
ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

1Abstract—The emergence of mobile cloud computing
(MCC) brings benefits to mobile users and cloud providers.
However, due to the inherent limitations of the device such as
battery life time, CPU and memory capacity, a mobile thin
client device (e.g. smart phones, tablets, iWatch, Google Glass,
etc) cannot meet the requirements of some demanding
applications. To alleviate this limitation, the mobile device
should cooperate with external resources to increase its
performance. Recently, current research approaches have been
unable to offer an efficient, seamless computing experience. In
this paper, we present a comprehensive thin-thick client
collaboration that involves conventional desktop or laptop
computers, known as thick clients, by allowing the thin client to
borrow resources from thick clients, particularly for optimizing
data distribution and utilizing MCC resources to meet Service-
Level Agreements, Quality-of-Service requirements and cloud
service customers’ budget. Our work uses both numerical
analysis and simulation to prove that our proposed architecture
can improve resource allocation efficiency and achieve better
performance than other existing approaches in some cases.

Index Terms—Cloud computing, data distribution, thin
thick client, resource allocation.

I. INTRODUCTION

According to Gartner Inc., there were approximately 2.4
billion units of cellular phones and tablets shipped in 2013,
outstripping PC sales in the same period, which were less
than 315 million shipments [1]. As smart phones become
more sophisticated with better hardware capability and a
wider variety of software, devices running lightweight
mobile operation systems (Apple’s iOS, Google’s Android
and Microsoft’s Windows Phone) will gradually supplant
traditional laptop and desktop computers [2]. This “fixed-to-
mobile” shift has resulted in an enormous amount of data
generated by mobile devices in recent years. In a report by
Cisco [3], global mobile data traffic, on a monthly basis,
grew 81 percent in 2013, reaching 820 petabytes per month
at the end of 2012. This number is predicted to surpass 15
exabytes by 2018. However, smart phones and tablets still

Manuscript received 29 April, 2015; accepted 23 October, 2015.

do not, and probably will not soon, have power equivalent to
a conventional desktop or laptop computer. They will
continue to be unable to perform tasks that require heavy
processing and/or large amounts of data storage. With
resource inefficiency such as limited processing capability,
small memory, and short battery life, mobile devices are
considered as only a complement to fixed stations and not as
an alternative.

Fortunately, cloud computing, with virtually unlimited
resource and service provision, has arrived and is anticipated
to boost the power of mobile devices. The applications of
cloud computing (CC) in a mobile environment include a
new computing paradigm named mobile cloud computing
(MCC). MCC allows the shift, also known as offloading, of
local computing-intensive tasks and data storage from
mobile devices to the Internet, i.e. to an array of virtualized
servers running on cloud provider networks. The
involvement of CC in a mobile environment accommodates
constraints related to performance (e.g., battery life, storage,
and bandwidth), environment (e.g., heterogeneity,
scalability, and availability), and security (e.g., reliability
and privacy) [4].

While cloud computing has existed for a while, its
application in the mobile world is still at an early stage.
Recent research has addressed MCC’s drawbacks, especially
those related to feasibility and performance, which has
focused on allowing mobile clients to access the cloud. In
[5], for example, Frank Siegemund et al. argue that smart
objects (i.e. smart phones) can leverage resources and
computing capabilities from nearby nodes to gain access to
the cloud network instead of using a direct connection (i.e.
through cellular network, 3G). Similarly, the authors in [6]
discuss a reliable MCC architecture that emphasizes services
and resource exchange among peer nodes, which simplifies
the querying process of peer nodes. In [7], a guideline to
create a virtual mobile cloud computing provider is
proposed, based on the peer network created between nearby
thin clients, to avoid the need to connect to infrastructure-
based clouds. Since the network condition plays a crucial

A New Technique for Optimizing Resource
Allocation and Data Distribution in Mobile

Cloud Computing
Pham Phuoc Hung 1, Tuan-Anh Bui2, Kwon Soonil3, Eui-Nam Huh1

1Department of Computer Engineering, Kyung Hee University,
Yongin, South Korea,

2Department of Information Technology, The Catholic University of Lovain,
Louvain-la-Neuve, Belgium,

