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1Abstract—The optimal reactive power dispatch (ORPD) is
achieved by optimal coordination of the equipment which
control the reactive power flows in the power system. The
(ORPD) can be mathematically formulated as a nonlinear,
static and large-scale optimization problem with constraints.
This paper deals with solving the ORPD problem using a new
hybrid algorithm consisting of gravitational search algorithm
(GSA) and sequential quadratic programming (SQP). The
performance of this hybrid algorithm for the ORPD problem is
studied and evaluated on the standard IEEE 30-bus test system
with two different objective functions, namely minimization of
real power loss and voltage profile improvement.

Index Terms—Optimal reactive power dispatch;
gravitational search algorithm; sequential quadratic
programming; hybrid optimization algorithm.

I. INTRODUCTION

The ORPD problem solution aims to optimize a chosen
objective function through optimal adjustment of the power
system control variables, under specified active power
outputs of all generators (except at the slack bus PG1), while
at the same time satisfying the various equality and
inequality constraints. Accordingly, the ORPD problem can
be treated as a class of the optimal power flow (OPF)
problem which is a nonlinear, non-convex, large-scale, static
optimization problem with both continuous and discrete
control variables [1], [2].

Previously, the classical optimization methods such as
quadratic programming, Newton approach, dynamic
programming, interior point methods, etc. were used to
solve the ORPD problem. These methods are based on an
estimation of the global optimum. However, due to
difficulties of differentiability, non-linearity, and non-
convexity, these methods failed to provide the global
optimum and only reached the local one. Moreover, these
methods exhibit some limitations, depending on the type of
problem, e.g., when the objective function is not available in
algebraic form [3]. Recently, many population-based
methods such as differential evolution (DE) [3],
biogeography based optimization (BBO) [4], particle swarm
optimization (PSO) [5], gravitational search algorithm GSA
[6], firefly algorithm (FA) [7], artificial bee colony (ABC)
optimization [7], krill herd algorithm (KHA) and chaotic
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krill herd algorithm (CKHA) [8], etc. have been applied in
solving the ORPD problems with different objective
functions.

A combination of several optimization algorithms in
hybrid algorithm allows them to exploit the strength of each
algorithm [1]. Some of hybrid algorithms have been
proposed in [8]–[10] to solve the ORPD problem

This paper proposes a hybrid algorithm of GSA with a
local search technique based on SQP for solving the ORPD
problem. In this approach, GSA is used as a global
optimizer and SQP as a local optimizer to fine tune the
solution.

II. PROBLEM FORMULATION

Generally, the ORPD problem can be formulated as
follows

 min   .F ,x u (1)

Subject to:

 , 0,g x u (2)

  0,h , x u (3)
,u U (4)

where x is the vector of dependent variables consisting of
slack bus power PG1, load bus voltages VL, generator
reactive power outputs QG, and transmission line loadings Sl.
Accordingly, vector x can be expressed as

 T
G1 L1 LNL G1 GNG 1 NTL,  ... , ... , ... ,l lP V V Q Q S Sx (5)

where NL, NG and NTL are number of load buses, number
of generators, and number of transmission lines,
respectively.

u is the vector of control variables, consisting of
generator voltages VG, transformer tap settings T, and shunt
VAR compensations QC. Hence, u can be expressed as

 T
G1 GNG 1 NT C1 CNC... , ... , ... .V V T T Q Qu (6)

F is the objective function to be minimized.
The equality constraints (2) are the typical nonlinear

power flow equations. Inequality constraints (3) are the
functional operating constraints, such as: (i) Branch flow
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limits (MVA or A); (ii) Load bus voltage magnitude limits;
(iii) Generator reactive power output limits; (iv) Slack bus
active power output limits.

Constraints (4) define the feasibility region of the
problem control variables such as: (i) Generator bus voltage
magnitude limits; (ii) Transformer tap setting limits; (iii)
Shunt VAR compensation limits.

It is worth mentioning that the control variables are self-
constrained. The hard inequalities of dependent variables
PG1, VL, QG and Sl can be incorporated in the objective
function as quadratic penalty terms [2].

III. SOLUTION METHOD

The hybrid GSA-SQP algorithm consists of gravitational
search algorithm and sequential quadratic programming.

In GSA, the search agents are a collection of masses
which interact with each other based on the Newtonian
gravity and the laws of motion [11]. In a system with N
agents (masses), the position of the ith agent is defined by

 1,..., ,..., ,d n
i i i iX x x x (7)

where Ni ,...,2,1 , n is the search spase dimension of the
problem and d

ix defines the position of the ith agent in the
dth dimension.

The next position of the ith agent in the dth dimension can
be calculated as follows

     1 1 ,d d d
i i ix t x t v t    (8)

where  txd
i is the position of the ith agent at the current

iteration t and  1tvd
i is the velocity of the ith agent at

iteration t+1, respectively. The equations for calculation of
the velocity of the agents,  1tvd

i , can be found in [11].
GSA as a probabilistic based multipoint search technique,

has a drawback of, sometimes, converging to the values
which may not be optimum. On the other hand, GSA
searches a large solution space with excellent convergence
providing approaching to the global optimum.

