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1Abstract—This paper is focused on investigation of
psychological stress in speech signal using shapes of normalised
glottal pulses. The pulses were estimated by two algorithms:
the Direct Inverse Filtering and Iterative and Adaptive Inverse
Filtering. Normalised glottal pulses are divided into opening
and return phase, and a feature vector characterizing each
glottal pulse is calculated for a series of n-percentage interval
in time domain. Each feature vector is created by parameters
describing its return-to-opening phase ratio, namely chosen
intervals, kurtosis, skewness, and area. Further, psychological
stress is detected by feature vector and four different
classifiers. Experimental results show, that the best accuracy
approaching 95 % is reached with Gaussian Mixture Models
classifier. All the best results were obtained regarding only the
interval of 5 % from both phase durations, i.e. for and after
pulse peak, where the most significant differences between
normal and stressed speech in feature vector are occurred.
Presented experiments were performed on our own speech
database containing both real stressed speech and normal
speech.

Index Terms—Emotion recognition, glottal pulses,
psychological stress, speech processing.

I. INTRODUCTION

The first application of glottal pulses can be found in
speech synthesis where precise understanding of glottal
pulses and its estimation lead to high-quality synthetic
speech. For instance, the novel method called Glottal
Spectral Separation (GSS) is published recently by Cabral et
al. [1]. By suitable combination of mixed excitation model
and noise component, the high-quality speech can be
produced by the GSS method using suitable combination of
mixed excitation model and noise components. Another
method of speech synthesis was introduced by Raitio et al.
[2], where synthetic voice is utilized by Hidden Markov
Models (HMM) and Iterative and Adaptive Inverse Filtering
(IAIF) leading to subjectively highly natural synthetic
speech. Similar HMM-based speech synthesizer based on
the Liljencrants-Fant (LF) model of the glottal flow is
published by Cabral et al. [3]. Glottal pulses can be also
used in music, for instance the speech (sing) resynthesis [4].

The next application field of glottal pulses is so-called
expressive speech processing used for expressing emotions,
dynamic and varying voice quality and articulation during
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phonation. In 1980, the dynamic changes varying on
phonation type, exactly on glottal source signal, was
published by Laver [5]. Differences between prosodic and
glottal feature were statistically processed and published in
[6], where glottal feature shows significant differences for
all 30 emotion pairs contrary to prosodic features. Using the
suitable combination of prosodic and glottal features for
emotion recognition is also described in [7], where Support
Vector Machine (SVM), Artificial Neural Network and
Gaussian Mixture Models (GMM) classifiers were applied
on Berlin emotional speech database. The symmetry of
glottal pulse shape has been used for recognizing between
six spoken emotional states [8] reaching average efficiency
66.5 % for well recorded speech signal and 47 % for noisy
speech respectively. A number of observed parameters
including glottal features are described in [9] varying on the
type of psychological stress influence. A set of chosen
speech features was tested and observed by different
classifiers for gender and emotion recognition [10].

Glottal flow analysis can be also applied in speaker
recognition [11]. The efficiency of glottal source component
derived from Linear Prediction (LP) residual was
preliminary experimentally tested for speaker recognition
using Auto Associative Neural Networks models on total 20
speakers [12]. Other studies using, for instance, Glottal Flow
Cepstrum Coefficients [13] and vocal source model [14]
were experimentally tested in the case of speaker
recognition.

Glottal pulse analysis can be applied also in biomedical
field. Recently, the detection of Parkinson’s disease from
dysphonia measurements is described as a promising
intermediate phase to non-diagnostic diagnostic method
[15]. Glottal pulses can be also utilized for analysis vocal
disorders [16], alcohol intoxication [17] as well as for
Alzheimer’s disease detection [18]. Other possible disease
detection using voice analysis can be found in the review
published by Saloni et al. [19]. In general, a survey oriented
on glottal source processing and its applications was written
by Drugman et al. [20].