3Department of Digital Contents, Sejong University,
Seoul, South Korea

hungpham@khu.ac.kr

http://dx.doi.org/10.5755/j01.eee.22.1.14113

73

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

role in guaranteeing the Quality-of-Services (QoS) of
resource provisioning (i.e. the greater the network
bandwidth, the better the QoS that can be achieved [8],
[13]), thin clients should be coupled with thick clients,
which come with more generous hardware resources and
high speed Internet connection (DSL, Fibre, etc.), in order to
obtain desirable cloud access [9]. However, one of the main
issues in [9] is that it does not consider the budget for CC.

With that in mind, in this paper, we discuss a
comprehensive thin-thick client collaboration to perform
efficient data distribution along with detailed solution to
perform efficient data distribution by splitting the big data
into chunks according to bandwidth of Internet connection.
Besides, the paper introduces a selection procedure of
suitable algorithms that optimally utilize resource allocation
in order to not only meet expected Service-Level Agreement
(SLA) and QoS requirements but also the CC budget in
order to improve users' cloud computing experience. In these
algorithms, we use a multi-user multi-task technique on each
virtual machine (VM) and create a group of service images
(SIs) from thin clients, then integrate them into a multi-user
multi-task VM. It is noteworthy that each SI now
corresponds to a user on this multi-user multi-task VM. A
group of service images has a location-based relation in
which the thin clients are close to each other. Our objective
is to calculate the number of VMs allocated for SIs to satisfy
SLA as well as cloud cost for using a cloud service. In order
to evaluate the eligibility and effectiveness of our work, a
number of simulations were conducted and their results
show that the proposed framework can significantly improve
efficiency of resource allocation in the cloud, and the
strategies discussed are effective enough to improve
performance compared with existing approaches.

We divide our paper into the following sections: Section
II is a review of the existing literature; Section III describes
a motivational scenario in which the role of thin-thick client
collaboration becomes crucial; Section IV specifies the
framework architecture and algorithms; Section V details
problem formulation. Section VI illustrates the
implementation of our ideas along with a performance
evaluation. The last section concludes the paper and
suggests future work.

II. RELATED WORK

There have been numerous studies that attempt to solve
some parts of the above problems. In [10], the authors
propose a new approach for efficient cloud-based
synchronization of a number of distributed file system
hierarchies. They use a master-slave architecture for
propagation of data to reduce traffic. In [11], researchers
demonstrate that some resource scheduling techniques can
be effective in mitigating the impacts that negatively
influence application response time and system utilization.
Andreolini et al. [16] and Fan et al. [12] study the impact of
data transfer delay on the performance but they do not
evaluate bandwidth efficiency. Gueyoung Jung et al. [14]
present a method to parallelize a process with big data in
order to increase performance in federated clouds; however,
they do not consider how many resources should be used.

For resource allocation, Ye Hu [15] shows that shared
allocation is superior to dedicated allocation but the author
does not conduct experiments with an arbitrary number of
SLAs, nor does he determine how fast a server is to
guarantee Quality of Service. In [17], A. Lenk et al. provide
services to a large number of SLAs but the performance
difference between shared allocation and reserved allocation
is difficult to determine.

Similar to our approach, other research efforts have been
made to integrate mobile devices and cloud computing. In
[18], X. Luo suggests using the cloud to improve a mobile
device’s capability. Marinelly [19] innovates Hyrax, which
allows mobile devices to use cloud computing platforms.
The researcher introduces the idea of using mobile devices
as resource providers, but the experiment is not integrated.
Also, Zhong and Longzhao [20] discuss the integration of
CC into mobile internet and are able to exemplify their
arguments with typical successful business models in the
market yet without particular performance benchmarking. In
[21], the authors propose an autonomic resource manager to
control the virtualized environment by recoupling the
resource provision in order to optimize a function which
integrates both SLA and the operating cost. However, the
QoS is not considered in this system. For ease of
understanding, we present an overview of common resource
allocation approaches along with ours in Table I.