The SQP method seems to be the best nonlinear
programming (NLP) method for constrained optimization
problems [12], [13]. NLP methods, such as SQP, being
single point search methods, have a drawback of being
trapped in local optimum point, if the initial choice is nearer
to the local optimum. The NLP method gives a global
optimum solution, if the proper initial choice is made [13].

To use of the advantage of GSA and SQP methods, and at
the same time to overcome the drawbacks of these methods,
a hybridization of GSA with SQP is proposed in [14]. The
SQP routine is incorporated in GSA as a local search
mechanism to improve the convergence of GSA in
subsequent iterations. First, the GSA algorithm is executed
normally, and the best fitness per generation is selected in
each iteration. From that best fitness, the corresponding best
agent is set as the initial values of variables to the SQP
method. Then, the SQP routine is executed depending on the
adopted probability of local search αLS, providing
improvement of the best fitness obtained from GSA in the

current iteration. In this way, the hybrid GSA-SQP
algorithm gives the global optimum solution.

A. Implementation of Hybrid GSA-SQP
Proposed hybrid GSA-SQP algorithm has been applied to

solve the ORPD problem. The elements of agent Xi are
generator bus voltages, tap positions of regulating
transformers and reactive power outputs of shunt VAR
compensators, (n = NG + NT + NC).

The flow chart of the hybrid GSA-SQP algorithm used to
solve the ORPD problem is shown in Fig. 1.

Fig. 1. Flowchart of hybrid GSA-SQP based ORPD solution.

The algorithm has been implemented in MATLAB 2011b
computing environment and run on a 2.20 GHz, PC with
3.0 GB RAM. The fmincon solver with SQP method
available in MATLAB optimization toolbox has been used
as the local search mechanism.

The algorithm parameters used for the simulation are
adopted as follows: α is set to 10 and G0 is set to 100; The
population size (N) and maximum iteration number (tmax)
are set to 20 and 100, respectively, for all case studies. The
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probability of local search αLS is set as follows:
αLS = 1 for t  tmax/2, and αLS = 0.95 for t > tmax/2
where t is the current iteration.

IV. SIMULATION RESULTS

The proposed hybrid GSA-SQP algorithm has been tested
on the standard IEEE 30-bus test system. The system data
and the minimum and maximum limits for the control
variables are given in [6] and [15]. The IEEE 30-bus test
system has 19 control variables as follows: 6 generator
voltage magnitudes, 4 transformer tap settings, and 9 shunt
capacitor reactive power injections. The voltages of all load
buses have been constrained within limits of 0.95 and 1.10
p.u. The total load demands of this test system are, Pload =
2.834 p.u. and Qload = 1.262 p.u. at 100 MVA base. The
active power outputs of the generators are specified as
follows: PG2 = 80 MW, PG5 = 50 MW, PG8 = 20 MW, PG11 =
20 MW and PG13 = 20 MW. Bus 1 is selected as the slack
bus.

TABLE I. OPTIMAL SETTINGS OF CONTROL VARIABLES.

Control
variables

Limits
Initial Case 1 Case 2

Lower Uper
VG1 (p.u.) 0.95 1.1 1.05 1.10000 1.00676
VG2 (p.u.) 0.95 1.1 1.04 1.09432 1.00167
VG5 (p.u.) 0.95 1.1 1.01 1.07479 1.01752
VG8 (p.u.) 0.95 1.1 1.01 1.07671 1.01135
VG11 (p.u.) 0.95 1.1 1.05 1.10000 1.00944
VG13 (p.u.) 0.95 1.1 1.05 1.10000 1.02033
T6-9 (p.u.) 0.9 1.1 1.078 1.04021 1.02489
T6-10 (p.u.) 0.9 1.1 1.069 0.90000 0.90000
T4-12 (p.u.) 0.9 1.1 1.032 0.97871 1.00152
T28-27 (p.u.) 0.9 1.1 1.068 0.96611 0.96949

QC10 (MVAR) 0 5 0 5.00000 5.00000
QC12 (MVAR) 0 5 0 5.00000 2.51832
QC15 (MVAR) 0 5 0 5.00000 5.00000
QC17 (MVAR) 0 5 0 5.00000 0.00000
QC20 (MVAR) 0 5 0 5.00000 5.00000
QC21 (MVAR) 0 5 0 5.00000 5.00000
QC23 (MVAR) 0 5 0 3.70176 5.00000
QC24 (MVAR) 0 5 0 5.00000 5.00000
QC29 (MVAR) 0 5 0 2.68988 2.61327

Ploss (MW) - - 5.82225 4.54271 5.96236
VD (p.u.) - - 1.14966 2.00789 0.08657

A. Case 1: Minimization of Real Power Loss [16]

 1
1

, ,
NTL

loss L
L

F P P


  x u (9)

where PL is the real power losses at line L and NTL is the
number of transmission lines.

