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1 Abstract—High Voltage DC Transmission (HVDC) plays
vital role in transmission and supply of high quality electric
energy. The condition monitoring and protection are crucial for
the normal operation of the HVDC system. Unfortunately, it is
difficult to extract failure features and isolate the faults of
HVDC because the transmission line always spreads a long
distance. To address this issue, this work presents an efficient
condition monitoring and fault diagnosis method for HVDC
based on an independent component analysis (ICA)-wavelet
feature extractor and a neural network fault classifier. The
innovation of the proposed method lies that it appropriately
introduced the ICA-wavelet to realize accurate fault feature
extraction and the actual engineering data in Guangzhou
HVDC system has been used to verify the effectiveness of the
proposed method. The experimental results show that the new
method can efficiently extract important fault features with
heavy noise components depressed and the fault diagnosis rate
reached to 83.3 %. Moreover, the proposed method is superior
to the traditional methods. The findings of this work could
provide valuable experience and data support for the
construction and development of HVDC system in practice.

Index Terms—HVDC, fault detection, ICA, source
separation.

I. INTRODUCTION

Developed in Sweden and in Germany in 1930s and firstly
applied commercially in Soviet Union in 1951, right now the
high voltage direct current Transmission (HVDC) has been
widely accepted as a new generation technology for the bulk
transmission of electrical power [1]–[3]. Compared with the
common alternating current (AC) systems, HVDC is more
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economical in long-distance electrical power transmission
[4]–[6]. For short distances, owning to excellent system
performance in transient state and steady state, HVDC still
warrants higher quality electrical power supply than AC
systems [7]. Moreover, HVDC allows power flow running at
different frequencies in two or more grid systems [8]. This
feature will benefit incompatible networks in power transfer
and improve the grid stability. Hence, HVDC lines have been
now constructing extensively all over the world [9].

Although HVDC technology has achieved fast
development, its protection theory is developing relatively
slowly [10]. The main reasons limiting protection on HVDC
are that the transmission line is very long and the fault
mechanism is very complex [11]–[13]. Along with the rapid
economic development of China and other countries, the
electric power demand grows day by day; efficient and
reliable power supply become very important. How to
guarantee the performance of the HVDC transmission
system, ensure system efficient, reliable, safe operation and
timely discover and predict system fault, become a big
challenge in HVDC systems [14], [15].

Recent progresses on the HVDC protection indicates that
the time-frequency characteristics of the voltage and current
of the HVDC components could provide significant
information for HVDC fault detection and isolation [13],
[16]–[18]. Liao et al [19] suggested in their research that the
natural frequency of travelling wave of the HVDC is very
useful for fault location. Xu and Huang [20] used the Wavelet
to extract the time-frequency features of the HVDC fault
diagnosis. Kerf et al [21] and Li et al [22] also proved that the
Wavelet-based protection strategy is very suitable for HVDC
fault detection and isolation. However, most of the existing
work has not addressed the issue of separation of key signal
source directly involved with the HVDC faults [23]. As well
known, the HVDC line always spreads thousands of
kilometres in distance. The voltage and current sensors have
been serious contaminated by strong background noise and
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disturbance signals. In the faults diagnosis procedure, only a
small portion of source components in the sensor data is
involved with the HVDC fault and could be sensitive for the
changes of system conditions. The other background noise
and disturbance signal components in the sensor data may
greatly influence the fault detection and leads to false alarm
and misdiagnosis [23]. If the key components useful for fault
diagnosis could be separated from the sensor signal, the fault
detection performance of Wavelet-based protection strategy
will be improved. Unfortunately, very limited work has been
done to address this issue. To solve this problem, we propose
the independent component analysis (ICA) to separate useful
fault source components from multi-channel sensor signals in
the HVDC. The ICA is powerful to find a suitable
representation of multi-channel sensor signals and has been
proven to be very efficient to separate independent fault
components from multi-channel sensors [24]. Hence, it is
reasonable to evaluate the fault detection performance of
Wavelet-based protection strategy after ICA processing.