TABLE I. COMPARISON BETWEEN APPROACHES.

Algorithm Target
System

Satisfy
SLA

Satisfy
QoS

Satisfy
Budget

Gonzalo H. et al.
[7]

Cloud
computing No Yes No

Ye Hu et al.[15] Heterogeneous Yes No No
E. Marinelli et al.

[19]
Mobile

computing No No No

Hien N.V et al.
[21]

Cloud
computing Yes No Yes

Weiwei Lin et al.
[22]

Cloud
computing Yes Yes No

Mathias B. et al.
[23]

Cloud
computing Yes Yes No

Our approach Mobile cloud
computing Yes Yes Yes

As shown in Table I, a desired approach should meet all
three factors including SLA, QoS of the system and the
budget of users in order to increase the reliability reputation
of the service provider as well as satisfy Cloud Service
Customers (CSCs). Therefore, in this paper, we introduce an
extensive thin-thick client collaboration which takes into
account these three factors.

III. MOTIVATING SCENARIO

As cloud computing becomes more popular, we can
predict situations where mobile users can take advantage of
cloud resources to solve their problems, especially when
they are in public places. We use the following scenario
(Fig. 1) to explain how the thin-thick client collaboration can
benefit a user. A student wants to use video call and play
games at the same time with her smartphone while she is
walking on her university campus. Unfortunately, her 3G
account, which comes with a limited monthly data package,
has run out of capacity for high-speed Internet and the phone

74

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

begins to load Internet data very slowly. Alternatively, the
student switches on the phone’s Wi-Fi and attempts to
connect to the university’s wireless network (via nearest
access points). Suppose that the student has a legitimate
account. Once connected, she can continue using her cloud
service as she moves around the university campus.

Fig. 1. Scenario for requesting a cloud service.

Let us consider this scenario more closely. After getting
connected to the wireless network, the student begins to send
requests for the cloud services. These requests will be
handled by a group of computers that consists of a broker
computer and several other computers, or thick clients, each
of which can access different cloud providers. The broker
first receives user requests before establishing connections
with the associated cloud providers to deliver users’ requests
up to the cloud. Results of the fulfilled requests (i.e. video or
music stream) are returned to the thick clients via the chosen
paths. In this scenario, which is potentially backed by high-
speed broadband connections (DSL, cable, WiMAX),
service paths between thick clients and cloud networks can
have considerably higher bandwidth than the one between
the thin client and cloud networks which use a mobile
network like 3G. Consequently the former can be expected
to offer much higher service quality than the latter, which
means returned data can be delivered to thick clients in a
relatively short time. The broker now collects the returned
data from involved thick clients, combines the data and
delivers the aggregate data to the request sender. Thereby,
the thin client takes advantage of multiple thick clients’ relay
to enhance the data distribution from cloud networks, which
enhance its computing capability. When there are multiple
thin clients requesting cloud services, the request-response
procedure should work the same way as described above,
except that the broker has to remember different request
initiators so that later it can dispatch the returned data to the
correct recipient.

The above scenario shows the potential benefit of utilizing
joint work between thin clients and thick clients in a typical
mobile cloud computing environment. Such collaboration
increases the opportunity for using resources efficiently and
optimizing data distribution between the mobile thin client
and cloud network. With that in mind and with the CC
platform staying ready and emerging on the market, our
paper describes how to create a network design based on
thin-thick client collaboration. We attempt to address the
following problems:
 Performing the resource allocation, i.e., grouping some
location-based Service Images to co-use the VMs in the

cloud and calculating the number of VMs to satisfy SLAs
and CSCs’ budget.
 Determining the strategy in order to distribute data to
thin clients to meet QoS requirements.

IV. SYSTEM ARCHITECTURE

The following section describes our system architecture to
address the above issues.

Fig. 2. Layering architecture of the proposal.

