (Step B1–Step B7) on the given signal

to obtain a set of NMs and the signal )(ts can be expressed as
(8).

C3. Calculate the time-frequency representation iTFR of
the corresponding iNM by using AOK (Step A1–Step A4).

C4. Obtain the final time-frequency representation TFR
by summing all the TFRs derived in Step C3 together.

IV. NUMERICAL SIMULATION AND ANALYSIS

Having described the TFR method based on NMD and
AOK and many other TFR methods, we now illustrate the new
TFR method by consideration of some simulated signals as
examples and contrasting with other TFR methods.

All methods use the parameter window width 2 128T 
and the volume 5  .

To quantitatively compare the performances of TFRs
mentioned above, three parameters are taken from [14]:

1. The Instantaneous frequency correlation IF .
2. The two-dimensional correlation  .
3. The time-frequency resolution [15, 16] measure res .
For the first two parameters 1.00 means best quality of

estimated representation, while for the third one it is 0.00.
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A. Example 1
Consider a signal with white noise described as follows

1
2

( ) cos(20 ) sin(200 ) sin(400 )

sin(100 ( 0.5) ) ( ),

s t t t t

t n t

  



   

   (9)

where ( )n t is a white noise. 1( )s t is sampled at 1 kHz for 1 s.
All the TFRs under signal to noise ratio ( SNR ) is 6 dB are
shown in Fig. 1, and the performance results under different
SNR are listed in Table I–Table III.

As shown in Fig. 1(b), there are serious cross terms and
noise in AOK TFR. EMD + AOK TFR and EEMD + AOK
TFR as in Fig. 1(c) and Fig. 1(d) suppress the cross terms to
some extent but still have poor noise robustness. The noise
robustness of QEMD + AOK in Fig. 1(e) is obviously better
than the three approaches above, but still do not meet
expectations. Meanwhile, it loses some of the useful high
frequency components and performs not good when noise is
skewed. As illustrated in Fig. 1(f), NMD + AOK TFR has a
better performance on both removing noise and suppressing
the cross terms.
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Fig. 1. TFRs of signal 1( ) :s t a) waveform; b) AOK TFR; c) EMD+AOK
TFR; d) EEMD+AOK TFR; e) QEMD+AOK TFR; f) NMD+AOK TFR.

According to the three tables, the parameter IF and 
obtained by NMD + AOK are obviously closer to 1.00 and the
value of res is closer to 0.00 than other methods under the
condition of 6 dBSNR  . And it is the same in other cases
with different SNR. So it is clear that the NMD + AOK TFR
outperforms the other four TFRs according to the value of the
three performance measures.

TABLE I. THE PARAMETER IF UNDER DIFFERENT SNR.

IF SNR
2 dB 6 dB 10 dB 14 dB

AOK 0.2764 0.3245 0.3134 0.3307
EMD + AOK 0.3143 0.3391 0.3792 0.4302

EEMD + AOK 0.3095 0.3516 0.3601 0.3663
QEMD + AOK 0.3552 0.4005 0.4316 0.4112
NMD + AOK 0.3931 0.4414 0.4450 0.4719

TABLE II. THE PARAMETER  UNDER DIFFERENT SNR.

ρ SNR
2 dB 6 dB 10 dB 14 dB

AOK 0.5906 0.6526 0.6808 0.6668
EMD + AOK 0.5921 0.6564 0.6885 0.6887

EEMD + AOK 0.6091 0.6572 0.6889 0.6999
QEMD + AOK 0.5599 0.6395 0.6600 0.7095
NMD + AOK 0.6399 0.6948 0.6914 0.6930

TABLE III. THE PARAMETER res UNDER DIFFERENT SNR.

res SNR
2 dB 6 dB 10 dB 14 dB

AOK 0.0237 0.0212 0.0209 0.0203
EMD + AOK 0.0205 0.0173 0.0162 0.0156

EEMD + AOK 0.0218 0.0176 0.0168 0.0170
QEMD + AOK 0.0127 0.0138 0.0123 0.0025
NMD + AOK 0.0091 0.0114 0.0105 0.0102

B. Example 2
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Fig. 2. TFRs of signal 2 ( ) :s t a) waveform; b) AOK TFR; c) EMD+AOK
TFR; d) EEMD+AOK TFR; e) QEMD+AOK TFR; f) NMD+AOK TFR.

Another simulated signal is as follows:

2 ( ) ( )[cos ( ) 0.5cos(5 ( ) / 4)
0.33cos(10 ( ) / 2)

0.25cos(15 ( ) / 3)] ( ),

s t A t t t
t

t n t

  
 

 

   
  

   (10)
( ) 1 0.25cos(2 / 20),A t t  (11)
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( ) 2 0.5sin(2 / 6),t t t    (12)

where 2 ( )s t is sampled at 100 Hz for 30 seconds. The TFRs
of each method under the condition of 6dBSNR  are shown
in Fig. 2, and the results of performance measure under
different SNR are listed in Table IV to Table VI.

As shown in Fig. 2, each component of the signal can be
seen from the TFR obtained by AOK, EMD + AOK and
EEMD + AOK while some cross terms and noise exist.
QEMD + AOK performs better on removing noise but losing
parts of the high order harmonic components. NMD + AOK
can suppress the noise and cross terms effectively and reflect
all information of the signal. The same conclusion can be
drawn from Table IV to Table VI by comparing the value of
the three parameters.