II. MINING THE GLOTTAL PULSES

Despite the years to be the research of obtaining the real
glottal course from speech signal worked on, recently best
results are reached only for the base of glottal flow
estimation. Glottal flow can be characterized by a set of
glottal pulses repeated by fundamental period T.
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An example of glottal flow is illustrated in Fig. 1. Briefly,
the whole glottal pulse is composed by two instances–
primary opening To and return Tr phase. The space between
particular pulses is called closed phase Tc during which the
glottis is closed and the air does not flow through the gap.
Detail description of each individual glottal flow part
including physical changes and processes can be found in
[21].

Fig. 1. Illustration of glottal pulses series and its description.

The mostly used methods for the estimation of glottal
flow are DIF (Direct Inverse Filtering) and IAIF. Both
methods are based on all-pole modelling of speech signal
using LP analysis for considering the transfer function of
vocal tract with impulsive or periodic source substituting
glottis. The topic of inverse filtering and its impact on voice
research and therapy was published by Lofqvist [22] and
Nwachuku [23]. Other methods of glottal pulses estimation
are described in [24].

Basically, the DIF method can be classified as a
traditional autoregressive modelling-based inverse filtering
method [25]. The IAIF estimating method can be simply
described as a suitably connected serial-parallel combination
of DIF pair. This method is described in detail in [26],
characterized by better results of glottal flow estimation and
it is more computationally challenging.

Fig. 2. Differences of glottal pulses depending on the speech tempo. Black
signs the fast speech, i.e. shorter version of the same spoken word.

All analysed glottal pulses are mined in speech by
modified version of software Aparat [21] where all pulse

estimation is based on four parameters LF glottal model
[27]. Thus, beginning, maximum position and the end of
analysed glottal pulse (its absolute height and width) are
defined by mined LF model and used in further processing.

Under psychological stress, people tend to make syllables,
exactly entire words, shorter, therefore the stability of glottal
pulse uniqueness has been also observed in dependency on
the word duration. The first row of Fig. 2 illustrates the
signal form (light grey) of the Czech syllable “ču”
containing mainly the vowel /u/ and estimated glottal pulses.
The glottal flow of shorty spoken word is black (left
column), the longer version of the same word is dark grey
(right column). In the next subfigure (second row), both
waveforms of estimated glottal flows are illustrated in the
same time scale for showing the shape differences and
fundamental periods Tshort and Tlong of the short and long
versions of the same word, where fundamental frequency of
shortly spoken word is little bit higher (82 Hz versus 78 Hz).
Obviously, the glottal pulses do not vary upon the duration
of spoken word nor fundamental period which leads to
finding verification by two-dimensional normalisation of
mined glottal pulses showed in the last row, where for
example five normalised pulses are set over themselves for
each speech tempo (see Fig. 2). Due to this fact, only
individual glottal pulses are used in further experiments and
not the whole glottal flow periods where the time interval of
closed glottis is seemed to be not so representative in the
case of characterizing the actual state of speaker.

III. GLOTTAL FEATURE EXTRACTION

This section describes the method used for extracting
chosen parameters, exactly their ratios. Basically, used
method exploits only glottal pulses, composed by return and
primary opening phase Tr and To (see Fig. 1). Each of mined
glottal pulses is normalised to value 1 in time and amplitude
domain leading to dimensionally uniform glottal pulses
keeping original shape. In these two-dimensionally
normalised pulses, the primary opening and return phase are
processed separately. Both phases are transferred into
relative time scale reaching the zero level at the position of
current pulse’s peak and the maximum (100 %) in both
directions, i.e. at the end and at the start of current phases.

Used extraction method is based on the observation of
both phases only for selected relative division n. Figure 3
shows the main idea of n-percentage glottal pulse processing
of particular primary opening To(n) and return phase Tr(n)

leading to following equation

( )

( )
,r n

n
o n

T
RTO

T
 [-], (1)

where RTO is Return-To-Opening phase ratio of current
n-percentage interval always symmetric for both used
phases in relative scale.