Unlike many other designs in the research literature that
follows the 1/m/1 model, that is, there is a cloud server at
one end of the transmission, a client at the other end and
multiple paths between the two ends. Our proposed method
implies a 1/m/m/1 model, where cloud service providers (1)
send chunks of data through multiple paths (m) to multiple
thick clients (m) that transfer this data to a broker in the
scenario. The broker combines the received data then
delivers it to the intended end user (1). As illustrated in
Fig. 2, our architecture has two layers. It includes (1) a
Cloud Provider layer, which contains Virtual Machines
(VMs), and (2) a Cloud Service Customer layer, where thin
clients and thick clients reside. In the second layer, there is a
thick client functioning as a centralized management node,
also known as a broker, which receives all computation
requests from users and manages the processor’s profiles
(processing capacity, network bandwidth) as well as the
results of the data query returned from VMs. In particular, it
sends data to clouds in a single connection but when VMs
send data to a cloud service customer layer, the data will be
divided into different parts with different sizes before being
delivered to thick clients in multiple connections. Next, the
broker combines and sends the data to corresponding users.

V. PROBLEM FORMULATION

A. Cloud Provider Layer
To make data processing more efficient, we also perform

data training to classify and assign SIs. The one that has a

75

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

higher priority can be transferred first and vice versa. In
addition to that, data are divided into different chunks of
different sizes, according to VM capacities, then assigned to
VMs. The larger data chunks are assigned to VMs with
higher capacity. The best VMs are selected based on their
capabilities using the Greedy algorithm. The issue here is
how to determine the minimum number of VMs in order to
meet expected SLAs and budgets of CSCs for running a
service s.

By utilizing the cumulative distribution function (CDF) of
the response time, denoted by F(x) [16], we can measure
achievable QoS, represented by the Probability in which
response time RT remains below a threshold x, when the
number of serving VMs is changed. That is to say, the
minimum number m of VMs can be obtained by gradually
increasing m until F(x) reaches the target probability and
CC’s budget. As a result, this m is supposed to be satisfied
for SLAs and the CSCs’ finance. The CDF of response time
can be described as follows

(1)
()

1 , for 1,

11 [], for 1,
1

Probability() ()
x x

x m
x x m

RT x

e k e x m

ee k e m
m

F x
 

 
  

 

 


 

 
  



    
  
   

 

 

(1)

where / ,   (0) ,
! ()

m mk P
m m




 


1
1

0
(0) ,

! !()

n mm

n

m
P

n m m
 








 
  
  
  is arrival rate of SLA

job processed at VMs with queue model M/M1 and  is a
service rate.

With regard to resource allocation methods, available
VMs can be categorized into two types: Shared Allocation
(SA) and Reserved Allocation (RA). In SA, the number of
VMs in SA is denoted mShared and the arrival jobs (SLAs) are
combined into a single stream while in RA whose the
number of VMs is denoted mReserved, each arrival job has its
own dedicated VMs. These allocations can be illustrated in
Fig. 3. In the first type, Shared Allocation, all SLAs have the
same CDF for the response time and arrival rate

1
k

ii   . Therefore, the minimum number of VMs
mShared to meet k SLAs is given by

Shared 1 2max(, ,..., ,...),i km m m m m (2)

where mi is the number of VMs required for SLAi of the ith

thin client. Let mReserved be the smallest number of VMs
required to meet k SLAs in Reserved Allocation. So mReserved

is calculated as follows

Reserved
1

,
k

i
i

m m


  (3)

In addition, the algorithm also considers the resource cost
paid by cloud service customers for using cloud resources
that are used to execute requested services. The cost is

charged according to the utilized resources.

Fig. 3. Resource allocation strategy.