Taking the HVDC system in Guangzhou city as the
research object, this work presents a new early fault detection
method of HVDC using ICA-Wavelet-based protection
strategy. The mathematical model of HVDC system was
firstly established to investigate the independent component
analysis (ICA) based blind source separation technology to
realize accurate fault signal extraction. Then, the inherent
quantitative index of the fault characteristics was extracted
using wavelet transform. Lastly, a neural network was
employed to identify the HVDC faults. Both numerical
simulation and actual engineering data in Guangzhou HVDC
system have been used to verify the effectiveness of the
proposed method. The analysis results show that the new
method is promising in improving the potential failure
detection and ensuring the HVDC operation efficiency and
safety. The findings of this work can provide valuable
experience and data support for the construction and
development of HVDC system in Guangzhou.

II. HVDC PROTECTION METHOD

Herein we firstly introduce the mathematical model of a
typical two-terminal voltage source converter (VSC)-HVDC
system. Based on the VSC-HVDC model the proposed fault
detection method is described.

A. VSC–HVDC Model
As shown in Fig. 1, the two-terminal VSC–HVDC system

consists of two power sources, two VSC stations with DC
capacitors and AC filters, DC transmission line, etc.

The two VSC stations are constructed symmetrically. The
VSC at the AC side can be modeled in d-q synchronous
coordinates as [5]:

,
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where ,sd qu and ,d qi are the dq components of AC voltage

and current, respectively; ,cd qu are the dq components of
VSC voltage; R and L are the VSC resistance and inductance,
respectively;  is the AC frequency; dcu and C are the DC
bus voltage and DC capacitor, respectively; dli is the DC
current to be filtered by C and dci is the DC bus current.

Fig. 1. Principle diagram of two-terminal HVDC.

Align the d-axis in phase with the AC source voltage, i.e.
sd su u , 0squ  , then the active and reactive power from

the AC source to the DC link can be modeled as [7]:
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where if sdu is fixed, then Q is only proportional to qi , and P

is proportional to di . Therefore, the active and reactive power
can be adjusted independently through direct control of qi

and di .
Based on this HVDC mathematical model, the

development of the ICA-Wavelet based protection strategy
has been proposed in this work.

B. The Proposed Fault Detection Method
The HVDC system is very huge and complex. A measured

voltage/current signal may be distorted due to strong
background noise. In addition, the existing wavelet-based
protection strategy only can process one sensor signal but it is
difficult to determine the optimal sensor installation location.
To solve these problems, this work presents a new method
that uses ICA to fuse multi-channel sensor signals to find a
suitable representation of fault characteristics [23]. By doing
so, the wavelet-based protection strategy could be improved
with respect to fault detection rate. The ICA is defined as

,X = A S (3)

where T
1 2[ ]pX x x x is measured signals using p

sensors; T
1 2[ ]qS s s s is q unknown independent

sources contained in the sensor data; A is the mixing matrix.
(3) indicates that for any sensor measurement px there are q

unknown independent sources hidden in the signal and
among q sources there may be one or two sources are directly
involved with the faults. One can note that if find the inverse
matrix W of A, the q sources could be separated from X, i.e.
ˆ  S = W X S . The negentropy iteration could be used to

estimate W [25]. The negentropy is defined as

ˆ ˆ( ) [E{ ( )} E{ ( )}],J G G S S ν (4)

where E is the mathematical expectation, G is a
non-quadratic function, and ν is Gaussian variables with the
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same covariance matrix of Ŝ . Hence, from (4) the ICA
separation could be transferred into the following nonlinear
optimal problem:

max

1  ,T T
0 ,

ˆ( ),

s.t.  E{( )( )} i j
i j i j

J

W W  






 


W

X X

S
(5)

where [ ]1 2
Tˆ

qW W W X X XS  . Then, apply the
Kuhn-Tuchker term and the fixed-point iteration to (5), to
yield the updating of W:

* T T( 1) E{ ( ( ) )} E{ ( ( ) )} ( ),z zW k zg W k g W k W k   (6)
* *( 1) ,( 1) ( 1) / W kW k W k    (7)

where z is the whitening of X, and g is the
derivative function of G. Then de-mixing matrix W could be
obtained by repeating (6) and (7) until the termination
criterion is met.