Area, skewness and kurtosis (the third and fourth
standardized Pearson’s moments) are further calculated for
both n-percentage intervals. Finally for each mined
parameter value, the RTO phase ratio is calculated to sign
the domination level of one n-percentage interval of current
parameter.
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Fig. 3. Division of two-dimensionally normalised glottal pulse into
n-percentage particular intervals of opening and return phase.

Obviously, each part of pulse curve (thick line segment in
Fig. 3) corresponding to the n-percentage division is
characterized by three different RTOs (kurtosis, skewness
and area). These feature values are further used for
processing and observing differences between normal and
stressed speech. For example, the real values of investigated
RTOs are listed in Table I, where all values are based on
5 % interval and averaged over all speakers.

TABLE I. AVERAGED REAL VALUES OF THREE
RETURN-TO-OPENING PHASE RATIOS IN 5 % SELECTED

INTERVAL, IAIF METHOD, NORMALISED SOUND VOWEL’S
BEGINNING.

Vowel
RTO5 [-]

Normal mood Psychological stress
kurtosis skewness area kurtosis skewness area

/a/ 8.33 2.39 0.28 12.60 3.14 0.05
/e/ 12.32 3.14 0.05 16.96 3.53 0.05
/i/ 7.66 2.43 0.05 20.69 3.99 0.04
/o/ 14.75 3.44 0.04 12.67 3.17 0.04
/u/ 11.56 3.01 0.05 11.91 3.04 0.04

IV. REAL STRESS DATABASE

Research presented in this paper has been performed on
created database containing speech under real psychological
stress as well as normal speech. The first part of used
database is formed by 18 different Czech speaking male
speakers from ExamStress database [28] previously used for
observation of vowel polygon differences varying on
speaker’s state [29]. Second part of used database is formed
by another 6 Czech male speakers recorded by microphone
PCB 378B02 suitable for infrasonic applications and sound
interface USB-9234 produced by National Instruments. All
Czech speakers in both parts of used database were recorded
during the thesis defence in frame of final exam for
capturing the real psychological stress influence. Few days
later each speaker repeated the same text in more
self-comfortable conditions for recording speaker’s normal
mood.

V. EXPERIMENTAL RESULTS

This section describes results achieved by realized
experiments. In fluent speech performed by second part of
used database (six speakers), Czech vowels were
automatically detected and separated for further processing
[30]. Then, separated vowels were manually divided to
begging and centre vowel parts from which glottal pulses
were estimated by DIF and IAIF methods. From the first

part of used database, vowels were separated manually in
fluent speech and further were processed similarly to
achieve the most pure training data further used in designed
classifiers.

For naturally dynamic speech, the efficiency of emotional
state (stress and normal mood) recognition was achieved for
two types of glottal flow estimation methods (DIF and IAIF)
in beginning and centre vowel part for 20 different n-
percentage intervals (5 % to 100 % by step 5 %). Mentioned
ways of efficiency testing were also applied on each 10 ms
segment of normalised speech leading to the impact
observation of glottal pulse uniformity on dynamic range
limitation. The efficiency, exactly the uniformity of glottal
pulses under normal and stress conditions, is tested by four
different classifiers embedded in standard MATLAB
version and further appropriately trained, validated and
applied.

