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1Abstract—Hypotension occurring in the initial phase of
resuscitation is significantly associated with increased mortality
following brain injury, even when episodes are relatively short.
A large amount of data exists in health care systems providing
information on the major health indicators of patients in
hospitals. It is believed that if enough of these data could be
drawn together and analysed in a systematic way, then a system
could be built that will trigger an alarm predicting the onset of
a hypotensive event. In the paper the mathematical information
algorithm based on the concept of the rank of a sequence is
presented. For the analysis of hypotension physiology an
application of a new algebraic method is proposed for real
world time series analysis. Numerical experiments with a
hypotension crisis prevention using arterial blood pressure time
series are used to illustrate the potential of the proposed
method. The algorithm for finding ranks of a sequence of the
ECG parameters is presented in the paper in order to show
complexity profiles. Experimental results show that presented
in this paper method also can be used together with other
hypotension prediction methods.

Index Terms—Hypotension physiology; time series; Hankel
atrices; rank; complexity profile.

I. INTRODUCTION

Hypotension occurring in the initial phase of resuscitation
is significantly associated with increased mortality following
brain injury, even when episodes are relatively short. These
prospective data reinforce the need for early continuous
monitoring and improved treatment of hypotension in brain-
injured patients. The ability to predict adverse hypotensive
events, where a patient's arterial blood pressure drops to
abnormally low (and dangerous) levels, would be of major
benefit to the fields of primary and secondary health care,
and especially to the traumatic brain injury domain.

A large amount of data exists in health care systems
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providing information on the major health indicators of
patients in hospitals (blood pressure, temperature, heart rate,
etc.). It is believed that if enough of these data could be
drawn together and analysed in a systematic way, then a
system could be built that will trigger an alarm predicting the
onset of a hypotensive event.

This was the basis for the Avert-IT project
(http://www.avert-it.org), a collaborative EU-funded project
involving the construction of a hypotension alarm system
exploiting Bayesian neural networks using techniques of
data federation to bring together the relevant information for
study and system development. It must be noticed that
before this project wasn’t solution to this hypotensive
prediction problem on the market and the commercialization
aspects of the project were important. A variety of
commercial systems do allow the prediction of forthcoming
clinical states, but none are able to provide any probabilistic
measure of the causative information that can be tied to
context. For example, the Bio Sign device [Pulsewave™
devices: http://www.biosign.com/pulsewave-max.aspx]
produces an index predicting cardiovascular instability based
on several vital signs such as heart rate, respiration rate, etc.

The main methods for hypotensive prediction problem are
listed below. The Genetic Algorithms (GA) providing a
search technique that involves generating a random selection
of solutions across the domain, then testing each of them
against a fitness function. Though useful in scheduling and
timetabling optimizations, there is some doubt as to whether
the GA would be applicable in this system. The Bayesian
Belief Networks (BBN) offering a probabilistic model that
represents a set of variables and their probabilistic
dependencies. Inherently capturing probability in its
development, training BBN architecture with data-driven
mechanisms has proven difficult. Artificial Neural Networks
(ANN) – comprise a computer-simulated approach derived
from the brain model, where individual neurons are
interconnected from an input layer, through one or more
hidden layers, to an output layer.
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In the Avert-IT project regarding to the various
advantages and disadvantages of the different approaches, it
has been agreed that a Bayesian approach to training an
Artificial Neural Network (a BANN) is an effective way of
training the system to detect the onset of a hypotensive event
based on the input data from associated parameters [1]. The
motivation for considering the BANN was its efficiency for
the classification and modelling of highly nonlinear
relationships whilst also considering probabilistic factors,
which themselves are expected to be a major aspect in the
clinical inputs involved.

The last years’ studies showed that the complexity in
human body functioning is important area of research.
Measuring the complexity of various bio signals, such as
ECG, EEG or DNA is a common task in medicine. The
complexity of ECG signals is an important characterization
of a process and might be used as a diagnostic tool.

Time series prediction is a challenging problem in many
fields of science and engineering as well as have application
in medicine and forecasting procedures include different
techniques and models.

In general, the objective of these techniques is to build a
model of the process and then use this model on the last
values of the time series to extrapolate past behaviour into
future.

A number of various mathematical methods, algorithms
and computerized ECG analysis systems have been proposed
for the analysis of ECG complexity, for example, entropy-
based algorithms [2]–[4], spectral analysis [5], chaos-based
algorithms [6], [7], hidden Markov chains [8], Lempel-Ziv
method [9] and other methods. Most of these analysis
algorithms are heuristic and evaluate global features of
processes and are not able to detect local features of
dynamical processes.

Here is presented the mathematical information algorithm
based on the concept of the rank of a sequence [10].