After the ICA processing, useful fault sources has been
extracted and are prepared for the Wavelet analysis. The
Wavelet is a kind of time-frequency analysis technique.
Wavelet can capture inherent features hidden in the signal by
decomposing the signal into wavelet sub-bands divided
equally in frequency along the time axis [21]. Since each
wavelet sub-band presents a change of the original signal in a
small piece of frequency band, the energy values of the
wavelet sub-bands could be used as the fault feature vector.
In this work the neural network has been employed to learn
the relationship mapping the feature vector and the HVDC
faults. Figure 2 shows the workflow diagram of the proposed
fault diagnosis method.

Fig. 2. The workflow diagram of the proposed fault diagnosis method.

III. SIMULATION AND EXPERIMENT

A. Numerical Simulation and Discussion
A simulation model of the VSC-HVDC system shown in

Fig. 1 has been established using MATLAB software. This
model is strictly subjected to HVDC mathematical model.

The electrical power is transmitted by two VSC stations from
a 110 kV, 50 Hz AC source to another identical one. The DC
transmission line is 500 km. R = 0.01 Ω, L = 0.05 H, C =
0.001 F. In order to measure the system DC voltage signals,
10 sensors have been installed along the DC line with an
interval of 50 km.

In the simulation, 3 kinds of typical HVDC faults were
introduced in the MATLAB model to investigate the fault
detection performance of the proposed method. These faults
include DC ground fault (DG), AC line-to-line fault (LL),
and coupled fault of AC line-to-ground and line-to-line
(LG-LL). Figure 3(a)–Fig. 3(d) shows the original system
voltage signals under normal and faulty states and
Fig. 4(a)–Fig. 4(d) gives the voltage signals after ICA
processing.

It can be seen in Fig. 3(a)–Fig. 3(d) that the original DC
voltage signals have been corrupted by background noise. It
is difficult to extract useful information for purpose of
accurate fault diagnosis. This is why the ICA has been
introduced in the fault feature extraction in this work. One
can note in Fig. 4(a)–Fig. 4(d) that after the ICA processing
the background disturbance has been depressed effectively.
Compared with the original signals, the extracted DC voltage
signals could represent obvious changes when faults occur.
Thus, useful fault sources have been extracted by ICA.

(a)

(b)

(c)

(d)
Fig. 3. The original DC voltage signals: (a) Normal state; (b) LL fault signal;
(c) DG fault signal; (d) TLG-LL fault signal.
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(a)

(b)

(c)

(d)
Fig. 4. The extracted DC voltage signals via ICA processing: (a) Normal
state after ICA extraction; (b) LL fault signal after ICA extraction; (c) DG
fault signal after ICA extraction; (d) TLG-LL fault signal after ICA
extraction.

Then the Wavelet was used herein to decompose the
extracted DC voltage signals in to 8 wavelet sub-bands.
Table I–Table 4 show the energy distributions of the 8
wavelet sub-bands under the 4 system operation conditions. It

can be seen in the tables that the energy flow in the 8
sub-bands varies with the changes of the system conditions.
For instance, in wavelet sub-band 1, its energy ratio
accounted for 39 % of the whole signal energy under normal
condition in Table I; however, when faults occurred the
energy ratios changed to 27.1 % in Table II, 19.1 % in
Table III and 30.5 % in Table IV, respectively. Hence, the
energy values of the wavelet sub-bands could be used as the
features for the fault identification.

TABLE I. ENERGY RATIO OF 8 WAVELET SUB-BANDS IN NORMAL
STATE.

Number of wavelet sub-bands
1 2 3 4 5 6 7 8

Energy
ratio 39 % 25.7 % 7.7 % 13.8 % 2.3 % 4.1 % 3.5 % 3.9 %

TABLE II. ENERGY RATIO OF 8 WAVELET SUB-BANDS IN LL
STATE.

Number of wavelet sub-bands
1 2 3 4 5 6 7 8

Energy
ratio 27.1 % 20.8 % 12.6 % 21.6 % 2.5 % 4.1 % 5.7 % 5.6 %

TABLE III. ENERGY RATIO OF 8 WAVELET SUB-BANDS IN DG
STATE.