Let
j

s
VMC be the cost of running service s on the VM

which belongs to type j for a time unit. The type j here is RA
or SA. In so doing, we can determine the cost C(s) for using
the VMs as follows

{ , }
() ,

j
s

j VM
j RA SA

C s m C


  (4)

where mj is the number of VMs which belongs to type j.
Using the cost in (4) and CDF F(x), we can calculate the
minimum number of VMs which satisfy both SLA and the
CC’s budget by applying Algorithm 1.
Algorithm 1 Determine the minimum number of VMs
Input:  // arrival rate;

 // service rate
SLA(x, z) // x : response time (threshold);

// z : target probability
 // budget

Output: m // minimum number of VMs required
float  =  / 
function determineMinVM (, , x, z, ) {

if ( == (int) ) m = (int)  ;
else m = (int)Math.floor() + 1 ;
end if
while (F(x) <=z && C(s) ) m++ ;
end while
return m;

}

Furthermore, when 2 requesters have the same SLAs,
Shared Allocation obviously has the same or better
performance than Reserved Allocation (mShared  mReserved).
However, if SLA1 and SLA2 are different for SA and RA, it is
not easy to determine whether SA or RA is better. An
example is shown in Table II in term of SLA. In the first
case, mReserved is better than mShared but the reverse is true in
the second case.

TABLE II. EXAMPLE OF TWO CASES.
Case 1 x1, y1 2 x1, y1 mReserved mShared

1 3.9 3, 0.7 3 6, 0.85 10 11
2 3.9 3, 0.85 2.9 5, 0.6 12 10

Because of this performance-related difference in various
circumstances, it is important to select a suitable strategy,
either Shared or Reserved Allocation, to satisfy SLA1, SLA2.

76

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

Moreover, the provisioned VM resource is also supposed to
guarantee QoS requirements. Let E(SLA) be the average
number of VMs required to meet k the given SLAs over the
range of considered arrival rates

0

1() (, ,).
k

E SLA f k x y
k
  (5)

Then we set the SLA difference D between SLA1 and
SLA2. D is given by

1 2() () .D E SLA E SLA  (6)

Our Algorithm 2 below specifies a preferred allocation
strategy to satisfy SLAs and QoS requirements as well as
budget. It uses the SLA difference table (Table III) to
present the relationship of D and angle α. In the table, each
range of D is predetermined by changing the arrival rate λ1,
λ2 in (0, 30) and the angle is the corresponding average angle
of the SLA difference in each range. The angle α is defined
by sin α = λ2 /sqrt(λ1.λ1 + λ2.λ2).

TABLE III. SLA DIFFERENCE.
D 

[0, 20) 0
[20, 40) 20
[40, 66) 50
[66, 88) 70

In order to guarantee QoS, we have to know how fast a
VM should be. Hence, we should apply a rule [8] as follows

[] = ,
(1)

E N 


(7)

where ,



 variable E[N] denotes the expectation of the

number of jobs in the system. Therefore, the expectation of
processing time is

[] 1[] = .
(1)

E NE T 
    
 

 
(8)

Finally, to satisfy QoS, it is required that

1 .
[]E T

   (9)

In agreement with this formula, we can determine the
service rate of the VM. For example, suppose we want E[T]
≤ 15s, λ = 1 job/sec. The rate of VM we need is greater than
16/10.
Algorithm 2 Determine the allocation strategy
Input: λ1 ,λ2 //arrival rate,

µ // service rate
SLA1, SLA2

E // expectation of processing time
 // budget

Output: SA, RA // Allocation Strategy

Function determineAllocStrategy(λ1, λ2, SLA1, SLA2,E,µ, ) {
Calculate SLA difference D
Get the corresponding angle α from the SLA difference table
if (µ>=(1/E[T] + λ1)&&µ>= (1/E[T] + λ2) && (C(s) ))

if (Math.asin (λ2 /sqrt(λ1.λ1 + λ2.λ2)) <= α)
return RA

else
return SA

end if
}

B. Cloud Service Customer Layer
1) Distributing data from the cloud server to thick
clients

After resource allocation, we consider the distribution of
source data from the cloud server to thick clients. For clarity,
we give important definitions and assumptions for our
system. The data distribution process happens as follows:
First, each block of data is split into chunks {ch1, ch2,…,
chn} with different sizes depending on bandwidth. Let w(chi)
be the size of a chunk chi ; bi be the bandwidth from a VM to
a thick client. Therefore, time spent transferring a chunk chi

from VMs to a thick client is w(chi)/bi.. For parallelization,
the time to transfer chunks to thick clients should be equal,
as illustrated in (10):

1 2

1 2

()() () .i

i

w chw ch w ch t
b b b

     (10)

Set

0 0 = ()= () .n n
i ii iS w data w ch t b   (11)

Thus

0
() .i i in

ii

Sw ch t b b
b

   


(12)

According to this value, we can determine the size of each
chunk to adapt to the bandwidth of each connection.