The optimal settings of control variables are given in
Table I. Figure 2 shows the comparative convergence
profiles of GSA and proposed hybrid GSA-SQP for Case 1.
It may be observed from this figure that the hybrid GSA-
SQP explores the global optima thanks to exploration and
exploitation of GSA in the first part of the iterative process
and local search ability of SQP in subsequent iterations.

B. Case 2: Voltage Profile Improvement, that is
Minimization of the Load Bus Voltage Deviations [16]

 2
1

, ,
NL ref

i i
i

F VD V V


  x u (10)

where NL is the number of load buses and ref
iV is the

reference value of the voltage magnitude of the ith bus,
which is usually set to 1 p.u.
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Fig. 2. Convergence of algorithms for Case 1.

The optimal results for Case 2 are given in Table I.

C. Comparative Study
Under the same system data, control variable limits and

constraints, the results for Case 1 and Case 2 obtained using
the hybrid GSA-SQP approach reported in this paper are
compared to some other algorithms reported in the literature
as shown in Table II.

For Case 1, it can be seen in Table II that the methods
reported in [6], and [8]–[10] resulted in a lesser minimum of
the real power losses than the proposed hybrid GSA-SQP
approach. However, after the power flow computation with
control variables reported in these references, those results
can be considered as infeasible or incorrect solutions. The
results obtained by our power flow program were checked
and verified by MATPOWER power flow program [17].

Reasons for infeasibility of those results are summarized
as follows:
 The results in [6] represent an infeasible solution
because the reactive powers of the generators at buses 2
and 8 are -116.97 MVAr and 79.67 MVAr, respectively;
which violate their corresponding lower limits as reported
in [14]. Moreover, lower voltage limits are violated at all
load buses except at buses 3, 4, 6, 7, 9 and 28; and the
exact Ploss is 7.16681 MW for this violated case.
 For the optimum control variables given in [8], [9] and
[10], the exact values of Ploss as obtained from the power
flow computations are 5.12528 MW, 5.19018 MW and
5.30568 MW, respectively.
For Case 2, the results obtained from the proposed hybrid

GSA-SQP algorithm was compared to the methods reported
in [6]–[10]. Some of those results are infeasible or incorrect
solutions, as obtained from the power flow computations:
 The best result given in [6] is an infeasible solution
because reactive powers of the generators at buses 1 and 2
are -146.27 MVAr and 164.69 MVAr, respectively;
which violate their corresponding limits as reported in
[14]. The exact VD is 0.18744 p.u. for this violated case.
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 The best result given in [8] is an infeasible solution
because the reactive power of the generator at bus 1 is -
42.64 MVAr; which violate its corresponding limits as
reported in [14]. In addition, the bus voltages at buses 18–
20, 23–27 and 29–30, are lower than 0.95 p.u. The exact
VD is 1.04072 p.u. for this violated case.
 The optimum control variables given in [9] represent an
infeasible solution because the reactive power of the
generator at bus 1 come -50.67 MVAr; which violate their
lower limits. Moreover, lower voltage limits are violated
at buses 18-27 and 29-30. The exact VD is 1.13131 p.u.
for this violated case.
 For the optimum results in [10], the exact value of VD
is 0.25206 p.u., as obtained from the power flow
computations.

TABLE II. COMPARISON OF THE SIMULATION RESULTS FOR
CASE 1 AND CASE 2.

Algorithms Case 1 Case 2
Ploss (MW) VD (p.u.) Ploss (MW) VD (p.u.)

DE [3] 4.5550 1.9589 6.4755 0.0911
BBO [4] 4.5511 - - -
PSO [5] 4.6282 1.0883 - -

CLPSO [5] 4.5615 0.4773 - -
GSA [6] 4.51431 0.87522 6.911765 0.067633
FA [7] 4.5691 1.7752 6.34 0.1157

ABC [7] 4.6022 0.7378 5.88 0.135
CKHA [8] 3.2400 1.3364 8.2400 0.0416

ALC-PSO [9] 4.4793 0.8425 6.2800 0.0437
QODE [10] 2.6867 0.4609 9.2745 0.0607

GSA 5.10615 1.55834 6.89782 0.23243
SQP 5.06908 0.99667 5.54686 0.09312

Hybrid GSA-SQP 4.54271 2.00789 5.96236 0.08657

V. CONCLUSIONS

In this paper a novel hybrid GSA-SQP algorithm has been
proposed and successfully applied to solve ORPD problem.
The proposed approach has been tested an investigated on
the IEEE 30-bus test system. The results indicate that the
hybrid GSA-SQP algorithm provides effective and robust
high-quality solution. The hybrid GSA-SQP explores the
global optima thanks to exploration and exploitation of GSA
in the first part of the iterative process and local search
ability of SQP in subsequent iterations.

The results obtained using hybrid GSA-SQP were
compared with those reported in the literature. The
comparison showed that the proposed method gives better
solutions than other technique in the literature. In addition,
the paper shows that some of the results reported in the
literature are incorrect or infeasible.
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