Number of wavelet sub-bands
1 2 3 4 5 6 7 8

Energy
ratio 19.1 % 25.6 % 17.8 % 22.8 % 1.7 % 3.3 % 8.5 % 5.2 %

TABLE IV. ENERGY RATIO OF 8 WAVELET SUB-BANDS IN TLG-LL
STATE.

Number of wavelet sub-bands
1 2 3 4 5 6 7 8

Energy
ratio 30.5 % 38.8 % 4.8 % 28.3 % 1.8 % 2.4 % 3.2 % 4.2 %

TABLE VI. THE FAULT DETECTION RESULTS.

Methods Detection rate (%)

Wavelet-NN 57.3%

Wavelet-HMM 61.7%

ICA-Wavelet-NN 83.3%

ICA-Wavelet-HMM 81.7%

TABLE V. A PORTION OF THE FAULT DETECTION RESULTS USING THE PROPOSED METHOD.

Samples Outputs of the neural network Expected outputs Detection resultsNeuron 1 Neuron 2 Neuron 3 Neuron 4
1 0.088 0.071 0.024 0.954 0001 Normal
2 0.195 0.027 0.234 1.040 0001 Normal
3 0.055 0.031 0.041 0.932 0001 Normal
4 0.149 0.054 0.053 0.893 0001 Normal
5 0.190 0.035 0.111 1.061 0001 Normal
6 0.062 0.010 1.054 0.023 0010 LL
7 0.130 0.024 1.108 0.032 0010 LL
8 0.184 0.009 1.020 0.024 0010 LL
9 0.035 0.064 0.920 0.016 0010 LL

10 0.087 0.019 1.027 0.031 0010 LL
11 0.018 0.983 0.016 0.027 0100 DG
12 0.030 0.967 0.099 0.099 0100 DG
13 0.044 1.080 0.038 0.038 0100 DG
14 0.089 0.985 0.057 0.071 0100 DG
15 0.070 1.037 0.183 0.018 0100 DG
16 1.080 0.008 0.004 0.008 1000 TLG-LL
17 0.930 0.015 0.073 0.027 1000 TLG-LL
18 0.931 0.097 0.095 0.016 1000 TLG-LL
19 1.000 0.046 0.391 0.038 1000 TLG-LL
20 1.081 0.036 0.131 0.360 1000 TLG-LL
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In this work, 300 samples for each HVDC condition were
prepared to evaluate the fault detection performance. We
calculated 8 energy values for each sample in the Wavelet
analysis to form the feature vector. A neural network with the
structure of 8 × 40 × 4 was established to identify the faults.
The binary code was adopted in the outputs of the neural
network to map the input features to the 4 HVDC states, i.e.
[0 0 0 1], [0 01 0], [0 1 0 0] and [1 0 0 0] corresponding to
normal, LL, DG and TLG-LL states, respectively. Half of the
samples were used to train the network and the other half
were used for testing. A portion of the fault detection results
are listed in Table V. It can be seen in the table that the
proposed fault detection method can efficiently identify the
HVDC faults.

In order to highlight the proposed HVDC fault diagnosis
method, we have compared the new ICA-Wavelet based
protection strategy with some common used methods.
Table VI shows the comparison results between the proposed
method and the Hidden Markov Model (HMM) [26] based
methods. One can be noticed from the table that (a) the ICA
processing can efficiently prove the fault detection rate
owning to its reliable feature extraction ability, and (b) the
proposed ICA-Wavelet-NN method is better than the
ICA-Wavelet-HMM.

B. Experimental Results and Discussion
In order to further evaluate the performance of the newly

proposed HVDC fault diagnosis method in practice,
experiments using real data in Guangzhou 110 kV
transmission lines have been carried out in this work. This
110 kV HVDC transmission line happened a serious DC
ground fault in 2010. The DC voltage failure data has been
recorded in the database of Guangzhou HVDC system. The
failure data from 5 sensors was selected to investigate the
fault diagnosis performance of the proposed method.