The concept of the rank of a sequence have been
successfully used to express solutions of nonlinear
differential equations in forms comprising ratios of finite
sums of standard functions [11]–[13], for time series
forecasting [14], logistic-matrix representation, research of
chaos and for ECG complexity analysis [15].

The task of the presented algorithm is to develop strategy
for finding the ranks of sequences of the ECG parameters.

II. INVESTIGATED CONTINGENT

In study where investigated 42 persons from UK,
Glasgow Institute of Neurological Sciences at Southern
General Hospital. Where studied 13 women, age (mean ±
SD) 58.85 ± 13.02 and 29 man, age 46,28 ± 17,27. 26
patients where with brain injury and 16 with other diseases
may influence on arterial blood pressure (ABP).

All patients where monitored in coronary care unit and
with expected hypotension reactions. We have used the
Edinburgh University Secondary Insult Grades (EUSIG)
definitions for hypotension (systolic arterial pressure < 90
mmHg or mean arterial pressure < 70 mmHg).

III. REGISTERED DATA

At first from waveform signals data file the ECG and
pressure signals are collected and in every RR interval
(hearth rate) of ECG the systolic and diastolic blood
pressure parameters are calculated finding global maximum
and minimum of waveform signal in every cardio cycle
(Fig. 1) as well as reducing noise level using standard filters,
Fig. 2.

In Fig. 2 the systolic and diastolic blood pressures values
by black and grey lines accordingly and noise by dotted line
are presented.

Synchronously to ABP was recorded ECG II standard
lead. For every cardio cycle of ECG where measured - RR
interval, time duration between two consecutive R waves of
the ECG, JT interval, from the junction of J-point to T-wave
end of the ECG and QRS complex from the beginning of Q-
wave to J-point of the ECG. For final analysis where used
three synchronised data time sequences – RR, JT and QRS
(Fig. 3).

IV. METHODOLOGY OF ANALYSIS

General sequence of analysis procedures is presented in
Fig. 3. All data, ABP and ECG where recorded and
measured synchronously.

Hankel matrix analysis. Let us consider a sequence:
);(:,..., 010 Zjppp j  where elements jp can be real

or complex numbers. Then, a sequence of Hankel matrixes
reads
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where 1,2,...n  .

Fig. 1. Arterial blood pressure pulse with the main clinical concepts: pulse
width, diastolic, mean and systolic highlighted.

The Hankel transform (the sequence of determinants of
Hankel matrixes) );( Nndn  reads

.: detn nd H (2)
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Fig. 2. Systolic and diastolic blood pressure data with hypotension (every
50 cardio cycles for representation clarity).

Fig. 3. General sequence of analysis procedures.

Definition 1. The sequence );( 0Zjp j  has a rank

 mZm ;0

0( ; ) ,jrank p j Z m  (3)

if the sequence of determinants of Hankel matrixes has the
following structure

1 2( , ,..., ,0,0,...),md d d (4)

where 0md and 0...21   mm dd .

Example 1. Let 2: jp j  , 0Zj . Then,

 2
0; 3rank j j Z  because the sequence of determinants of

Hankel matrices reads  ,0,0,8,1,0  .
In computer-based realization it was considered that

determinant of Hankel matrix equals zero, if its’ value is
lesser than the fixed precision  .

In Table I average ranks for ECG parameters before
hypotension were presented.

TABLE. I. HANKEL MATRIX RANKS (H) CALCULATED FOR
INVESTIGATED PERSONS, FOR RR, JT AND QRS PARAMETERS
BEFORE ABP DROPS DOWN AND DURING LOWERING OF ABP.

H(RR) 1 IS BEFORE ABP FALL AND H(RR) 2 IS DURING ABP FALL,
THE SAME FOR JT AND QRS PARAMETERS.

Parameter H(RR)
1

H(RR)
2

H(JT)
1

H(JT)
2

H(QRS)
1 H(QRS) 2

Average H,
N = 42 3.47 3.45 3.87 3.83 4.10 3.99

STDEV 0.674 0.657 0.436 0.530 0.771 0.818
SEM 0.104 0.101 0.067 0.082 0.119 0.126

Algorithm 1. Algorithm for finding ranks of a sequence of
the ECG parameter:

Input: 0 1 2 3 1, , , ,..., Np p p p p  (a sequence of the ECG

parameter), 0 1,  : 0;s 
Step 1. Assign : 1n  ;
Step 2. Construct nH (1) and compute nd (2);

Step 3. Check if nd  ; if true, then save : 1,sm n 
: 1;s s  and repeat step 1 with the sequence

1 2 1, , ,...,s s s Np p p p   . If false, then : 1n n  and
repeat step 2.
Output: 0 1 2, , ,...m m m - array of ranks of a given sequence
(Fig. 4)

