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Introduction

Active compensation and filtering systems have been 
becoming more important day by day for ensuring high 
quality in power generation and reducing its cost. Passive 
compensation and filter circuits have been replaced by 
SCR-based circuits as a result of development in semi-
conductor technology. Determining reference current for 
these circuits is quite important for filter and compensation 
circuits [1–12].

Reference current can be defined as total of all 
instantaneous active and reactive currents drawn due to 
unbalanced loads or harmonic distortions. An active 
compensation circuit is run in a way that it generates this 
reference current. Most frequently preferred methods for 
obtain reference current are p-q theory, Peng theory, Park 
Power theory etc. PWM technique is generally preferred in 
compensator current control [1–12]. p-q theory, which is 
most prevalent calculation method, was took reference in 
this study.

p-q Theory

p-q theory is based on finding power values by 
converting voltage and current from a, b, c phase plane 
into , , 0 plane [7,13,14].

Voltage and current vectors are expressed as the 
following to show three-phase instantaneous voltage 
values av , bv , cv and three-phase instantaneous current

values ai , bi , ci

T
a b cv v v v , T

a b ci i i i . (1)

This voltage’s and current’s , and 0 values are 
expressed as (2–3).

Instantaneous active power is found by scalar 
multiplication (.) of voltage and current vectors while 
reactive power is found by vector multiplication of them 
(×) (4).
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0 0.p v i , 0 0q v i . (4)

Instantaneous active and reactive power can be 
expressed as the following for the systems without 0 
component

. .p v i v i p p and . .q v i v i q q . (5)

In this equation, p stands for mean instantaneous 

active power while p represents alternating active power,

q represents mean instantaneous reactive power and q
represents alternating reactive power. All powers must be 
compensated except p [1-14]. Fundamental current drawn

from the source ( fi ) and shunt-compensator’s reference 

current are calculated by using p mean instantaneous 
active power

2 .f
pi v

v
and R fi i i . (6)
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Discrete Wavelet Packet Transformation

Wavelet transformation is one of the most recently 
developed methods for signal analysis. It is prevalently 
used in many areas like mathematics, physics and 
engineering [15].

Wavelet packet transformation is an expression of 
digital signal with time scale. The signal resolution is 
changed by filtering process while its scale is replaced by 
down sampling process. Output of cascaded filter banks 
depends on the main wavelet and high- and low-frequency 
components of the system. The procedure is started by 
passing a N-length discrete signal ( )s n through an impulse 
response high-pass filter ( )h n and an impulse response 
low-pass filter ( )g n [16]. Responses of high-pass and 
low-pass filters constitute first-stage decomposition of the 
discrete signal and expressed as the following [17, 18]

1
0 ( ) ( ) (2 )

k
s n s k h n k , 1

1 ( ) ( ) (2 )
k

s n s k g n k . (7)

Extension functions ( , ( )j k x and , ( )j k x ) are not 
seen in this equation. This allows simulations to be 
performed through digital filter banks on computer 
environment [17, 18]. 1

0 ( )s n and 1
1 ( )s n sequences are 

more decomposed at second stage of wavelet packet 
transformation:
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The entire wavelet packet decomposition can be 
produced by following similar procedure;
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The decompositions from the sequence ( )i
ns n at stage 

i into the sequences 1
0 ( )i

ms n and   1
1 ( )i

ms n at stage 1i
using the two decomposition quadrature 
[17, 18]:
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Proposed Method

The proposed method is, first of all, based on
calculation of instantaneous active and reactive powers 

according to Peng’s generalized reactive power theory with 
no need for p-q transformation. Instantaneous active power 
is calculated as the following [6, 7]

.p v i or . . .a a b b c cp v i v i v i . (12)

Instantaneous active power is a scalar magnitude 
according to the equation above. Instantaneous reactive 
power is calculated as the following [6,7]
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Reactive power is a vector magnitude and q

represents magnitude of instantaneous reactive power for 
three phases [6,7]. DWPT decompositions of instantaneous 
active power at third stage can be written as
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DWPT decompositions of instantaneous reactive 
power for each phase at third stage can be written as;
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where
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where instantaneous active currents drawn for each 
decomposition of instantaneous active power:
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Sum of these currents yields value of the drawn 
instantaneous active current

3 3 3 3 3 3 3 3
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where instantaneous reactive currents drawn for each 
decomposition of instantaneous reactive power:
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Sum of these currents yields value of the drawn 
instantaneous reactive current
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Frequency ranges of current decompositions for 
sampling rate of 0.000625 seconds are given in Table 1 
[19].