In following text, the recognition of used various glottal
pulses are defined as:
 Method 1 for DIF, vowels’ beginning
 Method 2 for DIF, vowels’ beginning, normalised
sound
 Method 3 for IAIF, vowels’ beginning
 Method 4 for IAIF, vowels’ beginning, normalised
sound
 Method 5 for DIF, vowels’ centre
 Method 6 for DIF, vowels’ centre, normalised sound
 Method 7 for IAIF, vowels’ centre
 Method 8 for IAIF, vowels’ centre, normalised sound.
The k-Nearest Neighbour (kNN) was chosen as the first

classifier. The best results are reached for the 5 % observed
interval of glottal pulses, where the most significant
differences are occurred between normal and stressed
speech. Almost the efficiency of 95 % is reached by Method
2 on 5% selected interval. Further, accuracy over 90 % is
reached by Method 1 and the Method 4 for 5 % and 10 %
selected intervals. This method is the most successful on
higher n-percentage intervals, where its recognition
efficiency lies between 70 % and 80 %. The worst efficiency
of kNN classifier was reached by Method 8 reaching
efficiency values lower than 40 % for higher n-percentage
intervals. Generally for kNN, the average recognition
efficiency is approximately 60 % over all used methods and
intervals.

The efficiency of stress detection of chosen classifier and
actual n-percentage interval and method is calculated as
follows

( ) 100,cdn cds

n s

N N
Efficiency n

N N


 


[%], (2)

where Nn is the total number of used normal state glottal
pulses, Ns the total number of glottal pulses under
psychological stress, Ncdn is the number of correctly detected
normal mood glottal pulses and Ncds is the number of
correctly classified stressed glottal pulses. The numeric
example of calculated efficiency for kNN classifier and
Method 3 on 35 % selected interval is computed as

(815 941) 100 1756 100
(35) 78.9%.

1049 1176 2225
Efficiency

  
  


(3)
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Significant efficiency increase was obtained by the SVM
classifier where average efficiency value approaches to
70 % over all methods and intervals. Generally, efficiency
reached by SVM can be regarded as more satisfactory with
more possible used n-percentage glottal pulse intervals for
correct psychological stress detection. The best results
approaching 95 % accuracy are received by Method 4 for
5 % interval as well as in the selected interval range
75 %-95 %. The most significant differences between
observed features ratios of normal and stressed speech can
be found in 5 % (Method 6 and Method 7) and 65 %
(Method 3) selected intervals where also accuracy
approaches to 95 %.

As the third classifier, GMM was used. The high
efficiency values of psychological stress detection were
reached over all possible n-percentage intervals of glottal
pulses. On the other hand, the generally lowest accuracy
values are also achieved by GMM, exactly for 10 %
(Method 5) and for 35 % (Method 1) selected intervals
where the accuracy approaches only to 10 % in stress
detection. In some selected intervals, each method reaches
the efficiency almost 95 % which signs the highest
uniformity of observed features varying on actual state of
speaker, and targets on GMM as a suitable classifier for
stress detection. The average efficiency value over all used
methods and interval approaches 82 %, but the best results
were achieved by Method 4.

Figure 4 illustrates reached efficiency for Method 3 and
its sound normalised equivalent Method 4 for showing the
impact of sound normalisation on stress detection in the
form of more stable reached efficiency results. Obviously,
the best and the most constant results can be found in the
range of n-percentage intervals 50 %-90 % for Method 4.

Fig. 4. Efficiency of stress detection for Method 3 (dashed grey line)
Method 4 (solid black line) depending on selected n-percentage interval for
using the GMM classifier.

The Probabilistic Neural Network (PNN) was used as the
fourth classifier. Comparing to previous results, similar
observations were occurred. The highest uniformity of RTOs
varying on speaker’s state can be found in the usage of 5 %
selected interval (Method 2, Method 4 and Method 7) and
higher intervals 75 %–100 % used only by Method 4.
Absolutely highest accuracy (almost 94 %) in stress
detection is achieved by Method 2. The worst efficiency
results were achieved in intervals higher than 70 % by
Method 3 and Method 8. These both methods are not
suitable for psychological stress detection with the PNN
classifier. Generally, the average efficiency of
PNN classifier using RTOs is approximately 62 %.

Obviously, the chosen method and classifier are not
important in the case of stress recognition as well the
appropriate selected interval, but generally the best results
are reached by GMM classifier.