V. RESULTS

For the analysis of ECG parameters complexity and its
profile, we used understanding of processes interactions
interpretation according Bar-Yam [16], named as a
“complexity profile”. In complex systems we can see
different fractal levels, closely interacting. Looking into
heart and human organism as a complex system with few
fractal levels (organism-heart-heart structures) we can
postulate, that different ECG parameters with different time
scale, can represent different fractal levels of organism.
Interval RR could be related with organism regulatory
features, JT interval could be related with heart metabolic
features and interval QRS could be related with heart itself
regulatory features. Calculated Hankel matrix ranks are
presented in Table I for two situations: 1 – episode before
ABP drops down and 2 – during ABP drops down. Data in
Table I shows, that complexity for different parameters
significantly differs but for episode before ABP fall down
and during such episode difference is very small, not
significant (Table I).

Having possibility to measure of RR, JT and QRS
intervals complexity with help of Hankel matrix rank, it’s
possible to represent different clinical situations with
complexity profile, where the largest scale is RR interval,
middle scale is JT interval and smallest scale is QRS
duration. According Theory of complex systems [16] smaller
scale has complexity higher or the same as bigger scale.
With increasing of scale, complexity, usually, is going down.
These situations we have in all our investigated groups.
Complexity profile, one line connecting complexities (H) of
RR, JT and QRS in Fig. 4 are shown for two groups of
persons – with hypotension episodes (Hy) and without.
Comparison of complexity data for these two groups shows,
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that persons who have real situation of hypotension, have
smaller complexity for all parameters, complexity profile is
lower. Such changes could be interpreted so, that more
expressed is pathology leading to hypotension reactions of
organism, lower complexity organism represent. Difference
between episode 1 (before ABP fall down) and 2 (during
ABP fall down) as and in Table I is small. These results rise
up question what factors can influence such different
reactions influencing all regulatory processes in organism
and their interactions. Factor number one here could be the
significance of injury, but to evaluate it from clinical point
of view in real situation is very difficult or almost not
impossible.

We can conclude, that problem is not possible to solve at
current time. So we have investigated how patients of
different genders react to those ABP falls. In Fig. 5 are
presented women reaction to ABP fall, in Fig. 6 are shown
men reactions to ABP falls. Comparing those two figures we
can see, that men and women have different type of
regulation of studied processes – complexity profiles differs.
Due to small numbers of participants we can’t make
statistically significant conclusions, but we can postulate,
from our data, that women are more stable in ABP fall
episodes. Their complexity profile even slightly increases
during ABP fall (Fig. 6), at the same situation men shows
decrease of complexity profile during ABP fall (Fig. 7). So
if we have situation with risk of ABP fall, for men it could
be evaluated as more dangerous in comparison to women.

Such ABP fluctuation analysis methodology has a deep
physical meaning. The bouts of quasistationarity; the
evolution of the processes governed by a fixed algebraic law
in each reconstructed segment can be identified. The
proposed algorithm does not apply formal algebraic
relationships for the observed data. It reveals that the hidden
structure of the time series is able to identify potential
changes in the evolution of the process and exploits

predictability as a tool for the characterization of complexity
[17].

Fig. 4. The complexity profile of measured ECG parameters for persons
with hypotension episodes (average Hy1 – for group (n = 24) of patients
before hypotension episode and average Hy2 during hypotension) and
without (n = 18) (average 1 before falling down ABP and average 2 during
decrease of ABP, but not reaching hypotension level).

Fig. 5. The complexity profile of measured ECG parameters for women
(n = 14). Average 1 line represent episode before ABP fall, average 2 line
represent episode during ABP fall.

Fig. 6. The complexity of QRS parameter for one ECG interval.
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Fig. 7. The complexity profile of measured ECG parameters for men (n =
28). Average 1 line represent episode before ABP fall, average 2 line
represent episode during ABP fall.

The application of the method for a time series analysis
based on the identification of features of algebraic sequences
is proposed in this paper. It can be noted that this method is
especially effective when the time series are short. There are
not always sufficient data to train the models, therefore such
an approach when the features of algebraic sequence is
identified from a short time series helps to extract as much
information about the model of the process as possible and
then use this model to extrapolate past behaviour into future.

VI. CONCLUSIONS

Experimental results show that presented in this paper
method also can be used together with other hypotension
prediction methods. Hopefully proposed method could be
useful in clinical patent after brain injuries monitoring and
understanding of hypotension physiology. With the
increasing amount of studies in this area and application of
complex system theory into medicine it is hope to have more
detailed and motivated interpretation of analysed data and
data complexity itself.