TABLE IV. THE PARAMETER IF UNDER DIFFERENT SNR.

IF
SNR

2 dB 6 dB 10 dB 14 dB
AOK 0.3982 0.4890 0.5184 0.5331

EMD + AOK 0.4766 0.5568 0.5958 0.6596
EEMD + AOK 0.4663 0.5558 0.6183 0.5848
QEMD + AOK 0.5361 0.6636 0.5933 0.6321
NMD + AOK 0.5541 0.6178 0.6644 0.6325

TABLE V. THE PARAMETER  UNDER DIFFERENT SNR.

ρ
SNR

2 dB 6 dB 10 dB 14 dB
AOK 0.6019 0.6481 0.6684 0.6722

EMD + AOK 0.6387 0.6240 0.6295 0.6153
EEMD + AOK 0.6507 0.6706 0.6579 0.6742
QEMD + AOK 0.6286 0.5233 0.6704 0.6534
NMD + AOK 0.6885 0.6859 0.6975 0.6953

TABLE VI. THE PARAMETER res UNDER DIFFERENT SNR.

res
SNR

2 dB 6 dB 10 dB 14 dB
AOK 0.0108 0.0070 0.0057 0.0053

EMD + AOK 0.0070 0.0051 0.0039 0.0025
EEMD + AOK 0.0073 0.0052 0.0045 0.0043
QEMD + AOK 0.0042 0.0028 0.0043 0.0010
NMD + AOK 0.0038 0.0036 0.0040 0.0051

V. REAL SIGNAL PROCESSING AND ANALYSIS

Verifying the proposed TFR method based on NMD and
AOK by simulated signals successfully, we also need to check
its feasibility with real signals.

A. Underwater Acoustic Signal
Here we choose the vertical underwater acoustic array data

collected in shallow-water off the Italian west coast by the
NATO SACLANT Centre. The real frequency of the signal is
about 170 Hz. There are 48 sensors and each of them
collected 64 K data points long with the sample frequency of
1 kHz. The first five seconds data of the whole signal data
collected by the first sensor is as in Fig. 3(a).

In general, the sea noise is considered as complex coloured
noise. From Fig. 3(b) to Fig. 3(e), it is obvious to find that the
AOK TFR, EMD + AOK TFR, EEMD + AOK TFR,
QEMD + AOK TFR are all suffering from noise seriously.
And the NMD + AOK TFR as shown in Fig. 3(f) performs

better on removing noise compared to other TFRs mentioned
above. So we can find the NMD + AOK algorithm also
performs well on removing the coloured noise.
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Fig. 3. TFRs of underwater acoustic signal: a) underwater acoustic signal;
b) AOK TFR; c) EMD+AOK TFR; d) EEMD+AOK TFR; e) QEMD+AOK
TFR; f) NMD+AOK TFR.

B. Human ECG signal
Here is a human ECG signal sampled with the frequency

40 Hz for about 30 minutes which is the same as used in [11].
We pick the part of the previous 37 seconds and add some
white noise of 6dBSNR  as in Fig. 4(a). The TFRs of
different algorithms are shown in Fig. 4(b)–Fig. 4(f).

ECG is a complex biological signal. The line near the
bottom of each figure represents the heartbeat signal which
frequency is about 1 Hz. And there are also many helpful
high-order harmonic components related to health [11]. From
Fig. 4(b) to Fig. 4(d), it is obvious that the high-order
harmonic components in these TFRs are seriously damaged
by the noise. The QEMD + AOK TFR method (see Fig. 4(e))
removes the noise to some extent but losing the high
frequency parts of the ECG signal at the same time. So there is
no doubt that NMD + AOK algorithm (see Fig. 4(f)) performs
best among the five TFR methods.
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Fig. 4. TFRs of ECG signal: a) ECG signal; b) AOK TFR; c) EMD+AOK
TFR; d) EEMD+AOK TFR; e) QEMD+AOK TFR; f) NMD+AOK TFR.

VI. CONCLUSIONS

AOK TFR has superior performance to a large class of
signals with its signal-depended kernel changing over time
adaptively. However, it only works well on mono-component
signals and failed to suppress cross-terms of multi-component
signals. In addition, the noise robustness of AOK TFR can’t
meet expectations. The EMD + AOK method and EEMD +
AOK method suppress the cross terms to a certain extent but
suffer from noise.

By using QEMD + AOK algorithm, the noise is removed
effectively while the higher frequency components are
weakened. Integrating NMD with AOK TFR algorithm, the
new TFR develops both the advantages of them and covers
their shortages to a great extent. So it is able to deal with
signals which are difficult to be processed by AOK TFR
individually. Moreover, it performs well on removing noise
because of the strong noise robustness of NMD algorithm. By
testing on two simulated signals and two real signals, we
compare the performance of the novel TFR method to others
by both analysing the TFR figures and the parameters in the
tables. The proposed TFR method can be used to obtain the
time-frequency representation of signals under low SNR and
suppress cross-terms to a certain extent at the same time.
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