Figure 5 shows the original DC source and Fig. 6 gives the
ICA extracted one. Comparing the two figures one can note
that the fault independent source involved with the system
failure has been perfectly separated from the original sensor
signals.

Fig. 5. The original DC voltage signal in Guangzhou 110 kV HVDC.

Fig. 6. The extracted DC voltage signal via ICA processing.

Then the ICA extracted DC voltage signals were
decomposed by Wavelet analysis. Table VII and Table VIII
show the energy distributions of the 8 wavelet sub-bands
under normal and faulty conditions, respectively. Similar to
Table I–Table IV, in Table VII and Table VIII the energy
ratios of the sub-bands varied significantly with the change of
the system health condition.

TABLE VII. ENERGY RATIO OF 8 WAVELET SUB-BANDS IN
NORMAL STATE.

Number of wavelet sub-bands
1 2 3 4 5 6 7 8

Energy
ratio 24.3 % 12.4 % 18.6 % 9.6 % 10.3 % 15.9 % 10.7 % 21.0 %

TABLE VIII. ENERGY RATIO OF 8 WAVELET SUB-BANDS IN
FAULTY STATE.

Number of wavelet sub-bands
1 2 3 4 5 6 7 8

Energy
ratio 23.6 % 35.0 % 7.5 % 21.4 % 1.7 % 4.5 % 2.8 % 4.0 %

Lastly, a neural network with the structure of 8 × 20 × 3
was established for the fault isolation. The binary code was
adopted in the outputs, i.e. [0 0 1] and [1 0 0] corresponding
to normal and DG states, respectively. We have extracted 50
samples of the normal state and 50 samples of the faulty state
from the database of Guangzhou HVDC system. Thirty
samples were used to train the network and the reminder 20
samples were used for testing. A portion of the fault detection
results are listed in Table IX. It can be seen in the table that
the proposed fault detection method can efficiently identify
the HVDC faults.

TABLE IX. A PORTION OF THE FAULT DETECTION RESULTS.

Samples Outputs of the neural network Expected
outputs

Detection
resultsNeuron 1 Neuron 2 Neuron 3

1 0.049 0.182 1.063 001 Normal
2 -0.005 0.008 1.081 001 Normal
3 0.020 0.138 1.102 001 Normal
4 -0.010 0.082 1.072 001 Normal
5 0.015 0.079 0.946 001 Normal
6 1.042 0.092 0.000 100 DG
7 1.053 0.059 0.053 100 DG
8 1.046 0.016 0.020 100 DG
9 1.074 0.021 0.095 100 DG

10 0.767 0.081 0.445 100 DG

Table X compares the fault detection performance of the
proposed method against the Hidden Markov Model (HMM)
[26] based methods. It can be seen in the table that after the
ICA processing both the Wavelet-NN and the Wavelet-HMM
have dramatically improved the fault detection rate with a lift
of 21.0 % or better. One can also note that the
ICA-Wavelet-NN method is superior to the
ICA-Wavelet-HMM with a 5.0 % improvement of detection
rate.

TABLE X. THE FAULT DETECTION RESULTS.
Methods Detection rate (%)

Wavelet-NN 57.5 %
Wavelet-HMM 51.0 %

ICA-Wavelet-NN 78.5 %
ICA-Wavelet-HMM 73.5 %

IV. CONCLUSIONS

Taking the strong background disturbance mixed into the
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sensor measurements into account, this work has reported the
new feature extraction and fault isolation strategy for HVDC
systems. The main innovation of the method is that the ICA
feature extraction has been introduced into the existing
Wavelet-based protection strategy to form the ICA-Wavelet
based protection strategy. Both numerical simulation and
experimental tests using real data have been implemented to
illustrate the effectiveness of the proposed HVDC fault
diagnosis method. The findings of the work suggest that the
proposed ICA-Wavelet based protection strategy is reliable
and feasible for fault diagnosis of HVDC systems and thus
has practical importance. Future work will continue develop
a remote condition monitoring and fault diagnosis system
based on the ICA-Wavelet based protection strategy for the
practical application of HVDC system protection.
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