2) Combining the data then transfer it to a thin client
After data from cloud service has been received, instead

of using peer-to-pear synchronization between all thick
clients, which might make communications more complex,
the broker thick client receives data from others thick clients
to decrease the complexity due to firewall between thick
clients, before transferring it to corresponding thin client.

VI. IMPLEMENTATION AND DISCUSSION

In this section, the results of numerical experiments are
presented to evaluate the efficiency of SA and RA and
compare our approach’s performance with other approaches
in terms of processing time. The comparison method is the
one which has one processor receiving data from the cloud
provider.

A. Experimental Settings
In this experiment, characteristics of our target system are

presented. We use a PC which has one Intel Core TM i7 965

77

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

and 8 GB of RAM. The OS is Windows 7 Professional. The
algorithm is simulated on the CloudSim [24], which is a
framework for modelling and simulation of cloud computing
infrastructures and services, in Java with jdk-7u7-i586 and
Netbeans-7.2. After setting the CloudSim library and
building a data center, we virtualized 25 VMs in the
platform, 10 thin clients and 7 thick clients. The available
bandwidths between processors are from 10 Mbps to 512
Mbps so as to make different connection capacities between
processors. In the bandwidth range, 512 Mbps is used for
processors which have the strongest connection capacity,
and 10 Mbps is used for processors which have the weakest
one. The topology of all processors is fully connected.

All the parameters in the simulations have different arrival
rates λ, response times, target probabilities y and some big
files for the above algorithms to estimate the required

minimum number of VMs for two types of resource
allocation, and data distribution time. With regards to SLA
settings, we set values for parameters of response time and
target probability as 1 to 10, and 0.1 to 0.99, respectively.
Meanwhile, speed values of requests and response services
include 0.2–3.9 range for arrival rate and 1–4 range for
service rate.

B. Experimental Results
The following figures show the simulation results of our

experiment. The results prove SA and RA have almost the
same impacts when they meet the same SLA with a different
arrival rate λ or response time RT or target probability y. As
illustrated in Fig. 4 and Fig. 5, when the arrival rate or target
probability increases, the minimum number of VMs also
increases.

Fig. 4. SA and RA with different arrival rate.

Fig. 6. SA and RA with different response time.

On the other hand, Fig. 6 show that the minimum number
of VMs required to meet an SLA decreases when the
response time increases. It is noteworthy that the reserved
allocation is more expensive than shared allocation.
Therefore, when the response time required is very small,

although the number of VMs mReserved is high, it is still less
than the number of VMs mShared because of the budget
limitation.

Regarding the probability that satisfies SLA (as illustrated
in Fig. 7 and Fig. 8), it has been observed that when the

78

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

arrival rate of the requests increases, the probability
decreases. Nonetheless, the probability is proportional to the

response time required.

Fig. 7. Probability with different arrival rate.

Fig. 8. Probability with different response time.

We next calculated the effect of the case where SA and
RA have to meet multiple SLAs rather than a single one. It is
obvious to see that with a proper budget, the strategy with
SA is more resource efficient than with RA, as illustrated in
Fig. 9, where SA uses fewer VMs than RA as the number of
SLAs increases.

Fig. 9. SA and RA with different numbers of SLA.

Fig. 10. Comparison of our approach with other.

This is because while the former strategy may cause the
expectation of processing time to get worse if merging
arrival jobs increases variability, it in fact uses shared
processing resources and so requires fewer VMs than the
latter. RA, to the contrary, sacrifices more resources and

79

ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 1, 2016

thus can provide a guaranteed rate.
In addition, we further compare the processing time to

transfer big data from a source to a destination of our system
and one other approach, which has one processor receiving
data. Based on the experimental results in Fig. 10, it is
obvious that our approach produces better performance.