REFERENCES

[1] A. Stell, R. Sinnott, R. Donald, I. Chambers et al, “Supporting
clinical trials to predict adverse events in the brain trauma domain”,
25th Int. Symposium on Computer-Based Medical Systems (CBMS),
2012, pp. 1–6. [Online]. Available: http://dx.doi.org/10.1109/cbms.
2012.6266380

[2] M. S. Pincus, “Approximate entropy as a measure of system
complexity”, in Proc. Natl. Acad. Sci., 1991, vol. 88, pp. 2297–2301.
[Online]. Available: http://dx.doi.org/10.1073/pnas.88.6.2297

[3] M. S. Pincus, “Assessing serial irregularity and its implication for
health”, Annals of the New York Academy of Sciences, vol. 954,

no. 1, pp. 245–267, 2006. [Online]. Available: http://dx.doi.org/
10.1111/j.1749-6632.2001.tb02755.x

[4] M. Costa, I. Cygankiewicz, W. Zareba, A. B. De Luna, A. L.
Goldberger, S. Lobodzinski, “Multiscale complexity analysis of heart
rate dynamics in heart failure: Preliminary findings from the music
study”, Computers in Cardiology, pp. 101–103, 2006.

[5] V. Yeragani, S. Appaya, K. Seema, R. Kumar, M. Tancer, “QRS
amplitude of ECG in normal humans: effects of orthostatic challenge
on linear and nonlinear measures of beat-to-beat variability”,
Cardiovascular Engineering: An International Journal, vol. 5, no. 3,
pp. 135–140, 2005. [Online]. Available: http://dx.doi.org/10.1007/
s10558-005-7674-0

[6] A. Sliupaite, Z. Navickas, A. Vainoras, “Evaluation of complexity of
ECG parameters using sample entropy and Hankel matrix”,
Elektronika ir Elektrotechnika, vol. 4, no. 92, pp. 107–110, 2009.

[7] E. D. Ubeyli, “Detecting variabilities of ECG signals by Lyapunov
exponents”, Neural Computing and Applications, vol. 18, no. 7,
pp. 653–662, 2009. [Online]. Available: http://dx.doi.org/10.1007/
s00521-008-0229-8

[8] A. Cohen, “Hidden Markov models in biomedical signal processing”,
Paper presented at the 20th Annual Int. Conf. IEEE, Engineering in
Medicine and Biology Society 3, pp. 1145–1150, 2009.

[9] S. Zhou, Z. Zhang, J. Gu, “Interpretation of coarse-graining of
Lempel-Ziv complexity measure in ECG signal analysis”, in Proc.
Conf. IEEE Eng. Med. Biol. Soc., 2011, pp. 2716–2719.

[10] Z. Navickas, L. Bikulciene, “Expressions of solutions of ordinary
differential equations by standard functions”, Mathematical
Modeling and Analysis, vol. 11, pp. 399–412, 2006.

[11] Z. Navickas, L. Bikulciene, M. Ragulskis, “Generalization of Exp-
function and other standard function based methods”, Applied
Mathematics and Computations, vol. 216, no. 8, pp. 2380–2393,
2010. [Online]. Available: http://dx.doi.org/10.1016/j.amc.2010.
03.083

[12] Z. Navickas, M. Ragulskis, L. Bikulciene, “Special solutions of
Huxley differential equation”, Mathematical Modelling and Analysis,
vol. 16, no. 2, pp. 248–259, 2011. [Online]. Available:
http://dx.doi.org/10.3846/13926292.2011.579627

[13] M. Ragulskis, Z. Navickas, L. Bikulciene, “The solitary solution of
the Liouville equation produced by the Exp-function method holds
not for all initial conditions”, Computers and Mathematics with
Applications, vol. 62, pp. 367–382, 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.camwa.2011.05.020

[14] M. Ragulskis, K. Lukoseviciute, Z. Navickas, R. Palivonaite, “Short-
term time series forecasting based on the identification of skeleton
algebraic sequences”, Neurocomputing, vol. 64, no. 10, pp. 1735–
1747, 2011. [Online]. Available: http://dx.doi.org/10.1016/j.neucom.
2011.02.017

[15] D. Karaliene, Z. Navickas, A. Slapsinskaite, A. Vainoras,
“Investigation of the stability of fluctuations in electrocardiography
data”, Journal of Vibroengineering, vol. 15, no. 1, pp. 367–378,
2012.

[16] Y. Bar-Yam, “Complexity rising: From human beings to human
civilization, a complexity profile”, Encyclopedia of Life Support
Systems (EOLSSUNESCO Publishers, Oxford, UK, 2002); also
NECSI Report 1997-12-01, 1997.

[17] G. Boffetta, M. Cencini, F. Falcioni, A. Vulpiani, “Predictability: a
way to characterize complexity”, Phys. Rep., vol. 356, pp. 367–474,
2002. [Online]. Available: http://dx.doi.org/10.1016/S0370-
1573(01)00025-4.

37