Table 1. Wavelet packet decompositions of currents and their 
frequency ranges

Decomposition Frequency Range (Hz) Harmonic Order
3

000pi , 3
000qi 700 ~ 800 15

3
001pi , 3

001qi 600 ~ 700 13
3

010pi , 3
010qi 500 ~ 600 11

3
011pi , 3

011qi 400 ~ 500 9
3

100pi , 3
100qi 300 ~ 400 7

3
101pi , 3

101qi 200 ~ 300 5
3

110pi , 3
110qi 100 ~ 200 3

3
111pi , 3

111qi 0 ~ 100 1

As seen in the table, currents are decomposed into 
100 Hz equal frequency ranges. Therefore, currents of 

3
111pi , 3

111qi are active and reactive currents drawn at 

fundamental frequency of 50 Hz. These currents cause p

ve q powers from which the load requires from the source 
and consequently, all currents must be compensated except 

3
111pi [19, 20, 21]. If Si is the source current, Li is the 

load current and Ci is the compensation current then

L S Ci i i . (19)

Because the load current is equal to sum of active and 
reactive currents then
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Because we aim that only the basic frequency 3
111pi

active current is drawn from the source, all other current 
components account for shunt compensator’s reference 

current ( Ri ). Thus,
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Working principle of DWPT-based reactive power 
and harmonic compensator is given in Fig. 1.

Fig. 1. DWPT based reactive power and harmonic compensator

Simulation results

Calculations and simulations were carried out 
according to p-q theory, as first, and then, according to the 
proposed method. Then, the results were compared. db20 
was used in all DWPT simulations.

Phase-neutral effective value of source voltage is 
2400 V and frequency is 50 Hz. Fig. 2 shows configuration 
of the compensation system. It was assumed that the 
compensator can track the reference current at 
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instantaneously at infinite speed. Fig. 3 shows the source 
voltage and non-linear load current.

Fig. 2. Three phase reactive and harmonic compensation system

Fig. 3. Three phase source voltage and load current

p and q powers produced through (1–5) based on p-q
theory are given in Fig. 4.

Fig. 4. Three phase instantaneous active and reactive power
according to p-q theory

To find p , p signal was made pass through a low-
pass filter, whose cut-off frequency was 30 Hz. Fig. 5
shows fundamental frequency instantaneous active current, 

( fi ) and compensator’s reference current ( Ri ) obtained 
by using (6).

Fig. 5. Obtained p , fi and Ri values according to p-q theory

Fig. 6 and 7 show DWPT decompositions of 
instantaneous active and reactive powers found by using  
(12–16) according to generalized reactive power theory.

Fig. 6. Decompositions of instantaneous active power according 
to generalized reactive power theory

Fig. 7. DWPT decompositions of instantaneous reactive power 
according to generalized reactive power theory

Fig. 8 and 9 show DWPT decompositions of 
instantaneous active and reactive currents found by using 
(17–18) according to generalized reactive power theory.

Fig. 8. DWPT decompositions of instantaneous active current 
according to generalized reactive power theory
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Fig. 9. DWPT decompositions of instantaneous reactive current 
according to generalized reactive power theory

Fig. 10 shows compensator’s reference current Ri
values calculated according to the proposed method 

considering 3
111( )p p n and 3

111f pi i .

Fig. 10. Obtained 3
111( ( ))p p n , 3

111( )f pi i and Ri values 

according to proposed method

Fig. 11 shows the compensation results obtained 
through both of the methods

Fig. 11. A phase currents of Si , Li , Ci a) p-q theory b) 
proposed method

The biggest difference value in of both compensation 
currents is around ± 7 A (Fig. 12).

Fig. 12. Residual of compensation currents

Conclusions

In this study, a DWPT-based method was proposed 
for calculating reference current for active compensation 
systems. Unlike classical methods, mean instantaneous 
active power ( p ) was obtained directly through DWPT 
and moreover, instantaneous active power signal ( p ) does 
not require to be made pass through low-pass filter. 
Fundamental frequency instantaneous active current ( fi ),

reference current ( Ri ) and other currents can be calculated 
easily by using proposed method. In comparison of the 
obtained compensation current with that, which is obtained 
according to p-q theory, maximum variation in current is ± 
7 A. This accounts for very small and negligible error as 
0.43% according to maximum compensation current, ± 
1600 A. Thus, the proposed method can be used in active 
harmonic and compensation systems.
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Aktyviosios kompensavimo sistemos taikomos nei pasyviosios kom
jamos altinio 

srovei uoti aktyviosiose kompensavimo sistemos . Gauti 
rezultatai palyginti su rezultatais, gautais taikant - taikomas aktyviosiose 
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