VII. CONCLUSIONS

This paper proposes a novel network architecture and
algorithms to optimize data distribution and computing
resources on the mobile cloud platform. Specifically, our
approach combines resource-rich devices, or thick clients,
and resource-limited ones, or thin clients, to form a
collaborative network on the client slide. This collaboration,
mainly leveraging the power of thick clients, can calculate
and select sufficient cloud resources (measured by the
number of VMs) and optimally deliver data between cloud
networks and mobile clients. In so doing, the expected
quality of service requirements can be satisfied.
Additionally, from the multiple network resource allocation
strategies being discussed, we develop an algorithm that
selects the most suitable strategy so that required SLAs and
CSCs’ budget can be met. By carefully measuring and
comparing our method with other existing ones, we have
shown the novel algorithmic technique in our proposal can
increase the efficiency of resource allocation and utilization
with a suitable strategy. These particular advantages are
visually illustrated by the minimised number of VMs used,
and shorter execution time for data distribution.

Future work includes advancing the research proposal into
a real-world implementation, for example, an in-campus or
inter-campus cloud streaming and processing service for
students and professors at universities and educational
institutions. Successful experiment can be expanded into
larger-scale deployment into considered public places where
heavy processing needs are high. With the planned
implementation, we can thoroughly observe real-world
operation, performance and work out any resulting problems
or shortcomings. Moreover, we will focus on improving the
quality of service in order to improve the cloud service
experience. Our approach may be used to deploy successful
cloud-based business models to mobile users. Furthermore,
we are implementing the proposed architecture using Google
Glass based augmented reality and context aware services.

REFERENCES

[1] Gartner, Inc., 2013. [Online]. Available: http://www.gartner.com
/newsroom/id/2408515

[2] Gartner, Inc, “Gartner says worldwide enterprise IT spending to reach
$2.7 trillion in 2012”. [Online]. Available: http://www.gartner.com/
newsroom/id/1824919

[3] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast
Update, 2014–2019. [Online]. Available: http://www.cisco.com/
c/en/us/solutions/collateral/service-provider/visual-networking-index-
vni/white_paper_c11-520862.html

[4] H. T. Dinh, C. Lee, D. Niyato, P. Wang, “A survey of mobile cloud
computing: architecture, applications, and approaches”, Wirel.
Commun. Mob. Comput., 2011. [Online]. Available: http://dx.doi.
org/10.1002/wcm.1203

[5] F. Siegemund, C. Floerkemeier, H. Vogt, “The value of handhelds in
smart environments”, in Personal and Ubiquitous Computing, vol. 9,

no. 2, pp. 69–80, 2005. [Online]. Available: http://link.springer.com/
chapter/10.1007%2F978-3-540-24714-2_22

[6] P. Zhang, Peng, “A QoS-aware system for mobile cloud computing”,
in IEEE Int. Conf. Cloud Computing and Intelligence Systems
(CCIS), 2011. [Online]. Available:
http://dx.doi.org/10.1109/CCIS.2011. 6045122

[7] G. Huerta-Canepa, D. Lee, “A virtual cloud computing provider for
mobile devices”, in (MCS 2010), USA, 2010. [Online]. Available:
http://dx.doi.org/10.1145/1810931.1810937

[8] N. Tien-Dung, V. N. Mui, Huh Eui-Nam, “Service image placement
for thin client in mobile cloud computing”, in Int. Conf. Cloud
Computing (CLOUD), USA, 2012. [Online]. Available:
http://dx.doi.org/10.1109/CLOUD.2012.39

[9] Pham Phuoc Hung, Eui-Nam Huh, “Collaboration of thin-thick
clients for optimizing data distribution and resource allocation in
cloud computing”, in IT Convergence and Security, Korea, 2013,
pp. 685–693. [Online]. Available:
http://link.springer.com/chapter/10. 1007%2F978-94-007-5860-5_81