The final sorting of used types of stress detection
parameters is listed in Table II, where due to the total
number 640 of all used types, only the first fifteen (best) and
the last five (worst) positions are listed. All types are written
only in abbreviations, e.g. GMM_5_D_C_N represents
GMM classifier applied on 5 % selected interval, DIF
estimation method, the vowels’ centre and normalised sound
(Method 6). The values of total analysed normal Nn and
stressed speech Ns glottal pulses are listed in Table II as well
as false detected normal N’cdn and stressed N’cds glottal
pulses.

TABLE II. FINAL SORTING OF USED TYPES.

Rank Type N’cdn

[-]
Nn

[-]
N’cds

[-]
Ns

[-]
Eff.
[%]

1 SVM_5_I_B_N 37 1049 59 1176 95,7
2 GMM_5_D_C_N 60 1098 55 1454 95,5
3 GMM_5_I_B_N 50 1049 50 1176 95,5
4 GMM_5_I_C 70 1192 52 1452 95,4
5 GMM_65_I_B_N 42 1049 60 1176 95,4
6 GMM_50_I_B_N 45 1049 57 1176 95,4
7 GMM_55_I_B_N 44 1049 58 1176 95,4
8 GMM_65_D_C 78 1098 39 1454 95,4
9 GMM_65_D_B_N 65 1065 62 1626 95,4

10 GMM_60_I_B_N 51 1049 54 1176 95,3
11 GMM_70_I_B_N 51 1049 54 1176 95,3
12 GMM_75_I_B_N 53 1049 52 1176 95,3
13 GMM_80_I_B_N 53 1049 52 1176 95,3
14 GMM_65_I_C 68 1192 56 1452 95,3
15 GMM_65_D_C_N 59 1098 61 1454 95,3

…
636 KNN_5_I_C 1183 1192 1149 1452 11,8
637 GMM_35_D_B 975 1065 1487 1626 8,5
638 PNN_70_I_C_N 1136 1192 1291 1452 8,2
639 PNN_80_I_C_N 1005 1192 1422 1452 8,2
640 KNN_5_D_C_N 930 1098 1413 1454 8,2

Obviously, the best results are reached by Method 4 and
GMM classifier in general. As the best n-percentage interval
can be marked 5 % sector, but the most stress recognition
stable range is from 50 % to 80 %.

VI. CONCLUSIONS

By the comparison of eight different glottal pulse
estimation methods and four classifiers, the GMM classifier
can be marked as the best for stress recognition with method
estimating glottal pulses by IAIF algorithm from normalised
sound vowel’s beginning. Obviously by presented RTOs:
 the IAIF estimation is more suitable than DIF
algorithm,
 stress influence is better detectable at vowels’
beginning,
 sound normalisation leads to more stable efficiency
results,
 the biggest differences in RTOs between normal and
stressed speech lie in 5 % interval as well as in 65 %.
Absolutely best results reaching efficiency of 95 % were

achieved for GMM classifier, Method 4 on 5 % and
50 %-80 % intervals.

Generally, presented approach corresponds with the
similar method detecting stress by means of glottal pulse
distribution [31]. However, presented experiments show
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higher accuracy (95 %) as the accuracy of 88 % published in
[31] or in [32], where Glottal Spectral Slope reached stress
detection ratios in the range 18 %–36 %.

Obviously, the combination of automatic vowel detection,
e.g. [30], and findings presented in this paper can lead to
development new systems recognizing psychological stress
in speech which can negatively influence human behaviour.
These systems can be practically applied in many fields of
usage e.g. machine control, medical applications, etc.

Further, it is necessary to expand real psychological stress
database to verify experimentally presented results. In
future, described method will be also expanded and adapted
to its usage on all estimated glottal pulses in all voiced parts
of speech, i.e. not only on found vowels. This modification
can lead to higher amount of estimated glottal pulses and to
observation if described methods are phoneme-independent
in the case of psychological stress detection in speech.
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