[10] S. Uppoor, M. D. Flouris, A. Bilas, “Cloud-based synchronization of
distributed file system hierarchies”, in IEEE Int. Conf. Cluster
Computing Workshops and Posters, 2010, pp. 1–4. [Online].
Available: http://dx.doi.org/10.1109/CLUSTERWKSP.2010.5613087

[11] J. Delgado, L. Fong, “Efficiency assessment of parallel workloads on
virtualized resources”, in Fourth IEEE Int. Conf., 2011. [Online].
Available: http://dx.doi.org/10.1109/UCC.2011.22

[12] Pei Fan, Ji Wang, “Toward optimal deployment of communication-
intensive cloud applications”, in IEEE Int. Conf. Int. Conf. Cloud
Computing (CLOUD), 2011, pp. 460–467. [Online]. Available:
http://dx.doi.org/10.1109/CLOUD.2011.54

[13] M. Kwok, “Performance analysis of distributed virtual
environments”, Ph.D. dissertation, University of Waterloo, Ontario,
Canada, 2006. [Online]. Available:
https://uwspace.uwaterloo.ca/handle/10012/2928

[14] N. Gueyoung Jung, “Synchronous parallel processing of big-data
analytics services to optimize performance in federated clouds”, in
IEEE 5th Int. Conf. Cloud Computing, USA, 2012, pp. 811–818.
[Online]. Available: http://dx.doi.org/10.1109/CLOUD.2012.108

[15] Ye Hu, Johnny Wong, “Resource provisioning for cloud computing”,
in Conf. Center for Advanced Studies on Collaborative Research,
2009, pp. 101–111. [Online]. Available:
http://dx.doi.org/10.1145/1723028.1723041

[16] M. Andreolini, S. Casolari, M. Colajanni, “Autonomic request
management algorithms for geographically distributed internet-based
systems”, in Second IEEE Int. Conf. Self-Adaptive and Self-
Organizing Systems, (SASO 2008), 2008, pp. 171–180. [Online].
Available: http://dx.doi.org/10.1109/SASO.2008.32

[17] A. Lenk, M. Klems, “What’s Inside the Cloud? An Architectural Map
of Cloud Landscape”, ACM/IEEE Symposium on Cloud Computing
Challenges, pp. 23-31, Vancouver, 2009. [Online]. Available:
http://dx.doi.org/10.1109/CLOUD.2009.5071529

[18] X. Luo, “From augmented reality to augmented computing: a look at
cloud-mobile convergence”, in Int. Symposium on Ubiquitous Virtual
Reality, 2009, pp. 29–32. [Online]. Available:
http://dx.doi.org/10.1109/ISUVR.2009.13

[19] E. Marinelli, “Hyrax: cloud computing on mobile devices using
mapreduce”, Master thesis Draft, Computer Science Dept., CMU,
2009.[Online]. Available: http://oai.dtic.mil/oai/oai?verb=getRecord
&metadataPrefix=html&identifier=ADA512601

[20] L. Zhong, “Cloud computing applied in the mobile internet”, in 7th
Int. Conf. computer science and education (ICCSE), 2012. [Online].
Available: http://dx.doi.org/10.1109/ICCSE.2012.6295061

[21] Hien Nguyen Van, “SLA aware virtual resource management for
cloud infrastructures”, in IEEE Int. Conf. Computer and Information
Technology, vol. 1, pp. 357–362, 2009. [Online]. Available:
http://dx.doi.org/10.1109/CIT.2009.109

[22] Lin Weiwei, Peng Baoyun, “Novel resource allocation model and
algorithms for cloud computing”, in Int. Conf. Emerging Intelligent
Data and Web Technologies, 2013. [Online]. Available:
http://dx.doi.org/10.1109/EIDWT.2013.18

[23] B. Mathias, L. Y. Chen, “Opportunistic service provisioning in the
cloud”, in IEEE Fifth Int. Conf. Cloud Computing, 2012. [Online].
Available: http://dx.doi.org/10.1109/CLOUD.2012.85

[24] Cloudsim, “A framework for modeling and simulation of cloud
computing infrastructures and services”. [Online]. Available:
https://code.google.com/p/cloudsim/downloads/list

80

